1
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
3
|
Wu Z, Qian Y, Shang Y, Zhang Y, Wang M, Jiao M. Exploring common biomarkers of ischemic stroke and obstructive sleep apnea through bioinformatics analysis. PLoS One 2024; 19:e0312013. [PMID: 39475897 PMCID: PMC11524449 DOI: 10.1371/journal.pone.0312013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Clinical observations have shown that many patients with ischemic stroke (IS) have a history of obstructive sleep apnea (OSA) both before and after the stroke's onset, suggesting potential underlying connections and shared comorbid mechanisms between the two conditions. The aim of this study is to identify the genetic characteristics of OSA patients who develop IS and to establish a reliable disease diagnostic model to assess the risk of IS in OSA patients. METHODS We selected IS and OSA datasets from the Gene Expression Omnibus (GEO) database as training sets. Core genes were identified using the Limma package, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning algorithms. Gene Set Variation Analysis (GSVA) was conducted for pathway enrichment analysis, while single-sample gene set enrichment analysis (ssGSEA) was employed for immune infiltration analysis. Finally, a diagnostic model was developed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, with its diagnostic efficacy validated using receiver operating characteristic (ROC) curves across two independent validation sets. RESULTS The results revealed that differential analysis and machine learning identified two common genes, TM9SF2 and CCL8, shared between IS and OSA. Additionally, seven signaling pathways were found to be commonly upregulated in both conditions. Immune infiltration analysis demonstrated a significant decrease in monocyte levels, with TM9SF2 showing a negative correlation and CCL8 showing a positive correlation with monocytes. The diagnostic model we developed exhibited excellent predictive value in the validation set. CONCLUSIONS In summary, two immune-related core genes, TM9SF2 and CCL8, were identified as common to both IS and OSA. The diagnostic model developed based on these genes may be used to predict the risk of IS in OSA patients.
Collapse
Affiliation(s)
- Zhe Wu
- Rehabilitation Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yutong Qian
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Chinese Medicine, Shanghai, P.R. China
| | - Yaxin Shang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yu Zhang
- Department of Integrated Traditional Chinese and Western Medicine in Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai, P.R. China
| | - Meilin Wang
- Department of Orthopedic and Spinal Rehabilitation, Ningbo Rehabilitation Hospital, Ningbo, P.R. China
| | - Mingyuan Jiao
- Research and Teaching Department, Jinhua Maternal Child Health Hospital, Jinhua, P.R. China
| |
Collapse
|
4
|
Xu H, Guo Y, Liu XJ, Liu Y, Yin S, Bao QY, Peng R, Tian WB, Xia YY, Gao L, Liu JM. Idebenone Antagonizes P53-Mediated Neuronal Oxidative Stress Injury by Regulating CD38-SIRT3 Protein Level. Neurochem Res 2024; 49:2491-2504. [PMID: 38862726 PMCID: PMC11310240 DOI: 10.1007/s11064-024-04189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.
Collapse
Affiliation(s)
- Hao Xu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Ying Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Xiao-Jun Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Ying Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Shi Yin
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Qi-Ying Bao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Ru Peng
- Jiangsu Health Vocational College, Nanjing, P.R. China
| | | | - Ying-Yan Xia
- Bethune Second Clinical School of Medicine, Jilin University, Changchun, P.R. China
| | - Ling Gao
- Basic medical department of Changchun Medical College, Changchun, P.R. China.
| | - Jia-Mei Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, P.R. China.
| |
Collapse
|
5
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
7
|
Ito Y, Yamagata M, Yamamoto T, Hirasaka K, Nikawa T, Sato T. The reciprocal regulation between mitochondrial-associated membranes and Notch signaling in skeletal muscle atrophy. eLife 2023; 12:RP89381. [PMID: 38099641 PMCID: PMC10723794 DOI: 10.7554/elife.89381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Skeletal muscle atrophy and the inhibition of muscle regeneration are known to occur as a natural consequence of aging, yet the underlying mechanisms that lead to these processes in atrophic myofibers remain largely unclear. Our research has revealed that the maintenance of proper mitochondrial-associated endoplasmic reticulum membranes (MAM) is vital for preventing skeletal muscle atrophy in microgravity environments. We discovered that the deletion of the mitochondrial fusion protein Mitofusin2 (MFN2), which serves as a tether for MAM, in human induced pluripotent stem (iPS) cells or the reduction of MAM in differentiated myotubes caused by microgravity interfered with myogenic differentiation process and an increased susceptibility to muscle atrophy, as well as the activation of the Notch signaling pathway. The atrophic phenotype of differentiated myotubes in microgravity and the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice were both ameliorated by treatment with the gamma-secretase inhibitor DAPT. Our findings demonstrate how the orchestration of mitochondrial morphology in differentiated myotubes and regenerating muscle stem cells plays a crucial role in regulating Notch signaling through the interaction of MAM.
Collapse
Affiliation(s)
- Yurika Ito
- Faculty of Medical Sciences, Fujita Health UniversityToyoakeJapan
| | - Mari Yamagata
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha UniversityKyotanabeJapan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto UniversityKyotoJapan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University Graduate SchoolNagasakiJapan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate SchoolTokushimaJapan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Anatomy, Faculty of Medicine, Fujita Health UniversityToyoakeJapan
- International Center for Cell and Gene Therapy, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
8
|
Tam HH, Zhu D, Ho SSK, Vong HW, Wong VKW, Mok SWF, Wong IN. Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein. Front Cell Neurosci 2023; 17:1193362. [PMID: 37534043 PMCID: PMC10393283 DOI: 10.3389/fncel.2023.1193362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.
Collapse
Affiliation(s)
- Hoi Hei Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Dongxing Zhu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Samuel Sze King Ho
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Heng Wai Vong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Simon Wing-Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
9
|
Liu C, Wang Q, Niu L. Sufentanil inhibits Pin1 to attenuate renal tubular epithelial cell ischemia-reperfusion injury by activating the PI3K/AKT/FOXO1 pathway. Int Urol Nephrol 2023:10.1007/s11255-023-03651-9. [PMID: 37300758 DOI: 10.1007/s11255-023-03651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) has become a great concern in clinical practice with high morbidity and mortality rates. Sufentanil has protective effects on IRI-induced organ injury. Herein, the effects of sufentanil on RIRI were investigated. METHODS RIRI cell model was established by hypoxia/reperfusion (H/R) stimulation. The mRNA and protein expressions were assessed using qRT-PCR and western blot. TMCK-1 cell viability and apoptosis were assessed using MTT assay and flow cytometry, respectively. The mitochondrial membrane potential and ROS level were detected by JC-1 mitochondrial membrane potential fluorescent probe and DCFH-DA fluorescent probe, respectively. LDH, SOD, CAT, GSH and MDA levels were determined by the kits. The interaction between FOXO1 and Pin1 promoter was analyzed using dual luciferase reporter gene and ChIP assays. RESULTS Our results revealed that sufentanil treatment attenuated H/R-induced cell apoptosis, mitochondrial membrane potential (MMP) dysfunction, oxidative stress, inflammation and activated PI3K/AKT/FOXO1 associated proteins, while these effects were reversed by PI3K inhibitor, suggesting that sufentanil attenuated RIRI via activating the PI3K/AKT/FOXO1 signaling pathway. We subsequently found that FOXO1 transcriptionally activated Pin1 in TCMK-1 cells. Pin1 inhibition ameliorated H/R-induced TCMK-1 cell apoptosis, oxidative stress and inflammation. In addition, as expected, the biological effects of sufentanil on H/R-treated TMCK-1 cells were abrogated by Pin1 overexpression. CONCLUSION Sufentanil reduced Pin1 expression through activation of the PI3K/AKT/FOXO1 signaling to suppress cell apoptosis, oxidative stress and inflammation in renal tubular epithelial cells during RIRI development.
Collapse
Affiliation(s)
- Chunhui Liu
- Jiamusi University, Harbin, 154000, Heilongjiang, China
| | - Qingdong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Harbin, 154002, Heilongjiang, China
| | - Li Niu
- Department of Anesthesiology, Heilongjiang Sengong General Hospital, No.32 Hexing Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Zhang F, Lin B, Huang S, Wu P, Zhou M, Zhao J, Hei X, Ke Y, Zhang Y, Huang D. Melatonin Alleviates Retinal Ischemia-Reperfusion Injury by Inhibiting p53-Mediated Ferroptosis. Antioxidants (Basel) 2023; 12:1173. [PMID: 37371903 DOI: 10.3390/antiox12061173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury caused by high intraocular pressure (IOP) is an important risk factor contributing to retinal ganglion cell (RGC) death, eventually causing blindness. A key progressive pathological process in the development of RIR is the death of RGCs. However, the detailed mechanisms underlying RGC death caused by RIR have not yet been clearly elucidated, and effective treatments are lacking. Ferroptosis is a recently defined form of programmed cell death that is closely related to organ injury. Melatonin (MT) is a promising neuroprotective agent, but its effects on RIR injury remain unclear. In this study, murine models of acute ocular hypertension and oxygen and glucose deprivation/reoxygenation (OGD/R) model were adopted to simulate retinal ischemia. MT alleviated retinal damage and RGC death in RIR mice, significantly attenuating RIR-induced ferroptosis. Furthermore, MT reduced the expression of p53, a master regulator of ferroptosis pathways, and the upregulation of p53 promoted ferroptosis and largely abolished the neuroprotective effects of MT. Mechanistically, the overexpression (OE) of p53 suppressed the expression of the solute carrier family 7 member 11 (Slc7a11), which was accompanied by increased 12-lipoxygenase (Alox12) expression, triggering retinal ferroptosis. Moreover, MT-ameliorated apoptosis, neuroinflammation and microglial activation were observed. In summary, MT conferred neuroprotection against RIR injury by inhibiting p53-mediated ferroptosis. These findings indicate that MT is a retina-specific ferroptosis inhibitor and a promising therapeutic agent for retinal neuroprotection.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
11
|
Liu L, Xu H, Shi Y, Cui J, Wu J, Li S. p53 regulates the effects of DAPT on Rac1 activation and migration of non-small-cell lung cancer cells. Heliyon 2023; 9:e14169. [PMID: 36923886 PMCID: PMC10009732 DOI: 10.1016/j.heliyon.2023.e14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The use of γ-secretase inhibitors to inhibit the activation of Notch receptors can effectively inhibit the malignant process of tumors. Here, we demonstrate that p53 can modulate the effect of DAPT (a γ-secretase inhibitor) on the activation of small GTPase Rac1, thereby affecting cell migration of non-small-cell lung cancer H1299 and A549 cells. After treatment with 20 μM DAPT, activation of Rac1 was increased in H1299 cells but not in A549 cells. We further found that the migration ability of H1299 cells was increased, whereas that of A549 cells was reduced. The effect of DAPT on H1299 migration was repressed by Rac1-T17N, a dominant inactivated mutant of Rac1. H1299 is a p53-deficient cell line. When p53 protein was overexpressed in H1299 cells with a pEGFP-p53 plasmid, DAPT treatment no longer activated Rac1 and increased migration ability. Moreover, DAPT promoted the migration of H1299 cells by increasing the activity of Rac1 through the non-canonical Notch pathway. Taken together, these results indicate that the expression of p53 protein in lung cancer cells regulates the effect of DAPT on cell migration by modulating the activation of Rac1, suggesting that p53 may affect the therapeutic effects of Notch inhibitors in lung cancer patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hong Xu
- Emergency Center, Xuzhou Tongshan District People's Hospital, No. 267 Huaihai West Road, Xuzhou, Jiangsu, 221006, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jinxia Wu
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Shibao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, Jiangsu, 221000, China
| |
Collapse
|
12
|
Xia X, Wang Y, Zheng JC. Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:295-308. [PMID: 36726408 PMCID: PMC9883147 DOI: 10.1016/j.omtn.2023.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, N7-methylguanosine (m7G) methylation, originally considered as messenger RNA (mRNA) 5' caps modifications, has been identified at defined internal positions within multiple types of RNAs, including transfer RNAs, ribosomal RNAs, miRNA, and mRNAs. Scientists have put substantial efforts to discover m7G methyltransferases and methylated sites in RNAs to unveil the essential roles of m7G modifications in the regulation of gene expression and determine the association of m7G dysregulation in various diseases, including neurological disorders. Here, we review recent findings regarding the distribution, abundance, biogenesis, modifiers, and functions of m7G modifications. We also provide an up-to-date summary of m7G detection and profile mapping techniques, databases for validated and predicted m7G RNA sites, and web servers for m7G methylation prediction. Furthermore, we discuss the pathological roles of METTL1/WDR-driven m7G methylation in neurological disorders. Last, we outline a roadmap for future directions and trends of m7G modification research, particularly in the central nervous system.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Xiaohuan Xia, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai 201613, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Jialin C. Zheng, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
13
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
14
|
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
|
15
|
Zhang JH, Ni SY, Tan YT, Luo J, Wang SC. A bibliometric analysis of PIN1 and cell death. Front Cell Dev Biol 2022; 10:1043725. [DOI: 10.3389/fcell.2022.1043725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Regulation of cell death plays a key role in numerous diseases. As a proline isomerase, prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is important for the regulation of signaling pathways. An in-depth understanding of how Pin1 participates in the process of cell death, which affects the occurrence and development of diseases, will aid in the discovery of new disease mechanisms and therapeutic methods. Thus, the purpose of our study was to discover the research trends and hotspots of Pin1 and cell death through bibliometric analyses and to provide insights for understanding the future development of basic research and treatment of diseases.Methods: Documents were extracted from the Web of Science Core Collection on 7 May 2022. We selected articles and reviews published in English from 2000 to 2021, and visual and statistical analyses of countries, institutions, authors, references and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8.Results: A total of 395 articles and reviews were selected. Since 2001, the number of articles on Pin1 and cell death has increased annually. Publications come from 43 countries, with the US having the most publications and citations. We identified 510 authors, with Giannino Del Sal having the most articles and Paola Zacchi having the most co-citations. The Journal of Biological Chemistry is the most researched journal, and Nature and its subjournals are the most cited journals. Apoptosis, phosphorylation, and breast cancer were the three most common keywords.Conclusion: The number of documents showed an increasing trend from 2001 to 2014. Stagnant growth after 2014 may be related to the absence of new research hotspots. Cooperative links between core institutions need to be strengthened, and the institution with the highest citation count in recent years is Fujian Medical University in China. The role of Pin1 in cell death requires further research to discover new research hotspots. Before breakthroughs in molecular mechanism or signaling pathway research, future research will focus more on the treatment of diseases represented by Pin1 inhibitors.
Collapse
|
16
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Neerland BE, Busund R, Haaverstad R, Helbostad JL, Landsverk SA, Martinaityte I, Norum HM, Ræder J, Selbaek G, Simpson MR, Skaar E, Skjærvold NK, Skovlund E, Slooter AJ, Svendsen ØS, Tønnessen T, Wahba A, Zetterberg H, Wyller TB. Alpha-2-adrenergic receptor agonists for the prevention of delirium and cognitive decline after open heart surgery (ALPHA2PREVENT): protocol for a multicentre randomised controlled trial. BMJ Open 2022; 12:e057460. [PMID: 35725264 PMCID: PMC9214392 DOI: 10.1136/bmjopen-2021-057460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Postoperative delirium is common in older cardiac surgery patients and associated with negative short-term and long-term outcomes. The alpha-2-adrenergic receptor agonist dexmedetomidine shows promise as prophylaxis and treatment for delirium in intensive care units (ICU) and postoperative settings. Clonidine has similar pharmacological properties and can be administered both parenterally and orally. We aim to study whether repurposing of clonidine can represent a novel treatment option for delirium, and the possible effects of dexmedetomidine and clonidine on long-term cognitive trajectories, motor activity patterns and biomarkers of neuronal injury, and whether these effects are associated with frailty status. METHODS AND ANALYSIS This five-centre, double-blind randomised controlled trial will include 900 cardiac surgery patients aged 70+ years. Participants will be randomised 1:1:1 to dexmedetomidine or clonidine or placebo. The study drug will be given as a continuous intravenous infusion from the start of cardiopulmonary bypass, at a rate of 0.4 µg/kg/hour. The infusion rate will be decreased to 0.2 µg/kg/hour postoperatively and be continued until discharge from the ICU or 24 hours postoperatively, whichever happens first.Primary end point is the 7-day cumulative incidence of postoperative delirium (Diagnostic and Statistical Manual of Mental Disorders, fifth edition). Secondary end points include the composite end point of coma, delirium or death, in addition to delirium severity and motor activity patterns, levels of circulating biomarkers of neuronal injury, cognitive function and frailty status 1 and 6 months after surgery. ETHICS AND DISSEMINATION This trial is approved by the Regional Committee for Ethics in Medical Research in Norway (South-East Norway) and by the Norwegian Medicines Agency. Dissemination plans include publication in peer-reviewed medical journals and presentation at scientific meetings. TRIAL REGISTRATION NUMBER NCT05029050.
Collapse
Affiliation(s)
| | - Rolf Busund
- Department of Cardiothoracic and Vascular Surgery, University Hospital of North Norway, Tromsø, Norway
- Institute of Clinical Medicine, UiT The Artic University of Norway, Tromsø, Norway
| | - Rune Haaverstad
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Jorunn L Helbostad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ieva Martinaityte
- Institute of Clinical Medicine, UiT The Artic University of Norway, Tromsø, Norway
- Department of Geriatric Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Hilde Margrethe Norum
- Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway
- Department of Research and Development, Oslo University Hospital, Oslo, Norway
| | - Johan Ræder
- Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Selbaek
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Ageing and Health, Tønsberg, Norway
| | - Melanie R Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elisabeth Skaar
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Nils Kristian Skjærvold
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Anesthesia and Intensive Care Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arjen Jc Slooter
- Department of Intensive Care Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussel, Brussel, Belgium
| | - Øyvind Sverre Svendsen
- Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Theis Tønnessen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Alexander Wahba
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiothoracic Surgery, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Torgeir Bruun Wyller
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Roflumilast, a cyclic nucleotide phosphodiesterase 4 inhibitor, protects against cerebrovascular endothelial injury following cerebral ischemia/reperfusion by activating the Notch1/Hes1 pathway. Eur J Pharmacol 2022; 926:175027. [DOI: 10.1016/j.ejphar.2022.175027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
19
|
Bo C, Cao Y, Li S, Zhang H, Lu X, Kong X, Zhang S, Gao H, Wang J, Wang L. Construction Immune Related Feed-Forward Loop Network Reveals Angiotensin II Receptor Blocker as Potential Neuroprotective Drug for Ischemic Stroke. Front Genet 2022; 13:811571. [PMID: 35419038 PMCID: PMC8995882 DOI: 10.3389/fgene.2022.811571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) accounts for the leading cause of disability and mortality in China. Increasing researchers are studying the effects of neuroprotective agents on IS. However, the molecular mechanisms of feed-forward loops (FFLs) associated with neuroprotection in the pathogenesis of IS need to be further studied. A protein-protein interaction (PPI) network of IS immune genes was constructed to decipher the characters and excavate 3 hub genes (PI3K, IL6, and TNF) of immunity. Then, we identified two hub clusters of IS immune genes, and the cytokine-cytokine receptor interaction pathway was discovered on the pathway enrichment results of both clusters. Combined with GO enrichment analysis, the cytokines participate in the inflammatory response in the extracellular space of IS patients. Next, a transcription factor (TF)-miRNA-immune gene network (TMIGN) was established by extracting four regulatory pairs (TF-miRNA, TF-gene, miRNA-gene, and miRNA-TF). Then, we detected 3-node regulatory motif types in the TMIGN network. According to the criteria we set for defining 3-node motifs, the motif with the highest Z-score (3-node composite FFL) was picked as the statistically evident motif, which was merged to construct an immune-associated composite FFL motif-specific sub-network (IA-CFMSN), which contained 21 3-node FFLs composed of 13 miRNAs, 4 TFs, 9 immune genes, and 1 TF& immune gene, among which TP53 and VEGFA were prominent TF and immune gene, respectively. In addition, the immune genes in IA-CFMSN were used for identifying associated pathways and drugs to further clarify the immune regulation mechanism and neuroprotection after IS. As a result, 5 immune genes targeted by 20 drugs were identified and the Angiotensin II Receptor Blockers (ARBs) target AGTR1 was found to be a neuroprotective drug for IS. In the present study, the construction of IA-CFMSN provides IS immune-associated FFLs for further experimental studies, providing new prospects for the discovery of new biomarkers and potential drugs for IS.
Collapse
Affiliation(s)
- Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shuai Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongyu Gao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Yu H, Jiang G, Hu W, Xu C. Pin1 aggravates renal injury induced by ischemia and reperfusion in rats via Nrf2/HO-1 mediated endoplasmic reticulum stress. Acta Cir Bras 2022; 37:e370101. [PMID: 35416857 PMCID: PMC9000979 DOI: 10.1590/acb370101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the role of peptidyl-prolyl cis/trans isomerase 1 (Pin1) on renal ischemia-reperfusion (I/R) injury and underlying mechanism. METHODS By establishing the in vitro and in vivo models of renal I/R, the role of Pin1 was explored by using molecular assays. RESULTS In renal I/R, endogenous Pin1 level was up-regulated in I/R-impaired kidney. Suppression of Pin1 with juglone afforded protection against I/R-mediated kidney dysfunction, and reduced I/R-induced endoplasmic reticulum (ER) stress in vivo. Consistent with the in vivo results, repression of Pin1 with juglone or gene knockdown with si-Pin1 conferred cytoprotection and restricted hypoxia/reoxygenation (H/R)-driven ER stress in HK-2 cells. Simultaneously, further study uncovered that Nrf-2/HO-1 signals was the association between Pin1 and ER stress in response to renal I/R. In addition, Nrf-2/HO-1 signal pathway was inactivated after kidney exposed to I/R, as indicated by the down-regulation of Nrf-2/HO-1 levels. Furthermore, inhibition of Pin1 remarkably rescued the inactivation ofNrf-2/HO-1. CONCLUSIONS Pin1 modulated I/R-mediated kidney injury in ER stress manner dependent on Nrf2-HO-1 pathway in I/R injury.
Collapse
Affiliation(s)
- Honglin Yu
- The First Affiliated Hospital of Anhui Medical University, China
| | | | - Wei Hu
- University of South China, China
| | - Changgeng Xu
- Huazhong University of Science and Technology, China
| |
Collapse
|
21
|
Liu M, Zhong W, Li C, Su W. Fluoxetine attenuates apoptosis in early brain injury after subarachnoid hemorrhage through Notch1/ASK1/p38 MAPK signaling pathway. Bioengineered 2022; 13:8396-8411. [PMID: 35383529 PMCID: PMC9162017 DOI: 10.1080/21655979.2022.2037227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe brain condition associated with a significantly high incidence and mortality. As a consequence of SAH, early brain injury (EBI) may contribute to poor SAH patient outcomes. Apoptosis is a signaling pathway contributing to post-SAH early brain injury and the diagnosis of the disease. Fluoxetine is a well-studied serotonin selective reuptake inhibitor (SSRI). However, its role in apoptosis has not been clearly understood. The present investigation assessed the effects of Fluoxetine in apoptosis and the potential Notch1/ASK1/p38 MAPK signaling pathway in EBI after SAH. Adult C57BL/6 J mice were subjected to SAH. Study mice (56) were randomly divided into 4 groups: the surgery without SAH (sham (n = 8), SAH+ vehicle; (SAH+V) (n = 16), surgery+ Fluoxetine (Fluox), (n = 16) and SAH+ Fluoxetine (n = 16). Various parameters were investigated 12, 24, 48, and 72 h after induction of SAH. Western blot analysis, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, Immunohistochemistry (IHC), and flow cytometry were carried out in every experimental group. According to the findings, the SAH downregulated NOTCH1 signaling pathway, Jlk6 inhibited Notch1, Notch1 inactivation increased apoptotic protein expression and suppressed Bax, and cytochrome C. Fluoxetine reversed the effects of notch1 inhibition in SAH. The Neuroprotective Fluoxetine effects involved suppression of apoptosis post-SAH. In summary, early Fluoxetine treatment significantly attenuates apoptosis and the expression of apoptosis-related proteins after 72 h post-SAH. Fluoxetine may ameliorate early brain injury after subarachnoid hemorrhage through anti-apoptotic effects and Notch1/ASK1/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Wandong Su
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
22
|
Zhu T, Chen H, He C, Liu X. Transcription Factor HEY1 Improves Brain Vascular Endothelial Cell Function and Alleviates Ischemic Stroke by Upregulating NOTCH3. Neurochem Res 2022; 47:1442-1458. [PMID: 35316462 DOI: 10.1007/s11064-022-03544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
To investigate the function of hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1) and Notch receptor 3 (NOTCH3) in ischemic stroke. Stroke models were established by middle cerebral artery occlusion (MCAO) and oxygen glucose deprivation (OGD) in rats and rat brain microvascular endothelial cells (BMVECs), respectively. Neurological deficit evaluation and 2,3,5-triphenyltetrazolium chloride staining were used to assess cerebral injury. The expression of HEY1 and NOTCH3 was manipulated using gain and loss of function approaches. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Western blotting analysis of cleaved caspase-3 and B-cell lymphoma-2 (Bcl2) were used to evaluate apoptosis. Enzyme-linked immunosorbent assay was performed to measure the expression levels of interleukin (IL)-1β, IL-6 and IL-18. The proliferation and migration of BMVECs were analyzed by Ki-67 immunofluorescence and scratch assay, respectively. Tube formation assay was conducted to measure the length of capillary-like tubes formed by BMVECs. Co-immunoprecipitation was used to testify the relationship between HEY1 and NOTCH3. HEY1 and NOTCH3 were upregulated in MCAO and OGD models. HEY1 ameliorated ischemic injuries in MCAO rats. Knockdown of HEY1 or NOTCH3 promoted OGD-induced apoptosis and inflammation and inhibited proliferation and migration in BMVECs. NOTCH3 was a binding protein of HEY1. Overexpression of HEY1 offset the disease-promoting effect of NOTCH3 silencing. HEY1 suppresses apoptosis and inflammation and promotes proliferation and migration in BMVECs by upregulating NOTCH3, thereby ameliorating ischemic stroke.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongxi Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cuihong He
- Chengdu Women and Children's Central Hospital, University of Electronic Science and Technology, Chengdu, 610015, Sichuan, People's Republic of China
| | - Xiaojuan Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Gan L, Liao S, Tong Y, Li W, Peng W, Deng S. Long noncoding RNA H19 mediates neural stem/progenitor cells proliferation, differentiation and apoptosis through the p53 signaling pathway after ischemic stroke. Biochem Biophys Res Commun 2022; 597:8-15. [PMID: 35121179 DOI: 10.1016/j.bbrc.2022.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022]
Abstract
Long non-coding RNA (LncRNA) H19 plays an important role on the biological functions of endogenous neural stem/progenitor cells (NSPCs). Our study aimed to explore the functions of H19 in NSPCs induced by oxygen-glucose deprivation/reperfusion (OGD/R) in vitro and the underlying mechanisms. In this study, our results showed that knockdown of H19 significantly inhibited NSPCs proliferation. Additionally, the apoptosis of NSPCs after ODG/R injury was notably promoted by H19 knockdown. Cell cycle arrest was induced in NSPCs at G0/G1 phase after OGD/R, while knockdown of H19 decreased the percentage of cells at G2/S phase. The results of immunofluorescence analysis revealed that H19 knockdown reduced the staining intensity of Ki-67 and DCX. Furthermore, H19 knockdown enhanced the expression of p53, Bax and Cleaved Caspase-3, while Bcl-2 expression was decreased. Silencing of H19 suppressed the NSPCs proliferation, cell cycle progression and differentiation, whereas cell apoptosis was promoted. Upregulation of H19 abolished OGD/R-induced NSPCs apoptosis, while cell proliferation and differentiation were promoted. Furthermore, the effects of overexpressed H19 on NSPCs proliferation, differentiation and apoptosis were abrogated by the upregulation of p53. In summary, overexpressed H19 resulted in the inactivation of p53, which promoted NSPCs proliferation, differentiation, and inhibited cell apoptosis. These findings suggested that H19 could promote cell proliferation and differentiation after OGD/R through suppressing the p53 signaling.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Forensic Medicine & Biomedical Informatics, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yanqiu Tong
- School of Humanities, Chongqing Jiaotong University, Chongqing, 400016, China
| | - Weihan Li
- Laboratory of Forensic Medicine & Biomedical Informatics, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Wenli Peng
- Laboratory of Forensic Medicine & Biomedical Informatics, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shixiong Deng
- Laboratory of Forensic Medicine & Biomedical Informatics, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
24
|
Das J, Mahammad FS, Krishnamurthy RG. An integrated chemo-informatics and in vitro experimental approach repurposes acarbose as a post-ischemic neuro-protectant. 3 Biotech 2022; 12:71. [PMID: 35223357 PMCID: PMC8847516 DOI: 10.1007/s13205-022-03130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/23/2022] [Indexed: 11/26/2022] Open
Abstract
The increasing prevalence of ischemic stroke combined with limited therapeutic options highlights the compelling need for continued research into the development of future neuro-therapeutics. Death-Associated Protein Kinase 1 (DAPK1) and p53 protein-protein interaction serve as a signaling point for the convergence of apoptosis and necrosis in cerebral ischemia. In this study, we used an integrated chemo-informatics and in vitro experimental drug repurposing strategy to screen potential small-molecule inhibitors of DAPK1-p53 interaction from the United States of America Food and Drug Administration (FDA) approved drug database exhibiting post-ischemic neuroprotective and neuro-regenerative efficacy and mechanisms. The computational docking and molecular dynamics simulation of FDA-approved drugs followed by an in vitro experimental validation identified acarbose, an anti-diabetic medication and caloric restriction mimetic as a potential inhibitor of DAPK1-p53 interaction. The evaluation of post-ischemic neuroprotective and regenerative efficacy and mechanisms of action for acarbose was carried out using a set of experimental methods, including cell viability, proliferation and differentiation assays, fluorescence staining, and gene expression analysis. Post-ischemic administration of acarbose conferred significant neuroprotection against ischemia-reperfusion injury in vitro. The reduced fluorescence emission in cells stained with pS20 supported the potential of acarbose in inhibiting the DAPK1-p53 interaction. Acarbose prevented mitochondrial and lysosomal dysfunction, and favorably modulated gene expression related to cell survival, inflammation, and regeneration. BrdU staining and neurite outgrowth assay showed a significant increase in cell proliferation and differentiation in acarbose-treated group. This is the first study known to provide mechanistic insight into the post-ischemic neuroprotective and neuro-regenerative potential of acarbose. Our results provide a strong basis for preclinical studies to evaluate the safety and neuroprotective efficacy of acarbose against ischemic stroke. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03130-5.
Collapse
Affiliation(s)
- Jyotirekha Das
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601 India
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | |
Collapse
|
25
|
p53 Inhibition Protects against Neuronal Ischemia/Reperfusion Injury by the p53/PRAS40/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4729465. [PMID: 34900085 PMCID: PMC8664552 DOI: 10.1155/2021/4729465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
The underlying mechanisms of cerebral ischemia/reperfusion (I/R) injury are unclear. Within this study, we aimed to explore whether p53 inhibition exerts protective effects via the p53/PRAS40/mTOR pathway after stroke and its potential mechanism. Both an in vitro oxygen-glucose deprivation (OGD) model with a primary neuronal culture and in vivo stroke models (dMCAO or MCAO) were used. We found that the infarction size, neuronal apoptosis, and autophagy were less severe in p53 KO mice and p53 KO neurons after cerebral I/R or OGD/R injury. By activating the mTOR pathway, p53 knockdown alleviated cerebral I/R injury both in vitro and in vivo. When PRAS40 was knocked out, the regulatory effects of p53 overexpression or knockdown against stroke disappeared. PRAS40 knockdown could inhibit the activities of the mTOR pathway; moreover, neuronal autophagy and apoptosis were exacerbated by PRAS40 knockdown. To sum up, in this study, we showed p53 inhibition protects against neuronal I/R injury after stroke via the p53/PRAS40/mTOR pathway, which is a novel and pivotal cerebral ischemic injury signaling pathway. The induction of neuronal autophagy and apoptosis by the p53/PRAS40/mTOR pathway may be the potential mechanism of this protective effect.
Collapse
|
26
|
Activation of proline metabolism maintains ATP levels during cocaine-induced polyADP-ribosylation. Amino Acids 2021; 53:1903-1915. [PMID: 34417893 PMCID: PMC8651605 DOI: 10.1007/s00726-021-03065-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)—a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.
Collapse
|
27
|
The Suppression of Pin1-Alleviated Oxidative Stress through the p38 MAPK Pathway in Ischemia- and Reperfusion-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1313847. [PMID: 34373763 PMCID: PMC8349297 DOI: 10.1155/2021/1313847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Background Pin1, as the peptidyl-prolyl isomerase, plays a vital role in cellular processes. However, whether it has a regulatory effect on renal ischemia and reperfusion (I/R) injury still remains unknown. Methods The hypoxia/reoxygenation (H/R) model in human kidney (HK-2) cells and the I/R model in rats were assessed to investigate the role of Pin1 on I/R-induced acute kidney injury. Male Sprague-Dawley rats were used to establish the I/R model for 15, 30, and 45 min ischemia and then 24 h reperfusion, with or without the Pin1 inhibitor, to demonstrate the role of Pin1 in acute kidney injury. HK-2 cells were cultured and experienced the H/R model to identify the molecular mechanisms involved. Results In this study, we found that Pin1 and oxidative stress were obviously increased after renal I/R. Inhibition of Pin1 with juglone decreased renal structural and functional injuries, as well as oxidative stress. Besides, Pin1 inhibition with the inhibitor, juglone, or the small interfering RNA showed significant reduction on oxidative stress markers caused by the H/R process in vitro. Furthermore, the results indicated that the expression of p38 MAPK was increased during H/R in vitro and Pin1 inhibition could reduce the increased expression of p38 MAPK. Conclusion Our results illustrated that Pin1 aggravated renal I/R injury via elevating oxidative stress through activation of the p38 MAPK pathway. These findings indicated that Pin1 might become the potential treatment for renal I/R injury.
Collapse
|
28
|
Gao L, Yang L, Cui H. GSK-3β inhibitor TWS119 alleviates hypoxic-ischemic brain damage via a crosstalk with Wnt and Notch signaling pathways in neonatal rats. Brain Res 2021; 1768:147588. [PMID: 34310937 DOI: 10.1016/j.brainres.2021.147588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Preterm infant brain injury is a leading cause of morbidity and disability in survivors of preterm infants. Unfortunately, the effective treatment remains absent. Recent evidence suggests that GSK-3β inhibitor TWS119 has a neuroprotectiverole in adult brain injury by activation of Wnt/β-catenin signaling pathway. However, the role on neonatal brain injury is not yet explored. The study aims to evaluate the effect of TWS119 at 7 d after hypoxic-ischemic brain damage and investigate the mechanism that it regulates Wnt and Notch signaling pathways at 24 h after hypoxic-ischemic brain damage in neonatal rats. Three-day-old rats were randomly divided into 3 groups: sham group, HI group and TWS119 group. The neonatal rats were subjected to left carotid artery ligation followed by 2 h of hypoxia (8.0% O2). A single dose of TWS119 (30 mg/kg) was intraperitoneally injected 20 min prior to hypoxia-ischemia (HI). At 7 d after HI, TWS119 improved the tissue structure, reduced cell apoptosis, up-regulated bcl-2 expression, up-regulated the expression of PSD-95 and Synapsin-1. At 24 h after HI, it activated Wnt/β-catenin signaling pathway by up-regulation of β-catenin protein expression and wnt3a/wnt5a/wnt7a mRNA expression. Simultaneously, it suppressed Notch signaling pathway by down-regulation of Notch1 and HES-1 proteins expression. Our study suggested that TWS119 performed a neuroprotective function at 7 d after hypoxic-ischemic brain damage via a crosstalk with Wnt/β-catenin and Notch signaling pathways at 24 h after hypoxic-ischemic brain damage in neonatal rats.
Collapse
Affiliation(s)
- Limin Gao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China.
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
29
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
30
|
Wang M, Bai Y, Chi H, Lin P, Wu Y, Cui J, Wang Y, Sun J, Lang MF. miR-451 protects against ischemic stroke by targeting Phd3. Exp Neurol 2021; 343:113777. [PMID: 34058227 DOI: 10.1016/j.expneurol.2021.113777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke still remains a therapeutic challenge due to its complex pathogenesis and implications. By screening biomarkers in the peripheral blood of ischemic stroke patients, miR-451 was identified as a differentially expressed miRNA along the disease course of ischemic stroke. To investigate the role of miR-451, middle cerebral artery occlusion (MCAO) was performed as an ischemic stroke model in mice. Intracerebroventricular administration of miR-451 mimic in the MCAO mice significantly decreased infarct size, while miR-451 inhibitor significantly increased infarct size. To understand the molecular mechanism of the protective effect of miR-451, Phd3 (also Egln3) was validated as a new miR-451 target. Either fewer or more Phd3-positive cells were observed in brain sections from mice receiving miR-451 mimic or inhibitor, respectively. In addition, the levels of p53 (a known Phd3 target) were significantly downregulated when the levels of Phd3 were reduced, suggesting its participation in reducing apoptosis after the miR-451 administration. Indeed, reduced apoptosis upon miR-451 mimic administration was detected by TUNEL staining. In conclusion, this study demonstrated a new protective role of miR-451 in cerebral ischemia and identified Phd3 as a novel miR-451 target, linking the mechanism to the involvement of p53 in the regulation of apoptosis during the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China; Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China; Graduate School, Dalian University, Dalian, Liaoning 116622, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China.
| | - Haitao Chi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Ping Lin
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yu Wu
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Jiahui Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yi Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China.
| |
Collapse
|
31
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Almeida A, Sánchez-Morán I, Rodríguez C. Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life 2021; 73:582-591. [PMID: 33615665 PMCID: PMC8248069 DOI: 10.1002/iub.2453] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Stroke is a major cause of death and long-term disability in the adult. Neuronal apoptosis plays an essential role in the pathophysiology of ischemic brain damage and impaired functional recovery after stroke. The tumor suppressor protein p53 regulates key cellular processes, including cell cycle arrest, DNA repair, senescence, and apoptosis. Under cellular stress conditions, p53 undergoes post-translational modifications, which control protein localization, stability, and proapoptotic activity. After stroke, p53 rapidly accumulates in the ischemic brain, where it activates neuronal apoptosis through both transcriptional-dependent and -independent programs. Over the last years, subcellular localization of p53 has emerged as an important regulator of ischemia-induced neuronal apoptosis. Upon an ischemic insult, p53 rapidly translocates to the mitochondria and interacts with B-cell lymphoma-2 family proteins, which activate the mitochondrial apoptotic program, with higher efficacy than through its activity as a transcription factor. Moreover, the identification of a human single nucleotide polymorphism at codon 72 of the Tp53 gene that controls p53 mitochondrial localization and cell susceptibility to apoptosis supports the important role of the p53 mitochondrial program in neuronal survival and functional recovery after stroke. In this article, we review the relevance of mitochondrial and nuclear localization of p53 on neuronal susceptibility to cerebral ischemia and its impact on functional outcome of stroke patients.
Collapse
Affiliation(s)
- Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| |
Collapse
|
33
|
Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotection Against Kainate Excitotoxicity in the Retina is Mediated by Notch/PTEN/Akt Signaling. Invest Ophthalmol Vis Sci 2020; 60:4532-4547. [PMID: 31675424 DOI: 10.1167/iovs.19-27473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.
Collapse
Affiliation(s)
- Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
34
|
Chan SJ, Zhao H, Hayakawa K, Chai C, Tan CT, Huang J, Tao R, Hamanaka G, Arumugam TV, Lo EH, Yu VCK, Wong PH. Modulator of apoptosis-1 is a potential therapeutic target in acute ischemic injury. J Cereb Blood Flow Metab 2019; 39:2406-2418. [PMID: 30132384 PMCID: PMC6893981 DOI: 10.1177/0271678x18794839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1-/- primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1-/- mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1-/- mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore
| | - Hui Zhao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Kazuhide Hayakawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chou Chai
- Neurodegeneration Laboratory, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Jiawen Huang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Ran Tao
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Gen Hamanaka
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Eng H Lo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Chun Kong Yu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - PeterTsun-Hon Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2491927. [PMID: 32148646 PMCID: PMC7044480 DOI: 10.1155/2019/2491927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The public health sector faces a huge challenge as a result of the high prevalence and burden of disability caused by ischemic cardio-cerebrovascular disease (CVD) and depression. Although studies have explored the underlying mechanisms and potential therapies to address conditions, there is no treatment breakthrough, especially for depression which is highly influenced by social stressors. However, accumulating evidence reveals that CVD and depression are correlated and share common risk factors, particularly obesity, diabetes, and hypertension. They also share common mechanisms, including oxidative stress (OS), inflammation and immune response, cell death signaling pathway, and microbiome-gut-brain axis. This review summarizes the relationship between ischemic CVD and depression and describes the interactions among common risk factors and mechanisms for these two diseases. In addition, we propose that OS mediates the crosstalk between these diseases. We also reveal the potential of antioxidants to ameliorate OS-related injuries.
Collapse
|
36
|
Exploring Notch Pathway to Elucidate Phenotypic Plasticity and Intra-tumor Heterogeneity in Gliomas. Sci Rep 2019; 9:9488. [PMID: 31263189 PMCID: PMC6602950 DOI: 10.1038/s41598-019-45892-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The phenotypic plasticity and self-renewal of adult neural (aNSCs) and glioblastoma stem cells (GSCs) are both known to be governed by active Notch pathway. During development, GSCs can establish differential hierarchy to produce heterogeneous groups of tumor cells belong to different grades, which makes the tumor ecosystem more complex. However, the molecular events regulating these entire processes are unknown hitherto. In this work, based on the mechanistic regulations of Notch pathway activities, a novel computational framework is introduced to inspect the intra-cellular reactions behind the development of normal and tumorigenic cells from aNSCs and GSCs, respectively. The developmental dynamics of aNSCs/GSCs are successfully simulated and molecular activities regulating the phenotypic plasticity and self-renewal processes in normal and tumor cells are identified. A novel scoring parameter “Activity Ratio” score is introduced to find out driver molecules responsible for the phenotypic plasticity and development of different grades of tumor. A new quantitative method is also developed to predict the future risk of Glioblastoma tumor of an individual with appropriate grade by using the transcriptomics profile of that individual as input. Also, a novel technique is introduced to screen and rank the potential drug-targets for suppressing the growth and differentiation of tumor cells.
Collapse
|
37
|
Liu L, Charville GW, Cheung TH, Yoo B, Santos PJ, Schroeder M, Rando TA. Impaired Notch Signaling Leads to a Decrease in p53 Activity and Mitotic Catastrophe in Aged Muscle Stem Cells. Cell Stem Cell 2018; 23:544-556.e4. [PMID: 30244867 PMCID: PMC6173623 DOI: 10.1016/j.stem.2018.08.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 01/11/2023]
Abstract
The decline of tissue regenerative potential with age correlates with impaired stem cell function. However, limited strategies are available for therapeutic modulation of stem cell function during aging. Using skeletal muscle stem cells (MuSCs) as a model system, we identify cell death by mitotic catastrophe as a cause of impaired stem cell proliferative expansion in aged animals. The mitotic cell death is caused by a deficiency in Notch activators in the microenvironment. We discover that ligand-dependent stimulation of Notch activates p53 in MuSCs via inhibition of Mdm2 expression through Hey transcription factors during normal muscle regeneration and that this pathway is impaired in aged animals. Pharmacologic activation of p53 promotes the expansion of aged MuSCs in vivo. Altogether, these findings illuminate a Notch-p53 signaling axis that plays an important role in MuSC survival during activation and is dysregulated during aging, contributing to the age-related decline in muscle regenerative potential.
Collapse
Affiliation(s)
- Ling Liu
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory W Charville
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tom H Cheung
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bryan Yoo
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pauline J Santos
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Schroeder
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
38
|
Neuroprotective Effects of Cerebral Ischemic Preconditioning in a Rat Middle Cerebral Artery Occlusion Model: The Role of the Notch Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8168720. [PMID: 30175143 PMCID: PMC6106850 DOI: 10.1155/2018/8168720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/10/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a major problem worldwide. The Notch signaling pathway plays an important role in neural progenitor cell differentiation and in the inflammatory response after central nervous system injury. This study evaluated whether the neuroprotective effect of cerebral ischemic preconditioning (cIPC) is mediated by the preactivation of the Notch signaling pathway. A rat middle cerebral artery occlusion/reperfusion (MCAO/R) model and glucose deprivation/reoxygenation (OGD/R) cell model were constructed to detect the neuroprotective effects of cIPC. In in vivo experiments, cIPC reduces the neurological functional deficit, cerebral infarction, and cellular apoptosis in the hippocampus induced by middle cerebral artery occlusion/reperfusion (MCAO/R), thus indicating that cIPC can improve neurologic function. Moreover, cIPC can reveal the expression peak of Jagged1, Notch1, NICD, and Hes1 protein, thereby indicating that cIPC can preactivate Notch signaling. However, cIPC-induced improvements in neurologic function are compromised by the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-1-alanyl)-S-phenylglycine t-butyl ester (DAPT). In in vitro experiments, OGD preconditioning (OGDPC) can clearly upregulate Notch1 expression in the OGD/R-treated neuron and neural stem cell. Notch1 pre-overexpression can decrease neuron death and apoptosis under OGD/R treatment. Notch1 pre-overexpression can decrease the percentage of G1 stage cells and increase the percentage of S stage cells in OGD/R-treated neural stem cell. Furthermore, Notch1 pre-knockdown has the opposite effect on cell survival, apoptosis, and cycle in both OGD/R-treated neuron and neural stem cell. In conclusion, our results demonstrate that the neuroprotective effects of cIPC in a rat MCAO/R model are mediated by the preactivation of the Notch signaling pathway.
Collapse
|
39
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|