1
|
Jørgensen LM, Henriksen T, Mardosiene S, Wyon O, Keller SH, Jespersen B, Knudsen GM, Stenbæk DS. Hot and Cold Cognitive Disturbances in Parkinson Patients Treated with DBS-STN: A Combined PET and Neuropsychological Study. Brain Sci 2022; 12:brainsci12050654. [PMID: 35625040 PMCID: PMC9139237 DOI: 10.3390/brainsci12050654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Patients with Parkinson’s disease (PD) often suffer from non-motor symptoms, which may be caused by serotonergic dysfunction. Deep Brain Stimulation (DBS) in the subthalamic nucleus (STN) may also influence non-motor symptoms. The aim of this study is to investigate how the cerebral 5-HT system associates to disturbances in cognition and mood in PD patients with DBS-STN turned on and off. We used psychological tests and questionnaires to evaluate cognitive function and the effects on mood from turning DBS-STN off. We applied a novel PET neuroimaging methodology to evaluate the integrity of the cerebral serotonin system. We measured 5-HT1BR binding in 13 DBS-STN-treated PD patients, at baseline and after turning DBS off. Thirteen age-matched volunteers served as controls. The measures for cognition and mood were correlated to the 5-HT1BR availability in temporal limbic cortex. 5-HT1BR binding was proportional to working memory performance and inverse proportional to affective bias for face recognition. When DBS is turned off, patients feel less vigorous; the higher the limbic and temporal 5-HT1BR binding, the more they are affected by DBS being turned off. Our study suggests that cerebral 5-HTR binding is associated with non-motor symptoms, and that preservation of serotonergic functions may be predictive of DBS-STN effects.
Collapse
Affiliation(s)
- Louise M. Jørgensen
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (O.W.); (G.M.K.); (D.S.S.)
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Disease, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Tove Henriksen
- Department of Neurology, Copenhagen University Hospital-Bispebjerg, 2400 Copenhagen, Denmark; (T.H.); (S.M.)
| | - Skirmante Mardosiene
- Department of Neurology, Copenhagen University Hospital-Bispebjerg, 2400 Copenhagen, Denmark; (T.H.); (S.M.)
| | - Ottilia Wyon
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (O.W.); (G.M.K.); (D.S.S.)
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Disease, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Sune H. Keller
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Bo Jespersen
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (O.W.); (G.M.K.); (D.S.S.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dea S. Stenbæk
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (O.W.); (G.M.K.); (D.S.S.)
- Department of Psychology, University of Copenhagen, 1353 Copenhagen, Denmark
| |
Collapse
|
2
|
Raval NR, Nasser A, Madsen CA, Beschorner N, Beaman EE, Juhl M, Lehel S, Palner M, Svarer C, Plavén-Sigray P, Jørgensen LM, Knudsen GM. An in vivo Pig Model for Testing Novel Positron Emission Tomography Radioligands Targeting Cerebral Protein Aggregates. Front Neurosci 2022; 16:847074. [PMID: 35368260 PMCID: PMC8966485 DOI: 10.3389/fnins.2022.847074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-β or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein in the brain for diagnosing, e.g., Parkinson's Disease. Access to a large animal model with α-synuclein pathology would critically enable a more translationally appropriate evaluation of novel radioligands. We here establish a pig model with cerebral injections of α-synuclein preformed fibrils or brain homogenate from postmortem human brain tissue from individuals with Alzheimer's disease (AD) or dementia with Lewy body (DLB) into the pig's brain, using minimally invasive surgery and validated against saline injections. In the absence of a suitable α-synuclein radioligand, we validated the model with the unselective amyloid-β tracer [11C]PIB, which has a high affinity for β-sheet structures in aggregates. Gadolinium-enhanced MRI confirmed that the blood-brain barrier was intact. A few hours post-injection, pigs were PET scanned with [11C]PIB. Quantification was done with Logan invasive graphical analysis and simplified reference tissue model 2 using the occipital cortex as a reference region. After the scan, we retrieved the brains to confirm successful injection using autoradiography and immunohistochemistry. We found four times higher [11C]PIB uptake in AD-homogenate-injected regions and two times higher uptake in regions injected with α-synuclein-preformed-fibrils compared to saline. The [11C]PIB uptake was the same in non-injected (occipital cortex, cerebellum) and injected (DLB-homogenate, saline) regions. With its large brain and ability to undergo repeated PET scans as well as neurosurgical procedures, the pig provides a robust, cost-effective, and good translational model for assessment of novel radioligands including, but not limited to, proteinopathies.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Emily Eufaula Beaman
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Szabolcs Lehel
- Department of Clinical Physiology, Nuclear Medicine and Positron Emission Tomography (PET), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Department of Clinical Research, Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Møller Jørgensen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Spine Research Unit, Copenhagen University Hospital (Rigshospitalet), Glostrup, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry 2021; 90:447-457. [PMID: 34266672 DOI: 10.1016/j.biopsych.2021.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
The hypothesis of chronically low brain serotonin levels as pathophysiologically linked to impulsive aggression has been around for several decades. Whereas the theory was initially based on indirect methods to probe serotonin function, our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. The review integrates evidence based on data from several neuroimaging domains in humans. In vivo molecular neuroimaging findings demonstrate associations between impulsive aggression and high serotonin 1B and serotonin 4 receptor binding, high serotonin transporter levels, and low monoamine oxidase A levels, suggesting that low interstitial serotonin levels are a neurobiological risk factor for impulsive aggressive behavior. Imaging genetics suggests that serotonergic-related genetic polymorphisms associate with antisocial behavior, and some evidence indicates that the low-expressing monoamine oxidase A genotype specifically predisposes to impulsive aggression, which may be mediated by effects on corticolimbic function. Interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions involved in impulsive aggression, notably the amygdala, dorsal striatum, anterior cingulate, insula, and prefrontal cortex. Based on these findings, we propose a model for the modulatory role of serotonin in impulsive aggression. Future studies should ensure that clinical features unique for impulsive aggression are appropriately assessed, and we propose investigations of knowledge gaps that can help confirm, refute, or modify our proposed model of impulsive aggression.
Collapse
|
4
|
Jørgensen LM, Henriksen T, Mardosiene S, Keller SH, Stenbæk DS, Hansen HD, Jespersen B, Thomsen C, Weikop P, Svarer C, Knudsen GM. Parkinson patients have a presynaptic serotonergic deficit: A dynamic deep brain stimulation PET study. J Cereb Blood Flow Metab 2021; 41:1954-1963. [PMID: 33461410 PMCID: PMC8327106 DOI: 10.1177/0271678x20982389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with Parkinson's disease (PD) often suffer from non-motor symptoms, which may be caused by serotonergic dysfunction. Apart from alleviating the motor symptoms, Deep Brain Stimulation (DBS) in the subthalamic nucleus (STN) may also influence non-motor symptoms. The aim of this study is to investigate how turning DBS off affects the serotonergic system. We here exploit a novel functional PET neuroimaging methodology to evaluate the preservation of serotonergic neurons and capacity to release serotonin. We measured cerebral 5-HT1BR binding in 13 DBS-STN treated PD patients, at baseline and after turning DBS off. Ten age-matched volunteers served as controls. Clinical measures of motor symptoms were assessed under the two conditions and correlated to the PET measures of the static and dynamic integrity of the serotonergic system. PD patients exhibited a significant loss of frontal and parietal 5-HT1BR, and the loss was significantly correlated to motor symptom severity. We saw a corresponding release of serotonin, but only in brain regions with preserved 5-HT1BR, suggesting the presence of a presynaptic serotonergic deficit. Our study demonstrates that DBS-STN dynamically regulates the serotonin system in PD, and that preservation of serotonergic functions may be predictive of DBS-STN effects.
Collapse
Affiliation(s)
- Louise M Jørgensen
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tove Henriksen
- Department of Neurology, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Sune H Keller
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Bo Jespersen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Thomsen
- Department of Radiology, Rigshospitalet, University of Copenhagen, Denmark.,Research Center for Advanced Imaging, Zealand University Hospital, Roskilde, Denmark
| | - Pia Weikop
- Center for Basic and Translational Neuroscience, Nedergaard Laboratory, Division of Glial Disease and Therapeutics, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
6
|
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, Keller SH, Hansen AE, Knudsen GM. Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp 2020; 41:4753-4763. [PMID: 32813903 PMCID: PMC7555083 DOI: 10.1002/hbm.25156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Endogenous serotonin (5-HT) release can be measured noninvasively using positron emission tomography (PET) imaging in combination with certain serotonergic radiotracers. This allows us to investigate effects of pharmacological and nonpharmacological interventions on brain 5-HT levels in living humans. Here, we study the neural responses to a visual stimulus using simultaneous PET/MRI. In a cross-over design, 11 healthy individuals were PET/MRI scanned with the 5-HT1B receptor radioligand [11 C]AZ10419369, which is sensitive to changes in endogenous 5-HT. During the last part of the scan, participants either viewed autobiographical images with positive valence (n = 11) or kept their eyes closed (n = 7). The visual stimuli increased cerebral blood flow (CBF) in the occipital cortex, as measured with pseudo-continuous arterial spin labeling. Simultaneously, we found decreased 5-HT1B receptor binding in the occipital cortex (-3.6 ± 3.6%), indicating synaptic 5-HT release. Using a linear regression model, we found that the change in 5-HT1B receptor binding was significantly negatively associated with change in CBF in the occipital cortex (p = .004). For the first time, we here demonstrate how cerebral 5-HT levels change in response to nonpharmacological stimuli in humans, as measured with PET. Our findings more directly support a link between 5-HT signaling and visual processing and/or visual attention.
Collapse
Affiliation(s)
- Hanne Demant Hansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Massachusetts, Massachusetts
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen K, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Deen M, Hougaard A, Hansen HD, Schain M, Dyssegaard A, Knudsen GM, Ashina M. Association Between Sumatriptan Treatment During a Migraine Attack and Central 5-HT1B Receptor Binding. JAMA Neurol 2020; 76:834-840. [PMID: 31135819 DOI: 10.1001/jamaneurol.2019.0755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Triptans, the most efficient acute treatment for migraine attacks, are 5-HT1B/1D receptor agonists, but their precise mechanism of action is not completely understood. The extent to which triptans enter the central nervous system and bind to 5-HT1B receptors in the brain is unknown. Objectives To determine the occupancy of sumatriptan to central 5-HT1B receptors, and to investigate changes in brain serotonin levels during migraine attacks. Design, Setting, and Participants This study of 8 patients in Denmark used a within-participant design and was conducted from April 20, 2015, to December 5, 2016. Participants were otherwise healthy patients with untreated episodic migraine without aura, aged between 18 and 65 years, and recruited from the general community. Data analysis was performed from January 2017 to April 2018. Interventions All participants underwent positron emission tomographic scans after injection of [11C]AZ10419369, a specific 5-HT1B receptor radiotracer. All participants were scanned 3 times: (1) during an experimentally induced migraine attack, (2) after a subcutaneous injection of 6-mg subcutaneous sumatriptan, and (3) on a migraine attack-free day. Scans 1 and 2 were conducted on the same study day. Each scan lasted for 90 minutes. Main Outcome and Measure The primary outcome was the nondisplaceable binding potential of [11C]AZ10419369 across 7 brain regions involved in pain modulation. The binding potential reflects receptor density, and changes in binding potential reflects displacement of the radiotracer. The occupancy of sumatriptan was estimated from the 2 scans before and after sumatriptan administration. Results Eight patients with migraine were included in the study; of these participants, 7 (87%) were women. The mean (SD) age of participants on study day 1 was 29.5 (9.2) years and on study day 2 was 30.0 (8.9) years. Sumatriptan was associated with statistically significantly reduced 5-HT1B receptor binding across pain-modulating regions (mean [SD] binding potential, 1.20 [0.20] vs 1.02 [0.22]; P = .001), corresponding to a mean (SD) drug occupancy rate of 16.0% (5.3%). Furthermore, during migraine attacks, as compared with outside of attacks, 5-HT1B receptor binding was statistically significantly associated with reduced in pain-modulating regions (mean [SD] binding potential, 1.36 [0.22] vs 1.20 [0.20]; P = .02). Conclusions and Relevance Treatment with sumatriptan during migraine attacks appeared to be associated with a decrease in 5-HT1B receptor binding, a finding that is most likely associated with the binding of sumatriptan to central 5-HT1B receptors, but the contribution of ongoing cerebral serotonin release to the lower binding cannot be excluded; the migraine attack-associated decrease in binding could indicate that migraine attacks are associated with increases in endogenous serotonin.
Collapse
Affiliation(s)
- Marie Deen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark.,Neurobiology Research Unit and NeuroPharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit and NeuroPharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit and NeuroPharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Agnete Dyssegaard
- Neurobiology Research Unit and NeuroPharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Moein MM, Halldin C. Sample preparation techniques for protein binding measurement in radiopharmaceutical approaches: A short review. Talanta 2020; 219:121220. [PMID: 32887121 DOI: 10.1016/j.talanta.2020.121220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Plasma protein binding (PPB) measurement is a key step in radiopharmaceutical studies for the development of positron emission tomography (PET) radioligands. PPB refers to the binding degree of a radioligand, radiotracer, or drug to blood plasma proteins or tissues after administration into the body. Several techniques have been successfully developed and applied for PPB measurement of PET radioligands. However, there is room for progress among these techniques in relation to duration time, adaptability with nonpolar radioligands, in vivo measurement, specificity, and selectivity. This mini review gives a brief overview of advances, limitations, and prospective applications of commercially-available PPB methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, S-171 64 Stockholm, Sweden; Karolinska Institutet, Department of Oncology-Pathology, J5:20, S-171 77 Stockholm, Sweden.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
9
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
10
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
Yang KC, Takano A, Halldin C, Farde L, Finnema SJ. Serotonin concentration enhancers at clinically relevant doses reduce [ 11C]AZ10419369 binding to the 5-HT 1B receptors in the nonhuman primate brain. Transl Psychiatry 2018; 8:132. [PMID: 30013068 PMCID: PMC6048172 DOI: 10.1038/s41398-018-0178-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
The serotonin (5-HT) system plays an important role in the pathophysiology and treatment of several major psychiatric disorders. Currently, no suitable positron emission tomography (PET) imaging paradigm is available to assess 5-HT release in the living human brain. [11C]AZ10419369 binds to 5-HT1B receptors and is one of the most 5-HT-sensitive radioligands available. This study applied 5-HT concentration enhancers which can be safely studied in humans, and examined their effect on [11C]AZ10419369 binding at clinically relevant doses, including amphetamine (1 mg/kg), 3,4-methylenedioxymethamphetamine (MDMA; 1 mg/kg) or 5-hydroxy-L-tryptophan (5-HTP; 5 mg/kg). Twenty-six PET measurements (14 for amphetamine, 6 for MDMA and 6 for 5-HTP) using a bolus and constant infusion protocol were performed in four cynomolgus monkeys before or after drug administration. Binding potential (BPND) values were determined with the equilibrium method (integral interval: 63-123 min) using cerebellum as the reference region. BPND values were significantly decreased in several examined brain regions after administration of amphetamine (range: 19-31%), MDMA (16-25%) or 5-HTP (13-31%). Reductions in [11C]AZ10419369 binding were greater in striatum than cortical regions after administration of 5-HTP, while no prominent regional differences were found for amphetamine and MDMA. In conclusion, [11C]AZ10419369 binding is sensitive to changes in 5-HT concentration induced by amphetamine, MDMA or 5-HTP. The robust changes in BPND, following pretreatment drugs administered at clinically relevant doses, indicate that the applied PET imaging paradigms hold promise to be successfully used in future human studies.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Personalized Health Care and Biomarkers, AstraZeneca PET Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|