1
|
Jiang X, Chen L, Wang J, Fang J, Ma M, Zhou M, Zheng H, Hu F, Zhou D, He L. Combined Selective Endovascular Brain Hypothermia with Edaravone Dexborneol versus Edaravone Dexborneol Alone for Endovascular Treatment in Acute Ischemic Stroke (SHE): Protocol for a Multicenter, Single-Blind, Randomized Controlled Study. Cerebrovasc Dis 2024:1-7. [PMID: 39427648 DOI: 10.1159/000542011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Selective endovascular brain hypothermia has been proposed as a potential neuroprotective strategy; however, its effectiveness is still not well established. The primary objective of this trial is to investigate the efficacy and safety of selective endovascular brain hypothermia with edaravone dexborneol for endovascular treatment in acute ischemic stroke (AIS). METHODS The SHE study is a multicenter, single-blind, randomized controlled clinical trial. Patients with acute anterior circulation ischemic stroke who received endovascular treatment within 24 h after stroke onset and achieved successful recanalization will be enrolled and centrally randomized into combined selective endovascular brain hypothermia with edaravone dexborneol or edaravone dexborneol alone groups in a 1:1 ratio (n = 564). Patients allocated to the hypothermia group will receive 300 mL cool saline at 4°C through guiding catheter (30 mL/min) into target vessel within 3 min after recanalization and then receive edaravone dexborneol (edaravone dexborneol 15 mL + NS 100 mL ivgtt bid for 10-14 days) within 24 h after admission. The control group will receive 300 mL 37°C saline (30 mL/min) infused into target vessel through guiding catheter and then receive edaravone dexborneol. All patients enrolled will receive standard care according to current guidelines for stroke management. The primary outcome is the proportion of functional independence, defined as a mRS score of 0-2 at 90 days after randomization. CONCLUSION This is a randomized clinical trial with a large sample size to compare combined selective endovascular brain hypothermia and edaravone dexborneol with edaravone dexborneol alone in patients with acute anterior ischemic stroke. The SHE trial aims to provide further evidence of the benefit of selective endovascular brain hypothermia in AIS patients who received endovascular treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lizhang Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinghuan Fang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Muke Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Zheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fayun Hu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhao M, Wang J, Liu G, Li S, Ding Y, Ji X, Zhao W. Multi-Target and Multi-Phase Adjunctive Cerebral Protection for Acute Ischemic Stroke in the Reperfusion Era. Biomolecules 2024; 14:1181. [PMID: 39334947 PMCID: PMC11429592 DOI: 10.3390/biom14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke remains the leading cause of death and disability in some countries, predominantly attributed to acute ischemic stroke (AIS). While intravenous thrombolysis and endovascular thrombectomy are widely acknowledged as effective treatments for AIS, boasting a high recanalization rate, there is a significant discrepancy between the success of revascularization and the mediocre clinical outcomes observed among patients with AIS. It is now increasingly understood that the implementation of effective cerebral protection strategies, serving as adjunctive treatments to reperfusion, can potentially improve the outcomes of AIS patients following recanalization therapy. Herein, we reviewed several promising cerebral protective methods that have the potential to slow down infarct growth and protect ischemic penumbra. We dissect the underlying reasons for the mismatch between high recanalization rates and moderate prognosis and introduce a novel concept of "multi-target and multi-phase adjunctive cerebral protection" to guide our search for neuroprotective agents that can be administered alongside recanalization therapy.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
3
|
Alturki F, Alkhiri A, Alsulami B, Alotaibi FF, Alamri AF, AlRuhaymi B, Bakhuraybah EM, Al-Ajlan FS, Alhazzani A, Almekhlafi MA. Selective intra-arterial hypothermia combined with endovascular thrombectomy for large vessel occlusion: A systematic review and meta-analysis. Interv Neuroradiol 2024:15910199241285157. [PMID: 39295472 DOI: 10.1177/15910199241285157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Systemic therapeutic hypothermia may improve outcomes after acute ischemic stroke but increases complications. Selective intra-arterial hypothermia at the ischemic site during endovascular thrombectomy (EVT) theoretically offers benefits with fewer risks. However, there is little clinical evidence to support this approach. METHODS We searched Medline/PubMed, Embase and Cochrane electronic databases for studies evaluating the safety and feasibility of selective intra-arterial hypothermia as an adjunct to EVT for large vessel occlusion (LVO). Effect sizes with 95% confidence intervals (CIs) were pooled using the fixed-effect model. Odds ratios (ORs) were computed for binary variables, while the mean differences (MDs) were pooled for continuous data. RESULTS Of identified records, five clinical studies involving 463 LVO patients (62.9% male) were included. Of those, 224 (48.4%) patients received adjuvant selective intra-arterial hypothermia, while 239 (51.6%) received EVT alone. Selective intra-arterial hypothermia resulted in higher rates of good functional outcome (modified Rankin scale [mRS] 0-2 at 90-days) (OR 2.07, [95% CI, 1.36 to 3.16]), and lower final infarct volume (MD, -20.96 ml [95% CI, -26.17 to -15.75]) and lower rates of severe disability (mRS 3-5 at 90 days) (OR 0.44 [95% CI, 0.26 to 0.75]). Safety parameters including rates of symptomatic intracerebral hemorrhage, mortality, pneumonia, coagulation abnormalities, and arterial spasm were comparable between groups. CONCLUSIONS The initial evidence supports the safety and feasibility of selective intra-arterial hypothermia when combined with EVT for LVO. This approach shows promise for advancing research on neuroprotective strategies for ischemic stroke.
Collapse
Affiliation(s)
- Fahad Alturki
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ahmed Alkhiri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Bander Alsulami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fawaz F Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Aser F Alamri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bader AlRuhaymi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Elyas M Bakhuraybah
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fahad S Al-Ajlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Alfaisal University, Riyadh, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Xu Y, Duan Y, Xu S, He X, Guo J, Shi J, Zhang Y, Jia M, Li M, Wu C, Wu L, Jiang M, Chen X, Ji X, Wu D. Mild hypothermia therapy attenuates early BBB leakage in acute ischaemic stroke. J Cereb Blood Flow Metab 2024:271678X241275761. [PMID: 39157938 DOI: 10.1177/0271678x241275761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Reperfusion therapy inevitably leads to brain-blood barrier (BBB) disruption and promotes damage despite its benefits for acute ischaemic stroke (AIS). An effective brain cytoprotective treatment is still needed as an adjunct to reperfusion therapy. Here, we explore the potential benefits of therapeutic hypothermia (HT) in attenuating early BBB leakage and improving neurological outcomes. Mild HT was induced during the early and peri-recanalization stages in a mouse model of transient middle cerebral artery occlusion and reperfusion (tMCAO/R). The results showed that mild HT attenuated early BBB leakage in AIS, decreased the infarction volume, and improved functional outcomes. RNA sequencing data of the microvessels indicated that HT decreased the transcription of the actin polymerization-related pathway. We further discovered that HT attenuated the ROCK1/MLC pathway, leading to a decrease in the polymerization of G-actin to F-actin. Arachidonic acid (AA), a known structural ROCK agonist, partially counteracted the protective effects of HT in the tMCAO/R model. Our study highlights the importance of early vascular protection during reperfusion and provides a new strategy for attenuating early BBB leakage by HT treatment for ischaemic stroke.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yang Zhang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Milan Jia
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Ming Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Miaowen Jiang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaonong Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jiang M, Cao F, Zhang Q, Qi Z, Gao Y, Zhang Y, Song B, Wu C, Li M, Xu Y, Zhang X, Wang Y, Wei M, Ji X. Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation. J Cereb Blood Flow Metab 2024:271678X241270485. [PMID: 39129194 DOI: 10.1177/0271678x241270485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.
Collapse
Affiliation(s)
- Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Fuzhi Cao
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Qihan Zhang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhengfei Qi
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yuan Gao
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Baoyin Song
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yongbo Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300203, China
| | - Xin Zhang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Wang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300203, China
- Tianjin University, Tianjin Huanhu Hospital, Tianjin 300203, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
6
|
King RM, Anagnostakou V, Shazeeb MS, Hornibrook S, Mitchell J, Epshtein M, Raskett C, Henninger N, Puri AS, Merrill TL, Gounis MJ. Selective brain cooling with a novel catheter reduces infarct growth after recanalization in a canine large vessel occlusion model. Interv Neuroradiol 2024:15910199241266010. [PMID: 39043215 DOI: 10.1177/15910199241266010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Therapeutic hypothermia has shown potential in cardiac intervention for years; however, its adoption into the neurovascular space has been limited. Studies have pointed to slow cooling and limited depth of hypothermia yielding negative outcomes. Here we present an insulated catheter that allows for consistent infusion of chilled saline directly to the brain. Direct delivery of cold saline allows a faster depth of hypothermia, which could have a benefit to the growth of ischemic lesions. METHODS Ten canines were randomized to either receive selective brain cooling or no additional therapy. Eight animals were successfully enrolled (n = 4 per group). Each animal underwent a temporary middle cerebral artery occlusion (MCAO) for a total of 45 min. Five minutes prior to flow restoration, chilled saline was injected through the ipsilateral internal carotid artery using an insulated catheter to ensure delivery temperature. The treatment continued for 20 min, after which the animal was transferred to an MRI scanner for imaging. RESULTS Of the 8 animals that were successfully enrolled in the study, 3 were able to survive to the 30-day endpoint with no differences between the cooled and control animals. There was no difference in the initial mean infarct size between the groups; however, animals that did not receive cooling had infarcts continuing to progress more rapidly after the MCAO was removed (13.8% vs 161.3%, p = 0.016, cooled vs control). CONCLUSIONS Selective hypothermia was able to reduce the post-MCAO infarct progression in a canine model of temporary MCAO.
Collapse
Affiliation(s)
- Robert M King
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vania Anagnostakou
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mohammed Salman Shazeeb
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Radiology, Image Processing and Analysis Core, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Mark Epshtein
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher Raskett
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ajit S Puri
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
7
|
Duan H, Cheng Z, Geng X, Rajah GB, Gao J, Guo Y, Cai L, Tong Y, Li F, Jiang Q, Han Z, Ding Y. Prospective randomized controlled trial on the safety and neuroprotective efficacy of remote administration of hypothermia over spleen during acute ischemic stroke with mechanical thrombectomy: rationale, design, and protocol. Front Neurol 2024; 15:1382365. [PMID: 39081338 PMCID: PMC11286455 DOI: 10.3389/fneur.2024.1382365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Brain inflammation plays a key role in ischemia/reperfusion (I/R) injury and is the main cause of "ineffective or futile recanalization" after successful mechanical thrombectomy (MT) in acute ischemic stroke (AIS). One of the primary sources of inflammatory cells after AIS are derived from the spleen. As an innovative and potential neuroprotective strategy after stroke, Remote Administration of Hypothermia (RAH) temporarily suppresses immune activities in the spleen, reduces the release of inflammatory cells and cytokines into blood, and thus reversibly diminishes inflammatory injury in the brain. Methods This single-center, prospective, randomized controlled study (RCT) is proposed for AIS patients with anterior circulation large vessel occlusion (LVO). Subjects will be randomly assigned to either the control or intervention groups in a 1:1 ratio (n = 40). Participants allocated to the intervention group will receive RAH on the abdomen above the spleen prior to recanalization until 6 h after thrombectomy. All enrolled patients will receive standard stroke Guideline care. The main adverse events associated with RAH are focal cold intolerance and abdominal pain. The primary outcome will assess safety as it pertains to RAH application. The secondary outcomes include the efficacy of RAH on spleen, determined by spleen volumes, blood inflammatory factor (cells and cytokines), and on brain injury, determined by infarction volumes and poststroke functional outcomes. Discussion This study aims to examine the safety and preliminary effectiveness of RAH over the spleen during endovascular therapy in AIS patients. The results of this study are expected to facilitate larger randomized clinical trials and hopefully prove RAH administration confers adjuvant neuroprotective properties in AIS treated with MT. Clinical trial registration https://www.chictr.org.cn/. Identifier ChiCTR 2300077052.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gary B. Rajah
- Department of Neurosurgery, Munson Medical Center, Traverse City, MI, United States
| | - Jie Gao
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yang Guo
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanna Tong
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fengwu Li
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Qian Jiang
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Zhenzhen Han
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
8
|
Bardutzky J, Kollmar R, Al-Rawi F, Lambeck J, Fazel M, Taschner C, Niesen WD. COmbination of Targeted temperature management and Thrombectomy after acute Ischemic Stroke (COTTIS): a pilot study. Stroke Vasc Neurol 2024; 9:258-267. [PMID: 37612052 PMCID: PMC11221305 DOI: 10.1136/svn-2023-002420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND To evaluate the feasibility and safety of a fast initiation of cooling to a target temperature of 35°C by means of transnasal cooling in patients with anterior circulation large vessel occlusion (LVO) undergoing endovascular thrombectomy (EVT). METHODS Patients with an LVO onset of <24 hour who had an indication for EVT were included in the study. Transnasal cooling (RhinoChill) was initiated immediately after the patient was intubated for EVT and continued until an oesophageal target temperature of 35°C was reached. Hypothermia was maintained with surface cooling for 6-hour postrecanalisation, followed by active rewarming (+0.2°C/hour). The primary outcome was defined as the time required to reach 35°C, while secondary outcomes comprised clinical, radiological and safety parameters. RESULTS Twenty-two patients (median age, 77 years) were included in the study (14 received additional thrombolysis, 4 additional stenting of the proximal internal carotid artery). The median time intervals were 309 min for last-seen-normal-to-groin, 58 min for door-to-cooling-initiation, 65 min for door-to-groin and 123 min for door-to-recanalisation. The target temperature of 35°C was reached within 30 min (range 13-78 min), corresponding to a cooling rate of 2.6 °C/hour. On recanalisation, 86% of the patients had a body temperature of ≤35°C. The median National Institutes of Health Stroke Scale at admission was 15 and improved to 2 by day 7, and 68% of patients had a good outcome (modified Rankin Scale 0-2) at 3 months. Postprocedure complications included asymptomatic bradycardia (32%), pneumonia (18%) and asymptomatic haemorrhagic transformation (18%). CONCLUSION The combined application of hypothermia and thrombectomy was found to be feasible in sedated and ventilated patents. Adverse events were comparable to those previously described for EVT in the absence of hypothermia. The effect of this procedure will next be evaluated in the randomised COmbination of Targeted temperature management and Thrombectomy after acute Ischemic Stroke-2 trial.
Collapse
Affiliation(s)
- Jürgen Bardutzky
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Kollmar
- Neurology and Neurointensive Care, Darmstadt Hospital, Darmstadt, Germany
| | - Forat Al-Rawi
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johann Lambeck
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Christian Taschner
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Zhang Y, Jiang M, Baoying S, Gao Y, Xu Y, Qi Z, Wu D, Li M, Ji X. Trends and hotspots of the neuroprotection of hypothermia treatment: A bibliometric and visualized analysis of research from 1992 to 2023. CNS Neurosci Ther 2024; 30:e14795. [PMID: 38867401 PMCID: PMC11168963 DOI: 10.1111/cns.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIM Recent studies have extensively investigated hypothermia as a therapeutic approach for mitigating neural damage. Despite this, bibliometric analyses specifically focusing on this area remain scarce. Consequently, this study aims to comprehensively outline the historical framework of research and to pinpoint future research directions and trends. METHODS Articles spanning from 2003 to 2023, relevant to both "neuroprotection" and "hypothermia", were sourced from the Web of Science Core Collection. The CiteSpace software facilitated a comprehensive evaluation and analysis of these publications. This analysis included examining the annual productivity, collaboration among nations, institutions, and authors, as well as the network of co-cited references, authors and journals, and the co-occurrence of keywords, and their respective clusters and trends, all of which were visualized. RESULTS This study included 2103 articles on the neuroprotection effects of hypothermia, noting a consistent increase in publications since 1992. The United States, the University of California System, and Ji Xunming emerged as the most productive nation, institution, and author, respectively. Analysis of the top 10 co-cited publications revealed that seven articles focused on the effects of hypothermia in infants with hypoxic-ischemic encephalopathy, while three studies addressed cardiac arrest. Shankaran S and the journal Stroke were the most frequently co-cited author and journal, respectively. Keyword cluster analysis identified ischemic stroke as the primary focus of hypothermia therapy historically, with cardiac arrest and neonatal hypoxic-ischemic encephalopathy emerging as current research foci. CONCLUSIONS Recent studies on the neuroprotective effects of hypothermia in cardiac arrest and neonatal hypoxic-ischemic encephalopathy suggest that hypothermia may mitigate neural damage associated with these conditions. However, the application of hypothermia in the treatment of ischemic stroke remains confined to animal models and in vitro studies, with a notable absence of evidence from multicenter randomized controlled trials (RCTs). Further research is required to address this gap.
Collapse
Affiliation(s)
- Yang Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Song Baoying
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang UniversityBeijingChina
| | - Yi Xu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Zhengfei Qi
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Di Wu
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Ming Li
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xunming Ji
- China‐America Institute of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Song B, Jiang M, Zhang Y, Xu Y, Wu C, Wu D, Zhou C, Li M, Ji X. Research hotpots and frontier trends of neuroprotective effects of magnesium from 1999 to 2023: A bibliometric analysis. CNS Neurosci Ther 2024; 30:e14597. [PMID: 38332558 PMCID: PMC10853652 DOI: 10.1111/cns.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The neuroprotective effect of magnesium has been widely discussed, and its effectiveness has been confirmed by animal and clinical trials. However, there are still difficulties in clinical translation in diseases such as cerebral ischemia and subarachnoid hemorrhage. Therefore, it is necessary to analyze the literatures about neuroprotection of magnesium to reveal a more comprehensive knowledge framework, research hotspots and trends in the future. METHODS Original articles and reviews related to neuroprotective effects of magnesium from 1999 to 2022 were retrieved from the Web of Science Core Collection (WoSCC). The bibliometrics CiteSpace 6.2.R4 software was used to conduct co-occurrence/co-citation network analysis and plot knowledge visualization maps. RESULTS A total of 762 articles from 216 institutions in 64 countries were included in this study. The United States had the largest number of publications, followed by China and Canada. The University of California, UDICE-French Research Universities, and the University of Adelaide were the top three institutions in publication volume. Crowther Caroline A was the most published and cited author. Among the top 10 cited articles, there were seven articles on neuroprotection in preterm infants and three on acute stroke. Keyword cluster analysis obtained 11 clusters, showing that current research hotspots focused on magnesium therapy in neurovascular diseases such as cerebral ischemia, spinal cord injury, subarachnoid hemorrhage, and emerging treatment strategies. CONCLUSION The neuroprotective effects of magnesium in preterm infants have been extensively studied and adequately confirmed. The therapeutic effects of magnesium on cerebral ischemia and subarachnoid hemorrhage have been demonstrated in animal models. However, the results of clinical studies were not satisfactory, and exploring new therapeutic strategies may be the solution. Recently, the combination of magnesium and hypothermia had great potential in neuroprotective therapy and may become a development trend and hotspot in the future.
Collapse
Affiliation(s)
- Baoying Song
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Miaowen Jiang
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yang Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yi Xu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chuanjie Wu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Di Wu
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chen Zhou
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ming Li
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Binda DD, Baker MB, Varghese S, Wang J, Badenes R, Bilotta F, Nozari A. Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. J Clin Med 2024; 13:586. [PMID: 38276093 PMCID: PMC10816923 DOI: 10.3390/jcm13020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Despite significant advances in medical imaging, thrombolytic therapy, and mechanical thrombectomy, acute ischemic strokes (AIS) remain a major cause of mortality and morbidity globally. Targeted temperature management (TTM) has emerged as a potential therapeutic intervention, aiming to mitigate neuronal damage and improve outcomes. This literature review examines the efficacy and challenges of TTM in the context of an AIS. A comprehensive literature search was conducted using databases such as PubMed, Cochrane, Web of Science, and Google Scholar. Studies were selected based on relevance and quality. We identified key factors influencing the effectiveness of TTM such as its timing, depth and duration, and method of application. The review also highlighted challenges associated with TTM, including increased pneumonia rates. The target temperature range was typically between 32 and 36 °C, with the duration of cooling from 24 to 72 h. Early initiation of TTM was associated with better outcomes, with optimal results observed when TTM was started within the first 6 h post-stroke. Emerging evidence indicates that TTM shows considerable potential as an adjunctive treatment for AIS when implemented promptly and with precision, thereby potentially mitigating neuronal damage and enhancing overall patient outcomes. However, its application is complex and requires the careful consideration of various factors.
Collapse
Affiliation(s)
- Dhanesh D. Binda
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Maxwell B. Baker
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Shama Varghese
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Jennifer Wang
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Rafael Badenes
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Federico Bilotta
- Department of Anaesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Ala Nozari
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| |
Collapse
|
12
|
Dammavalam V, Lin S, Nessa S, Daksla N, Stefanowski K, Costa A, Bergese S. Neuroprotection during Thrombectomy for Acute Ischemic Stroke: A Review of Future Therapies. Int J Mol Sci 2024; 25:891. [PMID: 38255965 PMCID: PMC10815099 DOI: 10.3390/ijms25020891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Stroke is a major cause of death and disability worldwide. Endovascular thrombectomy has been impactful in decreasing mortality. However, many clinical results continue to show suboptimal functional outcomes despite high recanalization rates. This gap in recanalization and symptomatic improvement suggests a need for adjunctive therapies in post-thrombectomy care. With greater insight into ischemia-reperfusion injury, recent preclinical testing of neuroprotective agents has shifted towards preventing oxidative stress through upregulation of antioxidants and downstream effectors, with positive results. Advances in multiple neuroprotective therapies, including uric acid, activated protein C, nerinetide, otaplimastat, imatinib, verapamil, butylphthalide, edaravone, nelonemdaz, ApTOLL, regional hypothermia, remote ischemic conditioning, normobaric oxygen, and especially nuclear factor erythroid 2-related factor 2, have promising evidence for improving stroke care. Sedation and blood pressure management in endovascular thrombectomy also play crucial roles in improved stroke outcomes. A hand-in-hand approach with both endovascular therapy and neuroprotection may be the key to targeting disability due to stroke.
Collapse
Affiliation(s)
- Vikalpa Dammavalam
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Sandra Lin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Sayedatun Nessa
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Kamil Stefanowski
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Ana Costa
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| |
Collapse
|
13
|
Diprose WK, Rao A, Ghate K, Dyer Z, Campbell D, Almekhlafi M, Barber PA. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab 2024; 44:66-76. [PMID: 37734834 PMCID: PMC10905634 DOI: 10.1177/0271678x231203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023]
Abstract
In ischemic stroke, selectively cooling the ischemic penumbra might lead to neuroprotection while avoiding systemic complications. Because penumbral tissue has reduced cerebral blood flow and in vivo brain temperature measurement remains challenging, the effect of different methods of therapeutic hypothermia on penumbral temperature are unknown. We used the COMSOL Multiphysics® software to model a range of cases of therapeutic hypothermia in ischemic stroke. Four ischemic stroke models were developed with ischemic core and/or penumbra volumes between 33-300 mL. Four experiments were performed on each model, including no cooling, and intraarterial, intravenous, and active conductive head cooling. The steady-state temperature of the non-ischemic brain, ischemic penumbra, and ischemic core without cooling was 37.3 °C, 37.5-37.8 °C, and 38.9-39.4 °C respectively. Intraarterial, intravenous and active conductive head cooling reduced non-ischemic brain temperature by 4.3 °C, 2.1 °C, and 0.7-0.8 °C respectively. Intraarterial, intravenous and head cooling reduced the temperature of the ischemic penumbra by 3.9-4.3 °C, 1.9-2.1 °C, and 1.2-3.4 °C respectively. Active conductive head cooling was the only method to selectively reduce penumbral temperature. Clinical studies that measure brain temperature in ischemic stroke patients undergoing therapeutic hypothermia are required to validate these hypothesis-generating findings.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Avinash Rao
- Department of Engineering, Victoria University of Wellington, Wellington, New Zealand
| | - Kaustubha Ghate
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Zoe Dyer
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Doug Campbell
- Department of Anesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | | | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
14
|
Xu R, Nair SK, Kilgore CB, Xie ME, Jackson CM, Hui F, Gailloud P, McDougall CG, Gonzalez LF, Huang J, Tamargo RJ, Caplan J. Hypothermia is Associated with Improved Neurological Outcomes After Mechanical Thrombectomy. World Neurosurg 2024; 181:e126-e132. [PMID: 37690581 PMCID: PMC11060169 DOI: 10.1016/j.wneu.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Acute ischemic stroke (AIS) is the second leading cause of death globally. Mechanical thrombectomy (MT) has improved patient prognosis but expedient treatment is still necessary to minimize anoxic injury. Lower intraoperative body temperature decreases cerebral oxygen demand, but the role of hypothermia in treatment of AIS with MT is unclear. METHODS We retrospectively reviewed patients undergoing MT for AIS from 2014 to 2020 at our institution. Patient demographics, comorbidities, intraoperative parameters, and outcomes were collected. Maximum body temperature was extracted from minute-by-minute anesthesia readings, and patients with maximal temperature below 36°C were considered hypothermic. Risk factors were assessed by χ2 and multivariate ordinal regression. RESULTS Of 68 patients, 27 (40%) were hypothermic. There was no significant association of hypothermia with patient age, comorbidities, time since last known well, number of passes intraoperatively, favorable revascularization, tissue plasminogen activator use, and immediate postoperative complications. Hypothermic patients exhibited better neurologic outcome at 3-month follow-up (P = 0.02). On multivariate ordinal regression, lower maximum intraoperative body temperature was associated with improved 3-month outcomes (P < 0.001), when adjusting for other factors influencing neurological outcomes. Other significant protective factors included younger age (P = 0.03), better revascularization (P = 0.03), and conscious sedation (P = 0.02). CONCLUSIONS Lower intraoperative body temperature during MT was independently associated with improved neurological outcome in this single center retrospective series. These results may help guide clinicians in employing therapeutic hypothermia during MT to improve long-term neurologic outcomes from AIS, although larger studies are needed.
Collapse
Affiliation(s)
- Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sumil K Nair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Collin B Kilgore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Xie
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ferdinand Hui
- Division of Neurointerventional Surgery, Queen's Medical Center, Honolulu, Hawaii, USA
| | - Phillipe Gailloud
- Department of Interventional Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - L Fernando Gonzalez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Caplan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Yenari MA. In cold blood: a new way to achieve therapeutic cooling? Sci Bull (Beijing) 2023; 68:2905-2906. [PMID: 37932199 DOI: 10.1016/j.scib.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- Midori A Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
16
|
Li SJ, Li F, Kong N, Liu JR, Zhu X. Near Infrared Emissive Lanthanide Luminescence Nanoparticle Used in Early Diagnosis and Brain Temperature Detection for Ischemic Stroke. Adv Healthc Mater 2023; 12:e2302276. [PMID: 37717206 DOI: 10.1002/adhm.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Ischemic stroke (IS) is one of the most dangerous medical conditions resulting in high mortality and morbidity. The increased brain temperature after IS is closely related to prognosis, making it highly significant for the early diagnosis and the progression evaluation of IS. Herein, a temperature-responsive near infrared (NIR) emissive lanthanide luminescence nanoparticle is developed for the early diagnosis and brain temperature detection of IS. After intravenous injection, the nanoparticles can pass through the damaged blood-brain barrier of the ischemic region, allowing the extravasation and enrichment of nanoparticles into the ischemic brain tissue. The NIR luminescence signals of the nanoparticles are used not only to judge the location and severity of the cerebral ischemic injury but also to report the brain temperature variation in the ischemic area through a visualized way. The results show that the designed nanoparticles can be used for the early diagnosis of ischemic stroke and minimally invasive temperature detection of cerebral ischemic tissues in transient middle cerebral artery occlusion mice model, which is expected to make the clinical diagnosis of ischemic stroke more rapid and convenient, more accurately evaluate the state of brain injury in stroke patients and also guide stroke hypothermia treatment.
Collapse
Affiliation(s)
- Shen-Jie Li
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jian-Ren Liu
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| |
Collapse
|
17
|
Cheng Z, Gao J, Ding Y, Pang Q, Rajah GB, Geng X. Arterial Glyceryl Trinitrate in Acute Ischemic Stroke After Thrombectomy for Neuroprotection (AGAIN): A Pilot Randomized Controlled Trial. Neurotherapeutics 2023; 20:1746-1754. [PMID: 37875733 PMCID: PMC10684471 DOI: 10.1007/s13311-023-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/26/2023] Open
Abstract
Although endovascular therapy demonstrates robust clinical efficacy in acute ischemic stroke (AIS), not all stroke patients benefit from successful reperfusion. This study aimed to evaluate the safety, feasibility, and preliminary efficacy of intra-arterial administration of glyceryl trinitrate (GTN) after endovascular recanalization for neuroprotection. This is a prospective randomized controlled study. Eligible patients were randomized to receive 800 μg GTN or the same volume of normal saline through the catheter after recanalization. The primary outcome was symptomatic intracranial hemorrhage (ICH), while secondary outcomes included mortality, functional outcome, infarction volume, complications, and blood nitrate index (NOx). A total of 40 patients were enrolled and randomized with no participants being lost to follow-up. There was no significant difference in the proportion of sICH between GTN and control groups. Additionally, no significant difference was observed in mortality or rates of neurological deterioration and other complications. Favorable trends, while non-significant, were noted in both outcome and imaging for functional independence at 90 days and reduction in final infarct volume (75.0% vs 65.0%; 33.2 vs 38.9 ml) for the GTN group. Moreover, the concentration of blood NOx in the GTN group was significantly higher than in the control group at 2 h after GTN administration (26.2 vs 18.0 μmol/l, p < 0.05). The AGAIN study suggests intra-arterial administration of GTN post-endovascular therapy is safe and feasible and GTN successfully raised NOx levels over controls at 2 h. A multi-center randomized controlled trial with a larger sample size is warranted to determine GTN neoadjuvant efficacy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology and Stroke Center, Luhe Hospital, Capital Medical University, Tongzhou District, No. 82 Xinhua SouthRoad, Beijing, 101149, China
| | - Jie Gao
- Department of Neurology and Stroke Center, Luhe Hospital, Capital Medical University, Tongzhou District, No. 82 Xinhua SouthRoad, Beijing, 101149, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA.
| | - Qi Pang
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Gary B Rajah
- Department of Neurosurgery, Munson Healthcare, Traverse City, MI, USA
| | - Xiaokun Geng
- Department of Neurology and Stroke Center, Luhe Hospital, Capital Medical University, Tongzhou District, No. 82 Xinhua SouthRoad, Beijing, 101149, China.
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA.
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, 101100, China.
| |
Collapse
|
18
|
Huang Y, Gu S, Han Z, Yang Z, Zhong L, Li L, Wang R, Yan F, Luo Y, Borlongan C, Lu J. Cold Case of Thrombolysis: Cold Recombinant Tissue Plasminogen Activator Confers Enhanced Neuroprotection in Experimental Stroke. J Am Heart Assoc 2023; 12:e029817. [PMID: 37655472 PMCID: PMC10547350 DOI: 10.1161/jaha.123.029817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization-related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood-brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood-brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA-treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand-alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.
Collapse
Affiliation(s)
- Yuyou Huang
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Shanshan Gu
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenghong Yang
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Liyuan Zhong
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Lingzi Li
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Feng Yan
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yumin Luo
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
| | | | - Jie Lu
- Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
19
|
Li M, Gao Y, Jiang M, Zhang H, Zhang Y, Wu Y, Zhou W, Wu D, Wu C, Wu L, Bao L, Ge X, Qi Z, Wei M, Li A, Ding Y, Zhang J, Pan G, Wu Y, Cheng Y, Zheng Y, Ji X. Dual-sized hollow particle incorporated fibroin thermal insulating coatings on catheter for cerebral therapeutic hypothermia. Bioact Mater 2023; 26:116-127. [PMID: 36879558 PMCID: PMC9984786 DOI: 10.1016/j.bioactmat.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023] Open
Abstract
Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection, but current catheters do not support thermally-insulated transfer of cold infusate, which results in an increased exit temperature, causes hemodilution, and limits its cooling efficiency. Herein, air-sprayed fibroin/silica-based coatings combined with chemical vapor deposited parylene-C capping film was prepared on catheter. This coating features in dual-sized-hollow-microparticle incorporated structures with low thermal conductivity. The infusate exit temperature is tunable by adjusting the coating thickness and infusion rate. No peeling or cracking was observed on the coatings under bending and rotational scenarios in the vascular models. Its efficiency was verified in a swine model, and the outlet temperature of coated catheter (75 μm thickness) was 1.8-2.0 °C lower than that of the uncoated one. This pioneering work on catheter thermal insulation coatings may facilitate the clinical translation of selective endovascular hypothermia for neuroprotection in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Hongkang Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yang Zhang
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, 710016, China
| | - Di Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Luzi Bao
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaoxiao Ge
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zhengfei Qi
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York City, NY, 10027, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jicheng Zhang
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Guangzhen Pan
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Yu Wu
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Yan Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xunming Ji
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
20
|
Chen J, Xu S, Lee H, Wu L, He X, Zhao W, Zhang M, Ma Y, Ding Y, Fu Y, Wu C, Li M, Jiang M, Cheng H, Li S, Ma T, Ji X, Wu D. Hypothermic neuroprotection by targeted cold autologous blood transfusion in a non-human primate stroke model. Sci Bull (Beijing) 2023:S2095-9273(23)00392-4. [PMID: 37391345 DOI: 10.1016/j.scib.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hangil Lee
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaoduo He
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ming Li
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Miuwen Jiang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Huakun Cheng
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin 1500036, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ting Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
21
|
Zeng Y, Hao L, Chen Y, Liu S, Fan Y, Zhao Z, Wang Y, Chen Q, Li Y. Optimizing intra-arterial hypothermia scheme for acute ischemic stroke in an MCAO/R rat model. Sci Rep 2023; 13:9566. [PMID: 37311853 DOI: 10.1038/s41598-023-35824-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Hypothermia is a promising neuroprotective treatment. This study aims to explore and optimize the intervention scheme of intra-arterial hypothermia (IAH) in a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model. The MCAO/R model was established with a thread that could be retracted 2 h after occlusion. Cold normal saline was injected into the internal carotid artery (ICA) through a microcatheter in different infusion conditions. Grouping followed an orthogonal design (L9[34]) based on three critical factors closely associated with IAH: perfusate temperature (4, 10, 15 °C), infusion flow rate (1/3, 1/2, 2/3 blood flow rate of ICA), and duration (10, 20, 30 min), resulting in 9 subgroups (H1, H2 to H9). A myriad of indexes were monitored, such as vital signs, blood parameters, changes in local ischemic brain tissue temperature (Tb), ipsilateral jugular venous bulb temperature (Tjvb), and the core temperature of the anus (Tcore). After 24 h and 72 h of cerebral ischemia, cerebral infarction volume, cerebral water content, and neurological function were assessed to explore the optimal IAH conditions. The results revealed that the three critical factors were independent predictors for cerebral infarction volume, cerebral water content, and neurological function. The optimal perfusion conditions were 4 °C, 2/3 RICA (0.50 ml/min) for 20 min, and there was a significant correlation between Tb and Tjvb (R = 0.994, P < 0.001). The vital signs, blood routine tests and biochemical indexes showed no significant abnormal changes. These findings revealed that IAH was safe and feasible with the optimized scheme in an MCAO/R rat model.
Collapse
Affiliation(s)
- Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lei Hao
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, 221006, Jiangsu Province, China
| | - Yue Chen
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Shuyi Liu
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Zhenhua Zhao
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yinzhou Wang
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, 350000, China.
| | - Yongkun Li
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Emergency Medicine, Department of Emergency, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
22
|
Huang J, Wang P, Wen H. The safety and efficacy of hypothermia combining mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke: A systematic meta-analysis. Clinics (Sao Paulo) 2023; 78:100218. [PMID: 37269787 DOI: 10.1016/j.clinsp.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Stroke is a major global public health problem, affecting 13.7 million people worldwide. Previous studies have found a neuroprotective effect of hypothermia therapy and the efficacy and safety of combined hypothermia and mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke have also attracted attention. OBJECTIVE In the present research, the authors conducted a meta-analysis to comprehensively assess the safety and efficacy of hypothermia combining mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke. METHODS Articles published from January 2001 to May 2022 were searched from Google Scholar, Baidu Scholar and PubMed to evaluate the clinical significance of hypothermia treatment in ischemic stroke. Complications, short-term mortality, and the modified Rankin Scale (mRS) in the full text was extracted. RESULTS 89 publications were selected and 9 among them were included in this study with sample size of 643. All selected studies are in accordance with the inclusion criteria. Forest plot of clinical characteristics was as follows: complications (RR = 1.132, 95% CI 0.942‒1.361, p = 0.186, I2 = 37.2%), mortality within 3 months (RR = 1.076, 95% CI 0.694‒1.669, p = 0.744, I2 = 0.00%), mRS ≤ 1 at 3 months (RR = 1.138, 95% CI 0.829‒1.563, p = 0.423, I2 = 26.0%), mRS ≤ 2 at 3 months (RR = 1.672, 95% CI 1.236‒2.263, p = 0.001, I2=49.6%) and mRS ≤ 3 at 3 months (RR = 1.518, 95% CI 1.128‒2.043, p = 0.006, I2 = 0.00%). The funnel plot suggested that there was no significant publication bias in the meta-analysis on complications, mortality within 3 months, mRS ≤ 1 at 3 months and mRS ≤ 2 at 3 months. CONCLUSION In summary, the results showed that hypothermia treatment was correlated with mRS ≤ 2 at 3 months, but not linked with complications and mortality within 3 months.
Collapse
Affiliation(s)
- Jiankang Huang
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China
| | - Peng Wang
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China
| | - Hongbo Wen
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China.
| |
Collapse
|
23
|
Choi JH, Pile-Spellman J, Weinberger J, Poli S. Editorial: Selective brain and heart hypothermia - A path toward targeted organ resuscitation and protection. Front Neurol 2023; 14:1162865. [PMID: 36998777 PMCID: PMC10043490 DOI: 10.3389/fneur.2023.1162865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Jae H. Choi
- Neurovascular Center, NSPC Brain and Spine Surgery, Lake Success, NY, United States
- *Correspondence: Jae H. Choi
| | - John Pile-Spellman
- Neurovascular Center, NSPC Brain and Spine Surgery, Lake Success, NY, United States
| | - Judah Weinberger
- Dean's Office, Touro University, NYSCAS, New York, NY, United States
| | - Sven Poli
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Wan Y, Tian H, Wang H, Wang D, Jiang H, Fang Q. Selective intraarterial hypothermia combined with mechanical thrombectomy for acute cerebral infarction based on microcatheter technology: A single-center, randomized, single-blind controlled study. Front Neurol 2023; 14:1039816. [PMID: 36873429 PMCID: PMC9978520 DOI: 10.3389/fneur.2023.1039816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Objective To investigate the safety and efficacy of selective intraarterial hypothermia combined with mechanical thrombectomy in the treatment of acute cerebral infarction based on microcatheter technology. Methods A total of 142 patients with anterior circulation large vessel occlusion were randomly assigned to the hypothermic treatment group (test group) and the conventional treatment group (control group). National Institutes of Health Stroke Scale (NIHSS) scores, postoperative infarct volume, the 90-day good prognosis rate (modified Rankin Scale (mRS) score ≤ 2 points), and the mortality rate of the two groups were compared and analyzed. Blood specimens were collected from patients before and after treatment. Serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-6 (IL-6), IL-10, and RNA-binding motif protein 3 (RBM3) were measured. Results The 7-day postoperative cerebral infarct volume [(63.7 ± 22.1) ml vs. (88.5 ± 20.8) ml] and NIHSS scores at postoperative Days 1, 7, and 14 [(6.8 ± 3.8) points vs. (8.2 ± 3.5) points; (2.6 ± 1.6) points vs. (4.0 ± 1.8) points; (2.0 ± 1.2) points vs. (3.5 ± 2.1) points] in the test group were significantly lower than those in the control group. The good prognosis rate at 90 days postoperatively (54.9 vs. 35.2%, P = 0.018) was significantly higher in the test group than in the control group. The 90-day mortality rate was not statistically significant (7.0 vs. 8.5%, P = 0.754). Immediately after surgery and 1 day after surgery, SOD, IL-10, and RBM3 levels in the test group were relatively higher than those in the control group, and the differences were statistically significant. Immediately after surgery and 1 day after surgery, MDA and IL-6 levels in the test group were relatively reduced compared with those in the control group, and the differences were statistically significant (P < 0.05). In the test group, RBM3 was positively correlated with SOD and IL-10. Conclusion Mechanical thrombectomy combined with intraarterial cold saline perfusion is a safe and effective measure for the treatment of acute cerebral infarction. Postoperative NIHSS scores and infarct volumes were significantly improved with this strategy compared with simple mechanical thrombectomy, and the 90-day good prognosis rate was improved. The mechanism by which this treatment exerts its cerebral protective effect may be by inhibiting the transformation of the ischaemic penumbra of the infarct core area, scavenging some oxygen free radicals, reducing inflammatory injury to cells after acute infarction and ischaemia-reperfusion, and promoting RBM3 production in cells.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Hao Tian
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| | - DaPeng Wang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| | - HaiWei Jiang
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| |
Collapse
|
25
|
Cheng Z, Ding Y, Rajah GB, Gao J, Li F, Ma L, Geng X. Vertebrobasilar artery cooling infusion in acute ischemic stroke for posterior circulation following thrombectomy: Rationale, design and protocol for a prospective randomized controlled trial. Front Neurosci 2023; 17:1149767. [PMID: 37113154 PMCID: PMC10126519 DOI: 10.3389/fnins.2023.1149767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background Although endovascular mechanical thrombectomy demonstrates clinical efficacy in posterior circulation acute ischemic stroke (AIS), only one third of these patients attain functional independence with a third of patients' expiring despite vascular recanalization. Neuroprotection strategies, such as therapeutic hypothermia (TH) have been considered a promising adjunctive treatment in AIS. We propose the following rationale, design and protocol for a prospective randomized controlled trial (RCT) aimed to determine whether Vertebrobasilar Artery Cooling Infusion (VACI) improves functional outcomes in posterior circulation AIS patients post mechanical thrombectomy. Methods Subjects in the study will be assigned randomly to either the cooling infusion or the control group in a 1:1 ratio (n = 40). Patients allocated to the cooling infusion group will receive 300 ml cool saline at 4C through the catheter (30 ml/min) into vertebral artery after thrombectomy. The control group will receive the same volume of 37C saline. All patients enrolled will receive standard care according to current guidelines for stroke management. The primary outcome is symptomatic intracranial hemorrhage (ICH), whereas the secondary outcomes include functional outcome score, infarction volume, mortality, ICH, fatal ICH, cerebral vasospasm, coagulation abnormality, pneumonia and urinary infection. Discussions This study will determine the preliminary safety, feasibility, and neuroprotective benefits of VACI in posterior circulation AIS patients with reperfusion therapy. The results of this study may provide evidence for VACI as a new therapy in posterior circulation AIS. Clinical Trial Registration www.chictr.org.cn, ChiCTR2200065806, registered on November 15, 2022.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Yuchuan Ding,
| | - Gary B. Rajah
- Department of Neurosurgery, Munson Healthcare, Traverse City, MI, United States
| | - Jie Gao
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Fenghai Li
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Linlin Ma
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Xiaokun Geng,
| |
Collapse
|
26
|
Diprose WK, Morgan CA, Wang MT, Diprose JP, Lin JC, Sheriff S, Campbell D, Barber PA. Active conductive head cooling of normal and infarcted brain: A magnetic resonance spectroscopy imaging study. J Cereb Blood Flow Metab 2022; 42:2058-2065. [PMID: 35707879 PMCID: PMC9580175 DOI: 10.1177/0271678x221107988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active conductive head cooling is a simple and non-invasive intervention that may slow infarct growth in ischemic stroke. We investigated the effect of active conductive head cooling on brain temperature using whole brain echo-planar spectroscopic imaging. A cooling cap (WElkins Temperature Regulation System, 2nd Gen) was used to administer cooling for 80 minutes to healthy volunteers and chronic stroke patients. Whole brain echo-planar spectroscopic imaging scans were obtained before and after cooling. Brain temperature was estimated using the Metabolite Imaging and Data Analysis System software package, which allows voxel-level temperature calculations using the chemical shift difference between metabolite (N-acetylaspartate, creatine, choline) and water resonances. Eleven participants (six healthy volunteers, five post-stroke) underwent 80 ± 5 minutes of cooling. The average temperature of the coolant was 1.3 ± 0.5°C below zero. Significant reductions in brain temperature (ΔT = -0.9 ± 0.7°C, P = 0.002), and to a lesser extent, rectal temperature (ΔT = -0.3 ± 0.1°C, P = 0.03) were observed. Exploratory analysis showed that the occipital lobes had the greatest reduction in temperature (ΔT = -1.5 ± 1.2°C, P = 0.002). Regions of infarction had similar temperature reductions to the contralateral normal brain. Future research could investigate the feasibility of head cooling as a potential neuroprotective strategy in patients being considered for acute stroke therapies.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Catherine A Morgan
- Centre for Advanced MRI, The University of Auckland, Auckland, New Zealand.,School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Michael Tm Wang
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Sulaiman Sheriff
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Doug Campbell
- Department of Anaesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
27
|
Gao J, Cheng Z, Jiang S, Wills M, Wehbe A, Rajah GB, Geng X, Ding Y. Arterial Glyceryl Trinitrate in Acute Ischemic Stroke after Thrombectomy for Neuroprotection (AGAIN): Rationale, design and protocol for a prospective randomized controlled trial. BMC Geriatr 2022; 22:804. [PMID: 36253714 PMCID: PMC9575243 DOI: 10.1186/s12877-022-03506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although endovascular recanalization therapy demonstrates robust clinical efficacy in acute ischemic stroke (AIS), not all victims of these cerebrovascular accidents can benefit from it and achieve a favorable prognosis after successful reperfusion. Therefore, alternative neuroprotective strategies are urgently needed for AIS patients after vessel recanalization. Nitric oxide (NO) levels are low after AIS and NO donor drugs may be neuroprotective against cerebral ischemia–reperfusion injury. Glyceryl trinitrate (GTN), often used in the clinic as a NO donor, may provide a novel neuroprotective strategy. This rationale, design, and protocol for a prospective pilot study plans to explore the preliminary safety, feasibility, and neuroprotective benefits of Arterial Glyceryl Trinitrate in Acute Ischemic Stroke after Thrombectomy for Neuroprotection (AGAIN). Methods AGAIN, a prospective RCT, is proposed for AIS patients after mechanical thrombectomy. Subjects will be randomly assigned in a 1:1 fashion (n = 40) to either the control group or the intervention group. Participants assigned to the intervention group will be administered 800 μg GTN in the catheter immediately after recanalization, whereas those in the control group will be administered the same volume of normal saline. All participants from either group will be given concurrent treatment with standard of care therapies in accordance with the current guidelines for stroke management. The primary outcome is safety [symptomatic intracranial hemorrhage (ICH), hypotension, neurological deterioration, ICH, fatal ICH, as well as headache, tachycardia, emesis, and seizures], whereas secondary outcomes included changes in poststroke functional outcomes, infarction volumes, and blood nitrate index detection. Discussions This study is a prospective randomized controlled trial to test the safety and efficacy of intra-arterial GTN in AIS patients after endovascular therapy. The results from this study will give insight for future GTN studies and new neuroprotective strategies for future AIS treatment strategies. Trial registration number ChiCTR2100045254. Registered on March 21, 2021.
Collapse
Affiliation(s)
- Jie Gao
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Zhe Cheng
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Shangqian Jiang
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.,Luhe Institute of Neuroscience, Capital Medical University, Beijing, 101100, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02138, USA
| | - Gary B Rajah
- Department of Neurosurgery, Munson Healthcare, Traverse City, MI, USA.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, Department of Neurosurgery, University at Buffalo, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
| | - Xiaokun Geng
- Department of Neurology and Stroke Center, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China. .,Luhe Institute of Neuroscience, Capital Medical University, Beijing, 101100, China.
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
28
|
You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol 2022; 13:951586. [PMID: 36262833 PMCID: PMC9575992 DOI: 10.3389/fneur.2022.951586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has shown promise as a means to improving neurological outcomes at several neurological conditions. At the clinical level, it has been shown to improve outcomes in comatose survivors of cardiac arrest and in neonatal hypoxic ischemic encephalopathy, but has yet to be convincingly demonstrated in stroke. While numerous preclinical studies have shown benefit in stroke models, translating this to the clinical level has proven challenging. Major obstacles include cooling patients with typical stroke who are awake and breathing spontaneously but often have significant comorbidities. Solutions around these problems include selective brain cooling and cooling to lesser depths or avoiding hyperthermia. This review will cover the mechanisms of protection by therapeutic hypothermia, as well as recent progress made in selective brain cooling and the neuroprotective effects of only slightly lowering brain temperature. Therapeutic hypothermia for stroke has been shown to be feasible, but has yet to be definitively proven effective. There is clearly much work to be undertaken in this area.
Collapse
Affiliation(s)
- Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, The San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Midori A. Yenari
| |
Collapse
|
29
|
Jiang M, Li M, Gao Y, Wu L, Zhao W, Li C, Hou C, Qi Z, Wang K, Zheng S, Yin Z, Wu C, Ji X. The intra-arterial selective cooling infusion system: A mathematical temperature analysis and in vitro experiments for acute ischemic stroke therapy. CNS Neurosci Ther 2022; 28:1303-1314. [PMID: 35702957 PMCID: PMC9344093 DOI: 10.1111/cns.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION The neuroprotection of acute ischemic stroke patients can be achieved by intra-arterial selective cooling infusion using cold saline, which can decrease brain temperature without influencing the body core temperature. This approach can lead to high burdens on the heart and decreased hematocrit in the scenario of loading a high amount of liquid for longtime usage. Therefore, autologous blood is utilized as perfusate to circumvent those side effects. METHODS In this study, a prototype instrument with an autologous blood cooling system was developed and further evaluated by a mathematical model for brain temperature estimation. RESULTS Hypothermia could be achieved due to the adequate cooling capacity of the prototype system, which could provide the lowest cooling temperature into the blood vessel of 10.5°C at 25 rpm (209.7 ± 0.8 ml/min). And, the core body temperature did not alter significantly (-0.7 ~ -0.2°C) after 1-h perfusion. The cooling rate and temperature distributions of the brain were analyzed, which showed a 2°C decrease within the initial 5 min infusion by 44 ml/min and 13.7°C perfusate. CONCLUSION This prototype instrument system could safely cool simulated blood in vitro and reperfuse it to the target cerebral blood vessel. This technique could promote the clinical application of an autologous blood perfusion system for stroke therapy.
Collapse
Affiliation(s)
- Miaowen Jiang
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ming Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuan Gao
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Longfei Wu
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wenbo Zhao
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chuanhui Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chengbei Hou
- Center for Evidence‐Based Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhengfei Qi
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Kun Wang
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Shiqiang Zheng
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Zhichen Yin
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Chuanjie Wu
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- BUAA‐CCMU Advanced Innovation Center for Big Data‐based Precision MedicineBeihang UniversityBeijingChina
| |
Collapse
|
30
|
Horn M, Diprose WK, Pichardo S, Demchuk A, Almekhlafi M. Non-invasive Brain Temperature Measurement in Acute Ischemic Stroke. Front Neurol 2022; 13:889214. [PMID: 35989905 PMCID: PMC9388770 DOI: 10.3389/fneur.2022.889214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Selective therapeutic hypothermia in the setting of mechanical thrombectomy (MT) is promising to further improve the outcomes of large vessel occlusion stroke. A significant limitation in applying hypothermia in this setting is the lack of real-time non-invasive brain temperature monitoring mechanism. Non-invasive brain temperature monitoring would provide important information regarding the brain temperature changes during cooling, and the factors that might influence any fluctuations. This review aims to provide appraisal of brain temperature changes during stroke, and the currently available non-invasive modalities of brain temperature measurement that have been developed and tested over the past 20 years. We cover modalities including magnetic resonance spectroscopy imaging (MRSI), radiometric thermometry, and microwave radiometry, and the evidence for their accuracy from human and animal studies. We also evaluate the feasibility of using these modalities in the acute stroke setting and potential ways for incorporating brain temperature monitoring in the stroke workflow.
Collapse
Affiliation(s)
- MacKenzie Horn
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: MacKenzie Horn
| | - William K Diprose
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Samuel Pichardo
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Andrew Demchuk
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Mohammed Almekhlafi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Hong JM, Choi ES, Park SY. Selective Brain Cooling: A New Horizon of Neuroprotection. Front Neurol 2022; 13:873165. [PMID: 35795804 PMCID: PMC9251464 DOI: 10.3389/fneur.2022.873165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and ischemic brain damage, has been proven effective for preventing ischemia-reperfusion injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal studies and clinical trials. However, lowering the whole-body temperature below 34°C can lead to severe systemic complications such as cardiac, hematologic, immunologic, and metabolic side effects. Although the brain accounts for only 2% of the total body weight, it consumes 20% of the body's total energy at rest and requires a continuous supply of glucose and oxygen to maintain function and structural integrity. As such, theoretically, temperature-controlled selective brain cooling (SBC) may be more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods have been introduced to selectively cool the brain while minimizing systemic TH-related complications. However, technical setbacks of conventional SBCs, such as insufficient cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal interfaces, limit its application to various clinical settings. This review aimed to integrate current literature on SBC modalities with promising therapeutic potential. Further, future directions were discussed by exploring studies on interesting coping skills in response to environmental or stress-induced hyperthermia among wild animals, including mammals and birds.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- *Correspondence: Ji Man Hong
| | - Eun Sil Choi
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
32
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
33
|
Jiang M, Gao Y, Wu C, Wu L, Tang S, Yin Z, Li A, Wang K, Zheng S, Lee H, Ding Y, Li M, Ji X. The blood heat exchanger in intra-arterial selective cooling infusion for acute ischemic stroke: A computational fluid-thermodynamics performance, experimental assessment and evaluation on the brain temperature. Comput Biol Med 2022; 145:105497. [DOI: 10.1016/j.compbiomed.2022.105497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
34
|
Wang X, Wehbe A, Kaura S, Chaudhry N, Geng X, Ding Y. Updates on Selective Brain Hypothermia: Studies From Bench Work to Clinical Trials. Front Neurol 2022; 13:899547. [PMID: 35599727 PMCID: PMC9120368 DOI: 10.3389/fneur.2022.899547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombectomy or thrombolysis are the current standards of care for acute ischemic stroke (AIS), however, due to time constraints regarding operations and a multitude of contraindications, AIS remains one of the leading causes of death and chronic disability worldwide. In recent years, therapeutic hypothermia has been explored as an adjuvant therapy for AIS treatment and has shown potential to improve outcomes in patients with AIS. In particular, selective therapeutic hypothermia has shown to markedly reduce infarct volumes and have neuroprotective effects, while also minimizing many systemic side effects seen with systemic therapeutic hypothermia. Both preclinical and clinical trials have demonstrated that selective therapeutic hypothermia is a safe and feasible therapy for patients who have suffered an AIS. In this review, we summarize the current update on selective hypothermia through major studies that have been conducted in rodents, large animals, and clinical trials, and briefly discuss the prospects of selective hypothermic research. We hope this review helps facilitate the exploration of other possible adjuvant treatment modalities in the neuroprotection of ischemic stroke, whether upon symptom onset or after vascular recanalization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shawn Kaura
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Naveed Chaudhry
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Yuchuan Ding
| |
Collapse
|
35
|
Grayston A, Zhang Y, Garcia-Gabilondo M, Arrúe M, Martin A, Kopcansky P, Timko M, Kovac J, Strbak O, Castellote L, Belloli S, Moresco RM, Picchio M, Roig A, Rosell A. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. J Cereb Blood Flow Metab 2022; 42:237-252. [PMID: 34229512 PMCID: PMC9122522 DOI: 10.1177/0271678x211028816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.
Collapse
Affiliation(s)
- Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Yajie Zhang
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Abraham Martin
- Achucarro Basque Center for Neuroscience, Laboratory of Neuroimaging and Biomarkers of Inflammation, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Peter Kopcansky
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Milan Timko
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Jozef Kovac
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Belloli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Medicine and Surgery, University of Milano - Bicocca, Monza (MB), Italy
| | - Maria Picchio
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Roig
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| |
Collapse
|
36
|
Fu B, Cheng Y, Shang C, Li J, Wang G, Zhang C, Sun J, Ma J, Ji X, He B. Optical ultrasound sensors for photoacoustic imaging: a narrative review. Quant Imaging Med Surg 2022; 12:1608-1631. [PMID: 35111652 DOI: 10.21037/qims-21-605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Optical ultrasound sensors have been increasingly employed in biomedical diagnosis and photoacoustic imaging (PAI) due to high sensitivity and resolution. PAI could visualize the distribution of ultrasound excited by laser pulses in biological tissues. The information of tissues is detected by ultrasound sensors in order to reconstruct structural images. However, traditional ultrasound transducers are made of piezoelectric films that lose sensitivity quadratically with the size reduction. In addition, the influence of electromagnetic interference limits further applications of traditional ultrasound transducers. Therefore, optical ultrasound sensors are developed to overcome these shortcomings. In this review, optical ultrasound sensors are classified into resonant and non-resonant ones in view of physical principles. The principles and basic parameters of sensors are introduced in detail. Moreover, the state of the art of optical ultrasound sensors and applications in PAI are also presented. Furthermore, the merits and drawbacks of sensors based on resonance and non-resonance are discussed in perspectives. We believe this review could provide researchers with a better understanding of the current status of optical ultrasound sensors and biomedical applications.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Yuan Cheng
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gang Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Chenghong Zhang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Xunming Ji
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| |
Collapse
|
37
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Wang L, Wu L, Duan Y, Xu S, Yang Y, Yin J, Lang Y, Gao Z, Wu C, Lv Z, Shi J, Wu D, Ji X. Phenotype Shifting in Astrocytes Account for Benefits of Intra-Arterial Selective Cooling Infusion in Hypertensive Rats of Ischemic Stroke. Neurotherapeutics 2022; 19:386-398. [PMID: 35044645 PMCID: PMC9130426 DOI: 10.1007/s13311-022-01186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
The translational failure of neuroprotective therapies in stroke may be influenced by the mismatch of existing comorbidities between animal models and patients. Previous studies found that single-target neuroprotective agents reduced infarction in Sprague-Dawley but not in spontaneously hypertensive rats. It is of great interest to explore whether multi-target neuroprotectants and stroke models with comorbidities should be used in further translational researches. Ischemic stroke was induced in normotensive or hypertensive rats by 90- or 120-min middle cerebral artery occlusion (MCAO) and reperfusion. Intra-Arterial Selective Cooling Infusion (IA-SCI) was started at the onset of reperfusion for 30 minutes. Acute neurological deficits, infarct volumes, gene expression and markers of A1-like and A2-like astrocytes were evaluated. In further analysis, TNFα and IL-1α were administrated intracerebroventricularly, phenotype shifting of astrocytes and infarct volumes were assessed. Normobaric oxygen treatment, as a negative control, was also assessed in hypertensive rats. IA-SCI led to similar benefits in normotensive rats with 120-min MCAO and hypertensive rats with both 90-min and 120-min MCAO, including mitigated functional deficit and reduced infarct volumes. IA-SCI shifted astrocyte phenotypes partly by downregulating A1-like astrocytes and upregulating A2-like astrocytes in both RNA and protein levels. Upregulated A1-type astrocyte markers levels, induced by intracerebroventricular injection of TNFα and IL-1α, were closely related to increased infarct volumes in hypertensive rats, despite receiving IA-SCI treatment. In addition, infarct volumes and A1/A2-like genes were not affected by normobaric oxygen treatment. IA-SCI reduced infarction in both normotensive and hypertensive rats. Our results demonstrated the neuroprotective effects of IA-SCI in hypertensive rats may be related with phenotype shifting of astrocytes.
Collapse
Affiliation(s)
- Luling Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuyao Yang
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jidong Yin
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ye Lang
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Zongen Gao
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zaigang Lv
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| |
Collapse
|
39
|
Jiang M, Li M, Gao Y, Yin Z, Ding Y, Zheng Y, Zheng S, Wu C, Li A, Fang J, Ji X. Design and evaluation of an air-insulated catheter for intra-arterial selective cooling infusion from numerical simulation and in vitro experiment. Med Eng Phys 2022; 99:103736. [DOI: 10.1016/j.medengphy.2021.103736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/13/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022]
|
40
|
Cattaneo GF, Herrmann AM, Eiden SA, Wieser M, Kellner E, Doostkam S, Süß P, Kiefer S, Fauth L, Maurer CJ, Wolfertz J, Nitzsche B, Büchert M, Jost T, Ihorst G, Haberstroh J, Mülling C, Strecker C, Niesen WD, Shah MJ, Urbach H, Boltze J, Meckel S. Selective intra-carotid blood cooling in acute ischemic stroke: A safety and feasibility study in an ovine stroke model. J Cereb Blood Flow Metab 2021; 41:3097-3110. [PMID: 34159825 PMCID: PMC8756475 DOI: 10.1177/0271678x211024952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective therapeutic hypothermia (TH) showed promising preclinical results as a neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of an intracarotid cooling catheter conceived for fast and selective brain cooling during endovascular thrombectomy in an ovine stroke model.Transient middle cerebral artery occlusion (MCAO, 3 h) was performed in 20 sheep. In the hypothermia group (n = 10), selective TH was initiated 20 minutes before recanalization, and was maintained for another 3 h. In the normothermia control group (n = 10), a standard 8 French catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity (histopathology, both safety). Secondary endpoints were neurological outcome and infarct volumes.Computed tomography perfusion demonstrated MCA territory hypoperfusion during MCAO in both groups. Intranasal temperature decreased by 1.1 °C/3.1 °C after 10/60 minutes in the TH group and 0.3 °C/0.4 °C in the normothermia group (p < 0.001). Carotid artery and branching vessel patency as well as carotid wall integrity was indifferent between groups. Infarct volumes (p = 0.74) and neurological outcome (p = 0.82) were similar in both groups.Selective TH was feasible and safe. However, a larger number of subjects might be required to demonstrate efficacy.
Collapse
Affiliation(s)
- Giorgio Fm Cattaneo
- Institute for Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andrea M Herrmann
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany.,Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian A Eiden
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuela Wieser
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of MR Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Department of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Süß
- Department of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Selina Kiefer
- Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Fauth
- Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph J Maurer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Universitätsklinikum Augsburg, Augsburg, Germany
| | | | - Björn Nitzsche
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | | | | | - Gabriele Ihorst
- Department of Clinical Trials, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jörg Haberstroh
- Center for Experimental Models and Transgenic Service (CEMT), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Mülling
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Christoph Strecker
- Department of Neurology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mukesch J Shah
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Boltze
- School of Live Sciences, University of Warwick, Coventry, UK
| | - Stephan Meckel
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuroradiology, Kepler University Hospital, Johannes Kepler University Linz, Austria
| |
Collapse
|
41
|
Neuroprotection in Acute Ischemic Stroke: A Brief Review. Can J Neurol Sci 2021; 49:741-745. [PMID: 34526172 DOI: 10.1017/cjn.2021.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The goal of effective neuroprotection in acute ischemic stroke remains elusive. Despite decades of experimental preclinical and clinical experience with innumerable agents, no strategy has proven to be beneficial in humans. As endovascular therapies mature and approach the limits of speed and efficacy, neuroprotection will become the next frontier of acute stroke care. This review will briefly summarize the history, preclinical and clinical triumphs and failures, and future directions of cerebral neuroprotection.
Collapse
|
42
|
Bala F, Ospel J, Mulpur B, Kim BJ, Yoo J, Menon BK, Goyal M, Federau C, Sohn SI, Hussain MS, Almekhlafi MA. Infarct Growth despite Successful Endovascular Reperfusion in Acute Ischemic Stroke: A Meta-analysis. AJNR Am J Neuroradiol 2021; 42:1472-1478. [PMID: 34083260 DOI: 10.3174/ajnr.a7177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Infarct volume inversely correlates with good recovery in stroke. The magnitude and predictors of infarct growth despite successful reperfusion via endovascular treatment are not known. PURPOSE We aimed to summarize the extent of infarct growth in patients with acute stroke who achieved successful reperfusion (TICI 2b-3) after endovascular treatment. DATA SOURCES We performed a systematic review and meta-analysis by searching MEDLINE and Google Scholar for articles published up to October 31, 2020. STUDY SELECTION Studies of >10 patients reporting baseline and post-endovascular treatment infarct volumes on MR imaging were included. Only patients with TICI 2b-3 were included. We calculated infarct growth at a study level as the difference between baseline and follow-up MR imaging infarct volumes. DATA ANALYSIS Our search yielded 345 studies, and we included 10 studies reporting on 973 patients having undergone endovascular treatment who achieved successful reperfusion. DATA SYNTHESIS The mean baseline infarct volume was 19.5 mL, while the mean final infarct volume was 37.5 mL. A TICI 2b reperfusion grade was achieved in 24% of patients, and TICI 2c or 3 in 76%. The pooled mean infarct growth was 14.8 mL (95% CI, 7.9-21.7 mL). Meta-regression showed higher infarct growth in studies that reported higher baseline infarct volumes, higher rates of incomplete reperfusion (modified TICI 2b), and longer onset-to-reperfusion times. LIMITATIONS Significant heterogeneity among studies was noted and might be driven by the difference in infarct growth between early- and late-treatment studies. CONCLUSIONS These results suggest considerable infarct growth despite successful endovascular treatment reperfusion and call for a faster workflow and the need for specific therapies to limit infarct growth.
Collapse
Affiliation(s)
- F Bala
- From the Calgary Stroke Program (F.B., J.O., B.K.M., M.G., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences (F.B., B.K.M., M.A.A.), University of Calgary, Calgary, Alberta, Canada
| | - J Ospel
- From the Calgary Stroke Program (F.B., J.O., B.K.M., M.G., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroradiology, Clinic of Radiology, and Nuclear Medicine (J.O.), University Hospital Basel, Basel, Switzerland
| | - B Mulpur
- Cerebrovascular Center and Department of Neurology (B.M., M.S.H.), Neurological Institute, Cleveland Clinic, Ohio
| | - B J Kim
- Department of Neurology and Cerebrovascular Center (B.J.K.), Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - J Yoo
- Yonsei University College of Medicine (J.Y.), Yongin Severance Hospital, Yongin, Korea
| | - B K Menon
- From the Calgary Stroke Program (F.B., J.O., B.K.M., M.G., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences (F.B., B.K.M., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Radiology (B.K.M., M.A.A.), University of Calgary, Calgary, Alberta, Canada
| | - M Goyal
- From the Calgary Stroke Program (F.B., J.O., B.K.M., M.G., M.A.A.), University of Calgary, Calgary, Alberta, Canada
| | - C Federau
- Institute for Biomedical Engineering (C.F.), Swiss Federal Institute of Technology in Zürich, Zürich, Switzerland
| | - S-I Sohn
- Department of Neurology (S.-I.S.), Keimyung University School of Medicine, Daegu, Korea
| | - M S Hussain
- Cerebrovascular Center and Department of Neurology (B.M., M.S.H.), Neurological Institute, Cleveland Clinic, Ohio
| | - M A Almekhlafi
- From the Calgary Stroke Program (F.B., J.O., B.K.M., M.G., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences (F.B., B.K.M., M.A.A.), University of Calgary, Calgary, Alberta, Canada
- Department of Radiology (B.K.M., M.A.A.), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Abstract
We search for ischemic stroke treatment knowing we have failed-intensely and often-to translate mechanistic knowledge into treatments that alleviate our patients' functional impairments. Lessons can be derived from our shared failures that may point to new directions and new strategies. First, the principle criticisms of both preclinical and clinical assessments are summarized. Next, previous efforts to develop single-mechanism treatments are reviewed. Finally, new definitions, novel approaches, and different directions are presented. In previous development efforts, the basic science and preclinical assessment of candidate treatments often lacked rigor and sufficiency; the clinical trials may have lacked power, rigor, or rectitude; or most likely both preclinical and clinical investigations were flawed. Single-target agents directed against specific molecular mechanisms proved unsuccessful. The term neuroprotection should be replaced as it has become ambiguous: protection of the entire neurovascular unit may be called cerebral cytoprotection or cerebroprotection. Success in developing cerebroprotection-either as an adjunct to recanalization or as stand-alone treatment-will require new definitions that recognize the importance of differential vulnerability in the neurovascular unit. Recent focus on pleiotropic multi-target agents that act via multiple mechanisms of action to interrupt ischemia at multiple steps may be more fruitful. Examples of pleiotropic treatments include therapeutic hypothermia and 3K3A-APC (activated protein C). Alternatively, the single-target drug NA-1 triggers multiple downstream signaling events. Renewed commitment to scientific rigor is essential, and funding agencies and journals may enforce quality principles of rigor in preclinical science. Appropriate animal models should be selected that are suited to the purpose of the investigation. Before clinical trials, preclinical assessment could include subjects that are aged, of both sexes, and harbor comorbid conditions such as diabetes or hypertension. With these new definitions, novel approaches, and renewed attention to rigor, the prospect for successful cerebroprotective therapy should improve.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Department of Neurology, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
44
|
Hartmann C, Winzer S, Pallesen LP, Prakapenia A, Siepmann T, Moustafa H, Theilen H, Barlinn J, Gerber JC, Linn J, Reichmann H, Barlinn K, Puetz V. Inadvertent hypothermia after endovascular therapy is not associated with improved outcome in stroke due to anterior circulation large vessel occlusion. Eur J Neurol 2021; 28:2479-2487. [PMID: 33973292 DOI: 10.1111/ene.14906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Hypothermia may be neuroprotective in acute ischemic stroke. Patients with anterior circulation large vessel occlusion (acLVO) are frequently hypothermic after endovascular therapy (EVT). We sought to determine whether this inadvertent hypothermia is associated with improved outcome. METHODS We extracted data of consecutive patients (January 2016 to May 2019) who received EVT for acLVO from our prospective EVT register of all patients screened for EVT at our tertiary stroke center. We assessed functional outcome at 3 months and performed multivariate analysis to calculate adjusted risk ratios (aRRs) for favorable outcome (modified Rankin Scale scores = 0-2) and mortality across patients who were hypothermic (<36°C) and patients who were normothermic (≥36°C to <37.6°C) after EVT. Moreover, we compared the frequency of complications between these groups. RESULTS Among 837 patients screened, 416 patients received EVT for acLVO and fulfilled inclusion criteria (200 [48.1%] male, mean age = 76 ± 16 years, median National Institutes of Health Stroke Scale score = 16, interquartile range [IQR] = 12-20). Of these, 209 patients (50.2%) were hypothermic (median temperature = 35.2°C, IQR = 34.7-35.7) and 207 patients were normothermic (median temperature = 36.4°C, IQR = 36.1-36.7) after EVT. In multivariate analysis, hypothermia was not associated with favorable outcome (aRR = 0.99, 95% confidence interval [CI] = 0.75-1.31) and mortality (aRR = 1.18, 95% CI = 0.84-1.66). More hypothermic patients suffered from pneumonia (36.4% vs. 25.6%, p = 0.02) and bradyarrhythmia (52.6% vs. 16.4%, p < 0.001), whereas thromboembolic events were distributed evenly (5.7% vs. 6.8%, not significant). CONCLUSIONS Inadvertent hypothermia after EVT for acLVO is not associated with improved functional outcome or reduced mortality but is associated with an increased rate of pneumonia and bradyarrhythmia in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Christian Hartmann
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Simon Winzer
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Lars-Peder Pallesen
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Alexandra Prakapenia
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Timo Siepmann
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Haidar Moustafa
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Hermann Theilen
- Department of Anesthesiology, Technische Universität Dresden, Dresden, Germany
| | - Jessica Barlinn
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Johannes C Gerber
- Institute of Neuroradiology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Neuroradiology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Kristian Barlinn
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| | - Volker Puetz
- Department of Neurology, Dresden Neurovascular Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
Rittenberger JC, Weissman A, Flickinger KL, Guyette FX, Hopkins D, Repine MJ, Dezfulian C, Doshi AA, Elmer J, Sawyer KN, Callaway CW. Glycopyrrolate does not ameliorate hypothermia associated bradycardia in healthy individuals: A randomized crossover trial. Resuscitation 2021; 164:79-83. [PMID: 34087418 DOI: 10.1016/j.resuscitation.2021.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypothermia improves outcomes following ischemia-reperfusion injury. Shivering is common and can be mediated by agents such as dexmedetomidine. The combination of dexmedetomidine and hypothermia results in bradycardia. We hypothesized that glycopyrrolate would prevent bradycardia during dexmedetomidine-mediated hypothermia. METHODS We randomly assigned eight healthy subjects to premedication with a single 0.4 mg glycopyrrolate intravenous (IV) bolus, titrated glycopyrrolate (0.01 mg IV every 3 min as needed for heart rate <50), or no glycopyrrolate during three separate sessions of 3 h cooling. Following 1 mg/kg IV dexmedetomidine bolus, subjects received 20 ml/kg IV 4 °C saline and surface cooling (EM COOLS, Weinerdorf, Austria). We titrated dexmedetomidine infusion to suppress shivering but permit arousal to verbal stimuli. After 3 h of cooling, we allowed subjects to passively rewarm. We compared heart rate, core temperature, mean arterial blood pressure, perceived comfort and thermal sensation between groups using Kruskal-Wallis test and ANOVA. RESULTS Mean age was 27 (SD 6) years and most (N = 6, 75%) were male. Neither heart rate nor core temperature differed between the groups during maintenance of hypothermia (p > 0.05). Mean arterial blood pressure was higher in the glycopyrrolate bolus condition (p < 0.048). Thermal sensation was higher in the control condition than the glycopyrrolate bolus condition (p = 0.01). Bolus glycopyrrolate resulted in less discomfort than titrated glycopyrrolate (p = 0.04). CONCLUSIONS Glycopyrrolate did not prevent the bradycardic response to hypothermia and dexmedetomidine. Mean arterial blood pressure was higher in subjects receiving a bolus of glycopyrrolate before induction of hypothermia. Bolus glycopyrrolate was associated with less intense thermal sensation and less discomfort during cooling.
Collapse
Affiliation(s)
- Jon C Rittenberger
- Robert Packer Hospital Emergency Medicine Residency, Sayre, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States; University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States.
| | - Alexandra Weissman
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - Katharyn L Flickinger
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - Francis X Guyette
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - David Hopkins
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Melissa J Repine
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - Cameron Dezfulian
- University of Pittsburgh Department of Critical Care Medicine, Pittsburgh, PA, United States
| | - Ankur A Doshi
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - Jonathan Elmer
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States; University of Pittsburgh Department of Critical Care Medicine, Pittsburgh, PA, United States
| | - Kelly N Sawyer
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| | - Clifton W Callaway
- University of Pittsburgh Department of Emergency Medicine, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Wu L, Wu D, Chen J, Chen C, Yao T, He X, Ma Y, Zhi X, Liu R, Ji X. Intranasal salvinorin A improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J Cereb Blood Flow Metab 2021; 41:723-730. [PMID: 32615886 PMCID: PMC7983500 DOI: 10.1177/0271678x20938137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salvinorin A (SA) exerts neuroprotection and improves neurological outcomes in ischemic stroke models in rodents. In this study, we investigated whether intranasal SA administration could improve neurological outcomes in a monkey ischemic stroke model. The stroke model was induced in adult male rhesus monkeys by occluding the middle cerebral artery M2 segment with an autologous blood clot. Eight adult rhesus monkeys were randomly administered SA or 10% dimethyl sulfoxide as control 20 min after ischemia. Magnetic resonance imaging was used to confirm the ischemia and extent of injury. Neurological function was evaluated using the Non-Human Primate Stroke Scale (NHPSS) over a 28-day observation period. SA significantly reduced infarct volume (3.9 ± 0.7 cm3 vs. 7.2 ± 1.0 cm3; P = 0.002), occupying effect (0.3 ± 0.2% vs. 1.4 ± 0.3%; P = 0.002), and diffusion limitation in the lesion (-28.2 ± 11.0% vs. -51.5 ± 7.1%; P = 0.012) when compared to the control group. SA significantly reduced the NHPSS scores to almost normal in a 28-day observation period as compared to the control group (P = 0.005). Intranasal SA reduces infarct volume and improves neurological outcomes in a rhesus monkey ischemic stroke model using autologous blood clot.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianqi Yao
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanqin Ma
- Nhwa Pharmaceutical Co. Ltd., Xuzhou, China
| | - Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Renyu Liu, Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
47
|
Matei N, Camara J, Zhang JH. The Next Step in the Treatment of Stroke. Front Neurol 2021; 11:582605. [PMID: 33551950 PMCID: PMC7862333 DOI: 10.3389/fneur.2020.582605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Although many patients do not receive reperfusion therapy because of delayed presentation and/or severity and location of infarct, new reperfusion approaches are expanding the window of intervention. Novel application of neuroprotective agents in combination with the latest methods of reperfusion provide a path to improved stroke intervention outcomes. We examine why neuroprotective agents have failed to translate to the clinic and provide suggestions for new approaches. New developments in recanalization therapy in combination with therapeutics evaluated in parallel animal models of disease will allow for novel, intra-arterial deployment of therapeutic agents over a vastly expanded therapeutic time window and with greater likelihood success. Although the field of neuronal, endothelial, and glial protective therapies has seen numerous large trials, the application of therapies in the context of newly developed reperfusion strategies is still in its infancy. Given modern imaging developments, evaluation of the penumbra will likely play a larger role in the evolving management of stroke. Increasingly more patients will be screened with neuroimaging to identify patients with adequate collateral blood supply allowing for delayed rescue of the penumbra. These patients will be ideal candidates for therapies such as reperfusion dependent therapeutic agents that pair optimally with cutting-edge reperfusion techniques.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Justin Camara
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
48
|
Liddle LJ, Dirks CA, Fedor BA, Almekhlafi M, Colbourne F. A Systematic Review and Meta-Analysis of Animal Studies Testing Intra-Arterial Chilled Infusates After Ischemic Stroke. Front Neurol 2021; 11:588479. [PMID: 33488495 PMCID: PMC7815528 DOI: 10.3389/fneur.2020.588479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g., pneumonia risk with whole-body cooling). Some problems may be avoided with brain-specific methods, such as intra-arterial selective cooling infusion (IA-SCI) into the arteries supplying the ischemic tissue. Objective: Our research question was about the efficacy of IA-SCI in animal middle cerebral artery occlusion models. We hypothesized that IA-SCI would be beneficial, but translationally-relevant study elements may be missing (e.g., aged animals). Methods: We completed a systematic review of the PubMed database following the PRISMA guidelines on May 21, 2020 for animal studies that administered IA-SCI in the peri-reperfusion period and assessed infarct volume, behavior (primary meta-analytic endpoints), edema, or blood-brain barrier injury (secondary endpoints). Our search terms included: "focal ischemia" and related terms, "IA-SCI" and related terms, and "animal" and related terms. Nineteen studies met inclusion criteria. We adapted a methodological quality scale from 0 to 12 for experimental design assessment (e.g., use of blinding/randomization, a priori sample size calculations). Results: Studies were relatively homogenous (e.g., all studies used young, healthy animals). Some experimental design elements, such as blinding, were common whereas others, such as sample size calculations, were infrequent (median methodological quality score: 5; range: 2-7). Our analyses revealed that IA-SCI provides benefit on all endpoints (mean normalized infarct volume reduction = 23.67%; 95% CI: 19.21-28.12; mean normalized behavioral improvement = 35.56%; 95% CI: 25.91-45.20; mean standardized edema reduction = 0.95; 95% CI: 0.56-1.34). Unfortunately, blood-brain barrier assessments were uncommon and could not be analyzed. However, there was substantial statistical heterogeneity and relatively few studies. Therefore, exploration of heterogeneity via meta-regression using saline infusion parameters, study quality, and ischemic duration was inconclusive. Conclusion: Despite convincing evidence of benefit in ischemic stroke models, additional studies are required to determine the scope of benefit, especially when considering additional elements (e.g., dosing characteristics). As there is interest in using this treatment alongside current ischemic stroke therapies, more relevant animal studies will be critical to inform patient studies.
Collapse
Affiliation(s)
- Lane J. Liddle
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | - Brittany A. Fedor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Kühn AL, Vardar Z, Kraitem A, King RM, Anagnostakou V, Puri AS, Gounis MJ. Biomechanics and hemodynamics of stent-retrievers. J Cereb Blood Flow Metab 2020; 40:2350-2365. [PMID: 32428424 PMCID: PMC7820689 DOI: 10.1177/0271678x20916002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022]
Abstract
In 2015, multiple randomized clinical trials showed an unparalleled treatment benefit of stent-retriever thrombectomy as compared to standard medical therapy for the treatment of a large artery occlusion causing acute ischemic stroke. A short time later, the HERMES collaborators presented the patient-level pooled analysis of five randomized clinical trials, establishing class 1, level of evidence A for stent-retriever thrombectomy, in combination with intravenous thrombolysis when indicated to treat ischemic stroke. In the years following, evidence continues to mount for expanded use of this therapy for a broader category of patients. The enabling technology that changed the tide to support endovascular treatment of acute ischemic stroke is the stent-retriever. This review summarizes the history of intra-arterial treatment of stroke, introduces the biomechanics of embolus extraction with stent-retrievers, describes technical aspects of the intervention, provides a description of hemodynamic implications of stent-retriever embolectomy, and proposes future directions for a more comprehensive, multi-modal endovascular approach for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Anna Luisa Kühn
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zeynep Vardar
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Afif Kraitem
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert M King
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vania Anagnostakou
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ajit S Puri
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Wu L, Huber M, Wu D, Chen J, Li M, Ding Y, Ji X. Intra-arterial Cold Saline Infusion in Stroke: Historical Evolution and Future Prospects. Aging Dis 2020; 11:1527-1536. [PMID: 33269105 PMCID: PMC7673854 DOI: 10.14336/ad.2020.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 01/04/2023] Open
Abstract
Acute ischemic stroke (AIS) is a perpetual threat to life and functionality due to its high morbidity and mortality. In the past several decades, therapeutic hypothermia has garnered interest as an effective neuroprotective method in the setting of AIS. However, traditional hypothermic methods have been criticized for their low cooling efficiency and side effects. Intra-arterial cold saline infusion (IA-CSI), as a novel hypothermic method, not only minimizes these side effects, but is also perfectly integrated with widely accepted recanalization modalities in AIS, thereby serving as a promising prospect for clinical translation. In this article, we review the historical development of IA-CSI, summarize major studies of IA-CSI in rodents, large animals, and humans to date, and suggest insight into future development prospects in the field of AIS. We hope that this article will provide inspiration for the future application of hypothermia in AIS patients.
Collapse
Affiliation(s)
- Longfei Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mitchell Huber
- 2Department of Emergency Medicine, Ascension St. John Hospital, Detroit, MI, USA
| | - Di Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|