1
|
Lin R, Zhang JJ, Zhong L, Chan SSY, Kwong PWH, Lorentz L, Shaikh UJ, Lam TLH, Mehler DMA, Fong KNK. Does repetitive transcranial magnetic stimulation have a beneficial effect on improving unilateral spatial neglect caused by stroke? A meta-analysis. J Neurol 2024; 271:6494-6507. [PMID: 39196395 PMCID: PMC11446973 DOI: 10.1007/s00415-024-12612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
This review aimed to assess the effect of repetitive transcranial magnetic stimulation (rTMS) in improving post-stroke unilateral spatial neglect (USN) using a meta-analysis. Further, we aimed to identify any association between rTMS parameters, patient demographics, and treatment effect sizes using subgroup analyses and meta-regression. A literature search was conducted through four databases from inception to March 6, 2024, to retrieve all relevant controlled trials investigating the effects of rTMS on symptoms of USN in post-stroke patients. Overall, rTMS significantly improved post-stroke USN, as measured by the line bisection test (Hedges' g = - 1.301, p < 0.0001), the cancelation test (Hedge's g = - 1.512, p < 0.0001), and the Catherine Bergego Scale (Hedges'g = - 0.770, p < 0.0001), compared to sham stimulation. Subgroup analysis found that generally larger effect sizes following excitatory rTMS across several outcome measures, indicating that excitatory rTMS on the ipsilesional hemisphere may be more effective than inhibitory rTMS on the contralesional hemisphere in ameliorating neglect symptoms. Meta-regression analysis of the line bisection test showed a significant difference in the chronicity of stroke patients, suggesting that rTMS may be more effective for USN in patients at the acute stage (within 3 months since stroke) than in those at the post-acute stage (p = 0.035). In conclusion, rTMS appears to be effective in promoting recovery from post-stroke USN. Excitatory protocols and early intervention may enhance recovery outcomes for neglect behaviors in post-stroke survivors.
Collapse
Affiliation(s)
- Ruixuan Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - Lingling Zhong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Sofina S Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Lukas Lorentz
- Division of Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Usman Jawed Shaikh
- Division of Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tommy L H Lam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - David M A Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
2
|
Middag-van Spanje M, Nijboer TCW, Schepers J, van Heugten C, Sack AT, Schuhmann T. Alpha transcranial alternating current stimulation as add-on to neglect training: a randomized trial. Brain Commun 2024; 6:fcae287. [PMID: 39301290 PMCID: PMC11411215 DOI: 10.1093/braincomms/fcae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Visuospatial neglect is a common and debilitating condition following unilateral stroke, significantly impacting cognitive functioning and daily life. There is an urgent need for effective treatments that can provide clinically relevant and sustained benefits. In addition to traditional stroke treatment, non-invasive brain stimulation, such as transcranial alternating current stimulation, shows promise as a complementary approach to enhance stroke recovery. In the current study, we aimed to evaluate the additive effects of multi-session transcranial alternating current stimulation at alpha frequency when combined with visual scanning training in chronic stroke patients with visuospatial neglect. In this double-blind randomized controlled trial, we compared the effects of active transcranial alternating current stimulation at alpha frequency to sham (placebo) transcranial alternating current stimulation, both combined with visual scanning training. Both groups received eighteen 40-minute training sessions over a 6-week period. A total of 22 chronic visuospatial neglect patients participated in the study (active group n = 12, sham group n = 10). The median age was 61.0 years, with a median time since stroke of 36.1 months. We assessed the patients at six time-points: at baseline, after the first, ninth and eighteenth training sessions, as well as 1 week and 3 months following the completion of the combined neuromodulation intervention. The primary outcome measure was the change in performance on a visual search task, specifically the star cancellation task. Secondary outcomes included performance on a visual detection task, two line bisection tasks and three tasks evaluating visuospatial neglect in daily living. We found significantly improved visual search (primary outcome) and visual detection performance in the neglected side in the active transcranial alternating current stimulation group, compared to the sham transcranial alternating current stimulation group. We did not observe stimulation effects on line bisection performance nor in daily living. Time effects were observed on all but one outcome measures. Multi-session transcranial alternating current stimulation combined with visual scanning training may be a more effective treatment for chronic visuospatial neglect than visual scanning training alone. These findings provide valuable insights into novel strategies for stroke recovery, even long after the injury, with the aim of enhancing cognitive rehabilitation outcomes and improving the overall quality of life for individuals affected by this condition. Trial registration: ClinicalTrials.gov; registration number: NCT05466487; https://clinicaltrials.gov/ct2/show/NCT05466487.
Collapse
Affiliation(s)
- Marij Middag-van Spanje
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- InteraktContour, 8070 AC Nunspeet, The Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, 3583 TM Utrecht, The Netherlands
| | - Jan Schepers
- Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Caroline van Heugten
- Limburg Brain Injury Center, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Jiang T, Wei X, Wang M, Xu J, Xia N, Lu M. Theta burst stimulation: what role does it play in stroke rehabilitation? A systematic review of the existing evidence. BMC Neurol 2024; 24:52. [PMID: 38297193 PMCID: PMC10832248 DOI: 10.1186/s12883-023-03492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Various post-stroke dysfunctions often result in poor long-term outcomes for stroke survivors, but the effect of conventional treatments is limited. In recent years, lots of studies have confirmed the effect of repetitive transcranial magnetic stimulation (rTMS) in stroke rehabilitation. As a new pattern of rTMS, theta burst stimulation (TBS) was proved recently to yield more pronounced and long-lasting after-effects than the conventional pattern at a shorter stimulation duration. To explore the role of TBS in stroke rehabilitation, this review summarizes the existing evidence from all the randomized controlled trials (RCTs) so far on the efficacy of TBS applied to different post-stroke dysfunctions, including cognitive impairment, visuospatial neglect, aphasia, dysphagia, spasticity, and motor dysfunction. Overall, TBS promotes the progress of stroke rehabilitation and may serve as a preferable alternative to traditional rTMS. However, it's hard to recommend a specific paradigm of TBS due to the limited number of current studies and their heterogeneity. Further high-quality clinical RCTs are needed to determine the optimal technical settings and intervention time in stroke survivors.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Lu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for Post-Stroke Motor Recovery: a Narrative Review of Invasive and Non‑Invasive Tools. Curr Neurol Neurosci Rep 2023; 23:893-906. [PMID: 38015351 DOI: 10.1007/s11910-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW Stroke remains a leading disabling condition, and many survivors have permanent disability despite acute stroke treatment and subsequent standard-of-care rehabilitation therapies. Adjunctive neuromodulation is an emerging frontier in the field of stroke recovery. In this narrative review, we aim to highlight and summarize various neuromodulation techniques currently being investigated to enhance recovery and reduce impairment in patients with stroke. RECENT FINDINGS For motor recovery, repetitive transcranial magnetic simulation (rTMS) and direct current stimulation (tDCS) have shown promising results in many smaller-scale trials. Still, their efficacy has yet to be proven in large-scale pivotal trials. A promising large-scale study investigating higher dose tDCS combined with constraint movement therapy to enhance motor recovery is currently underway. MRI-guided tDCS studies in subacute and chronic post-stroke aphasia showed promising benefits for picture-naming recovery. rTMS, particularly inhibitory stimulation over the contralesional homolog, could represent a pathway forward in post-stroke motor recovery in the setting of a well-designed and adequately powered clinical trial. Recently evidenced-based guideline actually supported Level A (definite efficacy) for the use of low-frequency rTMS of the primary motor cortex for hand motor recovery in the post-acute stage of stroke based on the meta-analysis result. Adjunctive vagal nerve stimulation has recently received FDA approval to enhance upper limb motor recovery in chronic ischemic stroke with moderate impairment, and progress has been made to implement it in real-world practice. Despite a few small and large-scale studies in epidural stimulation (EDS), further research on the utilization of EDS in post-stroke recovery is needed. Deep brain stimulation or stent-based neuromodulation has yet to be further tested regarding safety and efficacy. Adjunctive neuromodulation to rehabilitation therapy is a promising avenue for promoting post-stroke recovery and decreasing the overall burden of disability. The pipeline for neuromodulation technology remains strong as they span from the preclinical stage to the post-market stage. We are optimistic to see that more neuromodulation tools will be available to stroke survivors in the not-to-distant future.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Gunduz ME, Bucak B, Keser Z. Advances in Stroke Neurorehabilitation. J Clin Med 2023; 12:6734. [PMID: 37959200 PMCID: PMC10650295 DOI: 10.3390/jcm12216734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is one of the leading causes of disability worldwide despite recent advances in hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial in reducing the long-term disability burden after stroke. Stroke recovery treatment options have rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted various promising advances in treatment and technologies targeting stroke rehabilitation, including activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-assisted therapies, brain-computer interfaces, pharmacological treatments, and cognitive therapies. These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of rehabilitation and improve adherence and participation. Novel activity-based therapies and telerehabilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments with brain stimulation techniques and pharmacological agents should be considered to maximize the recovery. Among many challenges in the field, the heterogeneity of patients included in the study and the mixed methodologies and results across small-scale studies are the cardinal ones. Biomarker-driven individualized approaches will move the field forward, and so will large-scale clinical trials with a well-targeted patient population.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Bilal Bucak
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| |
Collapse
|
6
|
Yang FA, Lin CL, Cho SY, Chou IL, Han TI, Yang PY. Short- and Long-Term Effects of Repetitive Transcranial Magnetic Stimulation on Poststroke Visuospatial Neglect: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Phys Med Rehabil 2023; 102:522-532. [PMID: 36730575 DOI: 10.1097/phm.0000000000002151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to assess the effects of repetitive transcranial magnetic stimulation and select a suitable protocol for poststroke visuospatial neglect. DESIGN PubMed, Cochrane Library, and Embase databases were searched for relevant studies from the inception date to October 31, 2021. The inclusion criteria were (1) randomized controlled trials, (2) people with visuospatial neglect, (3) treatment with different repetitive transcranial magnetic stimulation protocols, (4) comparison with sham or blank control, and (5) reports of performance measurements. RESULTS Data were obtained from 11 randomized controlled trials. The effects of immediate and 1-mo postintervention were measured using line bisection test, cancellation test, and Catherine Bergego Scale. Results showed statistically significant improvement when applying low-frequency (0.5-1 Hz) repetitive transcranial magnetic stimulation or continuous theta burst stimulation to the left hemisphere on short- and long-term line bisection test (standardized mean difference = -1.10, 95% confidence interval = -1.84 to -0.37; standardized mean difference = -1.25, 95% confidence interval = -2.11 to -0.39) and cancellation test (standardized mean difference = 1.08, 95% confidence interval = 0.45 to 1.71; standardized mean difference = 1.45, 95% confidence interval = 0.42, 2.47). CONCLUSIONS Repetitive transcranial magnetic stimulation may be considered a treatment option for poststroke visuospatial neglect. This review proves that a decrease in neuronal excitation in the left hemisphere, which restores the interhemispheric balance, benefits poststroke visuospatial neglect.
Collapse
Affiliation(s)
- Fu-An Yang
- From the China Medical University Hospital, Taichung, Taiwan (F-AY); Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan (C-LL, S-YC, T-IH, P-YY); and School of Medicine, China Medical University Hospital, Taichung, Taiwan (I-LC, P-YY)
| | | | | | | | | | | |
Collapse
|
7
|
Middag-van Spanje M, Schuhmann T, Nijboer T, van der Werf O, Sack AT, van Heugten C. Study protocol of transcranial electrical stimulation at alpha frequency applied during rehabilitation: A randomized controlled trial in chronic stroke patients with visuospatial neglect. BMC Neurol 2022; 22:402. [PMID: 36324088 PMCID: PMC9628038 DOI: 10.1186/s12883-022-02932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A frequent post stroke disorder in lateralized attention is visuospatial neglect (VSN). As VSN has a strong negative impact on recovery in general and independence during daily life, optimal treatment is deemed urgent. Next to traditional stroke treatment, non-invasive brain stimulation offers the potential to facilitate stroke recovery as a complementary approach. In the present study, visual scanning training (VST; the current conventional treatment) will be combined with transcranial alternating current stimulation (tACS) to evaluate the additive effects of repeated sessions of tACS in combination with six-weeks VST rehabilitation. METHODS In this double-blind randomized placebo-controlled intervention study (RCT), we will compare the effects of active tACS plus VST to sham (placebo) tACS plus VST, both encompassing 18 VST training sessions, 40 minutes each, during 6 weeks. Chronic stroke patients with VSN (> 6 months post-stroke onset) are considered eligible for study participation. In total 22 patients are needed for the study. The primary outcome is change in performance on a cancellation task. Secondary outcomes are changes in performance on a visual detection task, two line bisection tasks, and three measures to assess changes in activities of daily living. Assessment is at baseline, directly after the first and ninth training session, after the last training session (post training), and 1 week and 3 months after termination of the training (follow-up). DISCUSSION If effective, a tACS-VST rehabilitation program could be implemented as a treatment option for VSN. TRIAL REGISTRATION ClinicalTrials.gov ; registration number: NCT05466487; registration date: July 18, 2022 retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT05466487.
Collapse
Affiliation(s)
- Marij Middag-van Spanje
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,InteraktContour, Nunspeet, The Netherlands
| | - Teresa Schuhmann
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| | - Tanja Nijboer
- grid.5477.10000000120346234Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands ,grid.7692.a0000000090126352Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Olof van der Werf
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| | - Alexander T. Sack
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Caroline van Heugten
- Limburg Brain Injury Center, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382School for Mental Health and Neuroscience, Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
8
|
Li L, Huang H. Noninvasive neuromodulation for unilateral neglect after stroke: a systematic review and network meta-analysis. Neurol Sci 2022; 43:5861-5874. [PMID: 35660991 DOI: 10.1007/s10072-022-06187-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To systematically evaluate the effect of noninvasive neuromodulation (NINM) on unilateral neglect (UN) after stroke and compare the effects of different NINMs. METHODS Randomized controlled trials (RCTs) on the effect of NINM on UN after stroke were retrieved from the PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and CBM databases from inception to January 2022. The risk of bias and quality of the trials were assessed following the Cochrane Handbook of Systematic Reviews and the physiotherapy evidence database PEDro Scale. Statistical analysis was conducted with Stata 16.0 and R 4.0.2. This study was registered on PROSPERO (No. CRD42021295336). RESULTS A total of 12 RCTs involving 291 patients were included. Meta-analysis showed that NINM could reduce the line bisection test (LBT) score (SMD = - 1.56, 95% CI - 2.10 ~ - 1.03, P < 0.05), the line cancellation test score (SMD = - 1.83, 95% CI - 2.39 ~ - 1.27, P < 0.05), and the star cancellation test score (SMD = - 2.85, 95% CI - 4.93 ~ - 0.76, P < 0.05). Network meta-analysis showed that the best probabilistic ranking of the effects of different NINMs on the LBT score was theta-burst stimulation (TBS) (P = 0.915) > repetitive transcranial magnetic stimulation (P = 0.068) > transcranial direct current stimulation (P = 0.018). CONCLUSION Existing evidence showed that NINM could improve UN after stroke and that TBS was best. Due to the number of included studies and sample size, more large-sample, multicenter, double-blinded, high-quality clinical RCTs are still needed in the future to further confirm the results of this research.
Collapse
Affiliation(s)
- Lingling Li
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
9
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Umeonwuka C, Roos R, Ntsiea V. Current trends in the treatment of patients with post-stroke unilateral spatial neglect: a scoping review. Disabil Rehabil 2022; 44:2158-2185. [PMID: 32976719 DOI: 10.1080/09638288.2020.1824026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of this scoping review was to explore the current treatment approaches for patients with post-stroke unilateral spatial neglect. METHODS A three-step search strategy using the Johanna Briggs Institute (JBI) guidelines, was undertaken. PubMed, CINAHL, The Cochrane Central Register of Controlled Trial, SCOPUS, PROSPERO, JBI, Sport Discus, and Google Scholar databases were searched. Searches were limited to publications from January 1, 2008, to May 1, 2020. Critical appraisal was undertaken by two independent reviewers using a standardized critical appraisal instrument developed by JBI. Data were extracted using a study-specific charting table. RESULTS A total of 3,648 articles were identified, 311 full-text articles were screened and 86 articles were critically appraised, with 83 articles included in the review. Intervention approaches for post-stroke unilateral spatial neglect symptom amelioration were identified and categorized as prism adaptation and visual scanning, mental practice and mirror therapy, electrical stimulation and robotics, combination therapy, pharmacological therapy, and other interventions. Both positive and negative results across identified interventions were identified without specific reference to the phase of recovery. CONCLUSION This review provides insight into current interventions for post-stroke unilateral spatial neglect. A plethora of intervention studies have been explored to ameliorate neglect symptoms post-stroke.IMPLICATION FOR REHABILITATIONPrism adaptation (PA) and combination therapy are most commonly investigated intervention for unilateral spatial neglect (USN) and showed promise in ameliorating USN symptoms.No single treatment approach seems optimally superior in the rehabilitation of USN post-stroke.Evidence for the selection of treatment at a specific phase of recovery is not conclusive as both positive and negative outcome on neglect measure were observed across all treatment approaches without specific reference to the phase of recovery.Evidence for the long-term use of PA in USN rehabilitation appears to be modest.
Collapse
Affiliation(s)
- Chuka Umeonwuka
- Department of Physiotherapy, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
| | - Ronel Roos
- Department of Physiotherapy, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
- Department of Physiotherapy, The Wits-JBI Centre for Evidenced-Based Practice: A Joanna Briggs Institute Affiliated Group, Johannesburg, South Africa
| | - Veronica Ntsiea
- Department of Physiotherapy, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
12
|
Houben M, Chettouf S, Van Der Werf YD, Stins J. Theta-burst transcranial magnetic stimulation for the treatment of unilateral neglect in stroke patients: A systematic review and best evidence synthesis. Restor Neurol Neurosci 2021; 39:447-465. [PMID: 34864705 PMCID: PMC8764600 DOI: 10.3233/rnn-211228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Unilateral neglect (UN) is a common and disabling disorder after stroke. UN is a strong and negative predictor of functional rehabilitative outcome. Non-invasive brain stimulation, such as theta-burst transcranial magnetic stimulation (TBS), is a promising rehabilitation technique for treating stroke-induced UN. OBJECTIVE To systematically review the available literature, researching whether TBS of the contra-lesional hemisphere is more effective than standard rehabilitation in improving symptoms of UN in patients with right hemisphere stroke. REVIEW METHODS A systematic review was conducted to retrieve randomized controlled trials (RCTs) that were relevant to the objective of this review. PubMed, Ovid and Cochrane Library electronic databases were comprehensively searched from inception up to February 2021. Of the included studies, methodological quality was assessed using the PEDro scale, whereafter a best evidence synthesis (BES) was conducted to summarize the results. RESULTS Nine RCTs investigating the effects of TBS on stroke-induced UN symptoms were included in this review. Seven studies assessing continuous TBS (cTBS) found significantly greater amelioration of UN symptoms in the TBS intervention group when compared to the control group; one study assessing cTBS found no such significant difference. One study assessing intermittent TBS (iTBS) found significant between-group differences in favor of the intervention. The BES yielded strong evidence in favor of cTBS, and limited evidence in favor of iTBS. CONCLUSIONS The included studies in the present review allow the conclusion that TBS can have favorable effects on UN recovery in stroke patients. Its clinical use is recommended in conjunction with cognitive rehabilitation and occupational or physical rehabilitation as needed. However, many aspects for optimal usage of TBS therapy in clinical settings, such as exact TBS protocols, number of sessions, and treatment duration, are not clear.
Collapse
Affiliation(s)
- Milan Houben
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 Amsterdam, The Netherlands
| | - Sabrina Chettouf
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 Amsterdam, The Netherlands
| | - Ysbrand D Van Der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117 Amsterdam, The Netherlands
| | - John Stins
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zito GA, Worbe Y, Lamy JC, Kälin J, Bühler J, Weber S, Müri RM, Aybek S. Behavioral Differences Across Theta Burst Stimulation Protocols. A Study on the Sense of Agency in Healthy Humans. Front Neurosci 2021; 15:658688. [PMID: 34305515 PMCID: PMC8299722 DOI: 10.3389/fnins.2021.658688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
Background Theta burst stimulation (TBS) is a non-invasive brain stimulation method. Various stimulation protocols have been proposed, for instance, stimulation at 50 Hz with pattern at 5 Hz, or at 30 Hz with pattern at 6 Hz. To identify better stimulation parameters for behavioral applications, we investigated the effects of 50-Hz continuous TBS (cTBS) on the sense of agency (SoA), and compared them with a previously published study with 30-Hz cTBS. Methods Based on power analysis from a previous sample using two applications of 30-Hz cTBS, we recruited 20 healthy subjects in a single-blind, Vertex-controlled, randomized, crossover trial. Participants were stimulated with one application of 50-Hz cTBS over the right posterior parietal cortex (rPPC), a key area for agency processing, and the vertex, in a random order. A behavioral task targeting the SoA was done before and after stimulation. After controlling for baseline differences across samples, we studied the effect of stimulation in the two protocols separately. Results Compared to the previously published 30-Hz protocol, 50-Hz cTBS over the rPPC did not reveal significant changes in the SoA, similar to sham Vertex stimulation. Conclusion One application of 50-Hz cTBS was not sufficient to elicit behavioral effects, compared to two applications of 30-Hz cTBS, as previously described. This may be due to a mechanism of synaptic plasticity, consolidated through consecutive stimulation cycles. Our results are relevant for future studies aiming at modulating activity of the rPPC in cognitive domains other than agency, and in patients affected by abnormal agency, who could benefit from treatment options based on TBS.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France
| | - Yulia Worbe
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, APHP.6 - Sorbonne University, Paris, France
| | - Jean-Charles Lamy
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France
| | - Joel Kälin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Janine Bühler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Samantha Weber
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - René M Müri
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selma Aybek
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Roque C, Pinto N, Vaz Patto M, Baltazar G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J Neurosci Res 2021; 99:1414-1432. [PMID: 33522025 DOI: 10.1002/jnr.24792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
After decades of effort, there are no effective clinical treatments to induce the recovery of ischemia-injured tissues, and among the several strategies that have been explored, repetitive transcranial magnetic stimulation has proven to be one of the most promising, with beneficial effects in limb motor function, aphasia, hemispatial neglect, or dysphagia. Despite the clinical evidences, little is known about the mechanisms underlying those effects. The present study aimed to explore the cellular and molecular effects of high-frequency repetitive magnetic stimulation (HF-rMS) on an in vitro model of ischemia. Using primary cortical cultures exposed to oxygen and glucose deprivation followed by reperfusion, we observed that HF-rMS treatment prevents the ischemia-induced neuronal death by 21.2%, and the neurite degeneration triggered by ischemia. Our results also demonstrate that with this treatment there is an increase of 89.2% on the number cells expressing ERK1/2, of 20.1% on the number of cells expressing c-Fos, and a synaptogenic effect, through an increase of 62.9% in the number of synaptic puncta as well as of 49.4% in their intensity. Interestingly, our results indicate that astrocytes are crucial to the beneficial effects triggered by HF-rMS after ischemia, thus suggesting a direct effect of HF-rMS on these cells. The modulation of astrocytes with this non-invasive brain stimulation technique is a promising approach to promote the recovery of ischemia-induced injured tissues; however, it is essential to understand how these effects can be modulated in order to optimize the protocols and enhance the beneficial outcomes.
Collapse
Affiliation(s)
- Cláudio Roque
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Patto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
Tscherpel C, Grefkes C. Funktionserholung nach Schlaganfall und die therapeutische Rolle der nicht-invasiven Hirnstimulation. KLIN NEUROPHYSIOL 2020. [DOI: 10.1055/a-1272-9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungIm Bereich der non-invasiven Hirnstimulation stellen die transkranielle Magnetstimulation (engl. transcranial magnetic stimulation, TMS) sowie die transkranielle Gleichstromstimulation (engl. transcranial direct current stimulation, tDCS) bis heute die wichtigsten Techniken zur Modulation kortikaler Erregbarkeit dar. Beide Verfahren induzieren Nacheffekte, welche die Zeit der reinen Stimulation überdauern, und ebnen damit den Weg für ihren therapeutischen Einsatz beim Schlaganfall. In diesem Übersichtsartikel diskutieren wir die aktuelle Datenlage TMS- und tDCS-vermittelter Therapien für die häufigsten schlaganfallbedingten Defizite wie Hemiparese, Aphasie und Neglect. Darüber hinaus adressieren wir mögliche Einschränkungen der gegenwärtigen Ansätze und zeigen Ansatzpunkte auf, um Neuromodulation nach Schlaganfall effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| |
Collapse
|
16
|
Iwański S, Leśniak M, Polanowska K, Bembenek J, Czepiel W, Seniów J. Neuronavigated 1 Hz rTMS of the left angular gyrus combined with visuospatial therapy in post-stroke neglect. NeuroRehabilitation 2020; 46:83-93. [PMID: 32039875 DOI: 10.3233/nre-192951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Visuospatial neglect (VSN) may be caused by an inter-hemispheric imbalance of neural activity after brain injury. Repetitive transcranial magnetic stimulation (rTMS) allows rebalancing restoration to a certain degree, relieving neglect symptoms. OBJECTIVE This study investigates the therapeutic effect of 1 Hz rTMS applied over the left angular gyrus combined with visual scanning training in patients with left VSN in the subacute stroke phase. METHODS Twenty-eight patients with VSN were randomly assigned to either experimental (fifteen sessions of rTMS consisted of 1800 magnetic pulses delivered to the left angular gyrus with a neuronavigation control), or control group (fifteen sessions of sham stimulation), followed by visual scanning training. VSN severity was assessed both before and after treatment with a 3-month follow up employing the Behavioural Inattention Test and functional measures. RESULTS No statistically significant differences were detected in outcome measures between the rTMS and sham groups after completion of 3-week therapy and at 3-month follow up. The magnitude of stimulation effects was not associated either with lesion volume, its location, or baseline motor threshold. CONCLUSIONS Our study did not confirm efficacy of 1 Hz rTMS over the angular gyrus as an adjuvant method to visual scanning training in patients with VSN in the subacute stroke.
Collapse
Affiliation(s)
- Szczepan Iwański
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcin Leśniak
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Polanowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jan Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wojciech Czepiel
- Vascular Laboratory, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Joanna Seniów
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
17
|
Enhancing Stroke Recovery Across the Life Span With Noninvasive Neurostimulation. J Clin Neurophysiol 2020; 37:150-163. [DOI: 10.1097/wnp.0000000000000543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Abstract
BACKGROUND Noninvasive brain stimulation can modulate neural processing within the motor cortex and thereby might be beneficial in the rehabilitation of hemispatial neglect after stroke. METHODS We review the pertinent literature regarding the use of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation in order to facilitate recovery of hemispatial neglect after stroke. RESULTS Twenty controlled trials (including 443 stroke patients) matched our inclusion criteria. Methodology and results of each study are presented in a comparative approach. Current data seem to indicate a better efficiency of repetitive transcranial magnetic stimulation, compared to tDCS to ameliorate hemispatial neglect after stroke. CONCLUSIONS Noninvasive brain stimulation has the potential to facilitate recovery of hemispatial neglect after stroke, but until today, there are not enough data to claim its routine use.
Collapse
|
19
|
Gammeri R, Iacono C, Ricci R, Salatino A. Unilateral Spatial Neglect After Stroke: Current Insights. Neuropsychiatr Dis Treat 2020; 16:131-152. [PMID: 32021206 PMCID: PMC6959493 DOI: 10.2147/ndt.s171461] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Unilateral spatial neglect (USN) is a disorder of contralesional space awareness which often follows unilateral brain lesion. Since USN impairs awareness of contralesional space/body and often of concomitant motor disorders, its presence represents a negative prognostic factor of functional recovery. Thus, the disorder needs to be carefully diagnosed and treated. Here, we attempted to present a clear and concise picture of current insights in the comprehension and rehabilitation of USN. METHODS We first provided an updated overview of USN clinical and neuroanatomical features and then highlighted recent progresses in the diagnosis and rehabilitation of the disease. In relation to USN rehabilitation, we conducted a MEDLINE literature research on three of the most promising interventions for USN rehabilitation: prismatic adaptation (PA), non-invasive brain stimulation (NIBS), and virtual reality (VR). The identified studies were classified according to the strength of their methods. RESULTS The last years have witnessed a relative decrement of interest in the study of neuropsychological disorders of spatial awareness in USN, but a relative increase in the study of potential interventions for its rehabilitation. Although optimal protocols still need to be defined, high-quality studies have demonstrated the efficacy of PA, TMS and tDCS interventions for the treatment of USN. In addition, preliminary investigations are suggesting the potentials of GVS and VR approaches for USN rehabilitation. CONCLUSION Advancing neuropsychological and neuroscience tools to investigate USN pathophysiology is a necessary step to identify effective rehabilitation treatments and to foster our understanding of neurofunctional bases of spatial cognition in the healthy brain.
Collapse
Affiliation(s)
- Roberto Gammeri
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| | - Claudio Iacono
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| | - Raffaella Ricci
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Adriana Salatino
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1091] [Impact Index Per Article: 218.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
21
|
Zebhauser PT, Vernet M, Unterburger E, Brem AK. Visuospatial Neglect - a Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol Rev 2019; 29:397-420. [PMID: 31748841 PMCID: PMC6892765 DOI: 10.1007/s11065-019-09417-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the "interhemispheric rivalry model" is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität, Munich, Germany
| | - Marine Vernet
- Section on Neurocircuitry, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | - Evelyn Unterburger
- Division of Neuropsychology, Universitätsklinik Zürich USZ, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Anna-Katharine Brem
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Lucente G, Valls-Sole J, Murillo N, Rothwell J, Coll J, Davalos A, Kumru H. Noninvasive Brain Stimulation and Noninvasive Peripheral Stimulation for Neglect Syndrome Following Acquired Brain Injury. Neuromodulation 2019; 23:312-323. [PMID: 31725939 DOI: 10.1111/ner.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hemispatial neglect is a frequent condition usually following nondominant hemispheric brain injury. It strongly affects rehabilitation strategies and everyday life activities. It is associated with behavioral and cognitive disability with a strong impact on patient's life. METHODS We reviewed the published literature on the use of noninvasive brain stimulation, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), and of noninvasive peripheral muscle stimulation, as therapeutic strategies for rehabilitation of neglect after acquired brain injury, such as in stroke or in traumatic injuries. The studies were grouped as controlled or uncontrolled studies in each stimulation techniques. RESULTS Thirty-four studies were identified and 16 on rTMS, 10 on tDCS, and 8 on vibration. All studies were conducted in adult patients who suffered a stroke, except for one that was conducted in a patient suffering traumatic acquired brain injury and another that was conducted in a patient with brain tumor. In spite of significant variability in treatment protocols, patients' features and assessment of neglect, improvement was reported in almost all studies with no side-effects. CONCLUSIONS Noninvasive brain stimulation and neuromuscular vibration are promising therapeutic neuromodulatory approaches for neglect. Further randomized-controlled studies are needed to corroborate their effectiveness as separate and combined techniques.
Collapse
Affiliation(s)
- Giuseppe Lucente
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Josep Valls-Sole
- EMG Department, Hospital Clinic, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Narda Murillo
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, University College London, London, UK
| | - Jaume Coll
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Antoni Davalos
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hatice Kumru
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| |
Collapse
|
23
|
van Lieshout ECC, van Hooijdonk RF, Dijkhuizen RM, Visser-Meily JMA, Nijboer TCW. The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review. Neurorehabil Neural Repair 2019; 33:355-374. [DOI: 10.1177/1545968319834900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Cognitive impairment after stroke has been associated with lower quality of life and independence in the long run, stressing the need for methods that target impairment for cognitive rehabilitation. The use of noninvasive brain stimulation (NIBS) on recovery of language functions is well documented, yet the effects of NIBS on other cognitive domains remain largely unknown. Therefore, we conducted a systematic review that evaluates the effects of different stimulation techniques on domain-specific (long-term) cognitive recovery after stroke. Methods. Three databases (PubMed, EMBASE, and PsycINFO) were searched for articles (in English) on the effects of NIBS on cognitive domains, published up to January 2018. Results. A total of 40 articles were included: randomized controlled trials (n = 21), studies with a crossover design (n = 9), case studies (n = 6), and studies with a mixed design (n = 4). Most studies tested effects on neglect (n = 25). The majority of the studies revealed treatment effects on at least 1 time point poststroke, in at least 1 cognitive domain. Studies varied highly on the factors time poststroke, number of treatment sessions, and stimulation protocols. Outcome measures were generally limited to a few cognitive tests. Conclusion. Our review suggests that NIBS is able to alleviate neglect after stroke. However, the results are still inconclusive and preliminary for the effect of NIBS on other cognitive domains. A standardized core set of outcome measures of cognition, also at the level of daily life activities and participation, and international agreement on treatment protocols, could lead to better evaluation of the efficacy of NIBS and comparisons between studies.
Collapse
Affiliation(s)
- Eline C. C. van Lieshout
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | - Roel F. van Hooijdonk
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | | | | | - Tanja C. W. Nijboer
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| |
Collapse
|
24
|
Cotoi A, Mirkowski M, Iruthayarajah J, Anderson R, Teasell R. The effect of theta-burst stimulation on unilateral spatial neglect following stroke: a systematic review. Clin Rehabil 2018; 33:183-194. [PMID: 30370790 DOI: 10.1177/0269215518804018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: To evaluate the effectiveness of theta-burst stimulation for the treatment of stroke-induced unilateral spatial neglect. DATA SOURCES: A systematic literature search was conducted from the inception of each database to 30 June 2018 using CINAHL, EMBASE, PubMed, PsycINFO, and Scopus. REVIEW METHODS: Articles were included if theta-burst stimulation was used to treat neglect following a stroke. The additional a priori inclusion criteria were as follows: (1) ⩾3 adult (⩾18 years) participants, (2) ⩾50% stroke population, and (3) peer-reviewed journal articles published in English. Extracted data included study and treatment characteristics, results, and adverse events. RESULTS: Nine studies met the inclusion criteria, generating a total of 148 participants. Eight studies evaluated a continuous stimulation protocol and one study investigated an intermittent stimulation protocol. Overall, both protocols significantly improved neglect severity when compared against placebo or active controls ( P < 0.05). Adding smooth pursuit training to theta-burst stimulation did not improve neglect relative to when the stimulation was delivered alone ( P > 0.05). There was inconsistent reporting of neglect terminology, outcome measures, and adverse events. The treatment characteristics were heterogeneous among the trials. CONCLUSION: This systematic review found that theta-burst stimulation seems to improve post-stroke unilateral spatial neglect, but because the evidence is limited to a few small studies with varied and inconsistent protocols and use of terminology, no firm conclusion on effectiveness can be drawn.
Collapse
Affiliation(s)
- Andreea Cotoi
- 1 Parkwood Institute Research, Lawson Health Research Institute, Parkwood Institute, London, ON, Canada
| | - Magdalena Mirkowski
- 1 Parkwood Institute Research, Lawson Health Research Institute, Parkwood Institute, London, ON, Canada
| | - Jerome Iruthayarajah
- 1 Parkwood Institute Research, Lawson Health Research Institute, Parkwood Institute, London, ON, Canada
| | - Rachel Anderson
- 1 Parkwood Institute Research, Lawson Health Research Institute, Parkwood Institute, London, ON, Canada
| | - Robert Teasell
- 1 Parkwood Institute Research, Lawson Health Research Institute, Parkwood Institute, London, ON, Canada
- 2 Parkwood Institute, St Joseph's Health Care London, London, ON, Canada
- 3 Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Kashiwagi FT, El Dib R, Gomaa H, Gawish N, Suzumura EA, da Silva TR, Winckler FC, de Souza JT, Conforto AB, Luvizutto GJ, Bazan R. Noninvasive Brain Stimulations for Unilateral Spatial Neglect after Stroke: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Controlled Trials. Neural Plast 2018; 2018:1638763. [PMID: 30050569 PMCID: PMC6046134 DOI: 10.1155/2018/1638763] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Unilateral spatial neglect (USN) is the most frequent perceptual disorder after stroke. Noninvasive brain stimulation (NIBS) is a tool that has been used in the rehabilitation process to modify cortical excitability and improve perception and functional capacity. Objective To assess the impact of NIBS on USN after stroke. Methods An extensive search was conducted up to July 2016. Studies were selected if they were controlled and noncontrolled trials examining transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and theta burst stimulation (TBS) in USN after stroke, with outcomes measured by standardized USN and functional tests. Results Twelve RCTs (273 participants) and 4 non-RCTs (94 participants) proved eligible. We observed a benefit in overall USN measured by the line bisection test with NIBS in comparison to sham (SMD -2.35, 95% CI -3.72, -0.98; p = 0.0001); the rTMS yielded results that were consistent with the overall meta-analysis (SMD -2.82, 95% CI -3.66, -1.98; p = 0.09). The rTMS compared with sham also suggested a benefit in overall USN measured by Motor-Free Visual Perception Test at both 1 Hz (SMD 1.46, 95% CI 0.73, 2.20; p < 0.0001) and 10 Hz (SMD 1.19, 95% CI 0.48, 1.89; p = 0.54). There was also a benefit in overall USN measured by Albert's test and the line crossing test with 1 Hz rTMS compared to sham (SMD 2.04, 95% CI 1.14, 2.95; p < 0.0001). Conclusions The results suggest a benefit of NIBS on overall USN, and we conclude that rTMS is more efficacious compared to sham for USN after stroke.
Collapse
Affiliation(s)
- Flávio Taira Kashiwagi
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Regina El Dib
- Science and Technology Institute, Universidade Estadual Paulista (UNESP), São José dos Campos, SP, Brazil
| | - Huda Gomaa
- Department of Pharmacy, Tanta Chest Hospital, Tanta, Egypt
| | - Nermeen Gawish
- Department of Pharmacy, Tanta Chest Hospital, Tanta, Egypt
| | | | - Taís Regina da Silva
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Fernanda Cristina Winckler
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Juli Thomaz de Souza
- Science and Technology Institute, Universidade Estadual Paulista (UNESP), São José dos Campos, SP, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Rodrigo Bazan
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
26
|
Kwon JS. Therapeutic Intervention for Visuo-Spatial Neglect after Stroke: A Meta-Analysis of Randomized Controlled Trials. Osong Public Health Res Perspect 2018; 9:59-65. [PMID: 29740529 PMCID: PMC5935145 DOI: 10.24171/j.phrp.2018.9.2.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives The aims of this meta-analysis were to examine intervention methods of qualitatively, well-designed studies from the past 10 years for treating visuo-spatial neglect (VSN) in patients who had suffered a stroke, and to evaluate the combined effects of intervention. Methods Studies published between 2008 and 2017 on the theme of VSN were collected from PubMed, CINAHL, and MEDLINE, representative academic databases and search engines. The PEDro scale was used for evaluating the quality of methodology. The sample size, mean, and standard deviation of identified studies were used for meta-analysis. Results Eight studies were selected for analysis. The PEDro scores of the selected studies were ≥ 7, with 237 subjects analyzed. The results of intervention were classified into “mental function” and “activity and participation” based on the International Classification of Functioning, Disability and Health. The analyzed effect sizes for combined outcomes, mental function and, activity and participation, were 0.728 (medium effect size), 0.850 (large effect size), and 0.536 (medium effect size), respectively. Conclusion Intervention methods for treating VSN had a short-term effect on cognitive function (visual perception). In particular, non-invasive brain stimulation therapy showed a large effect size for VSN treatment.
Collapse
Affiliation(s)
- Jae-Sung Kwon
- Department of Occupational Therapy, Cheongju University, Cheongju, Korea
| |
Collapse
|
27
|
Efficacy of Noninvasive Brain Stimulation on Unilateral Neglect After Stroke. Am J Phys Med Rehabil 2018; 97:261-269. [DOI: 10.1097/phm.0000000000000834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Salazar APS, Vaz PG, Marchese RR, Stein C, Pinto C, Pagnussat AS. Noninvasive Brain Stimulation Improves Hemispatial Neglect After Stroke: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2018; 99:355-366.e1. [DOI: 10.1016/j.apmr.2017.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
29
|
Sebastianelli L, Versace V, Martignago S, Brigo F, Trinka E, Saltuari L, Nardone R. Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review. Acta Neurol Scand 2017; 136:585-605. [PMID: 28464421 DOI: 10.1111/ane.12773] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 01/02/2023]
Abstract
The aim of this review was to summarize the evidence for the effectiveness of low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the unaffected hemisphere in promoting functional recovery after stroke. We performed a systematic search of the studies using LF-rTMS over the contralesional hemisphere in stroke patients and reviewed the 67 identified articles. The studies have been gathered together according to the time interval that had elapsed between the stroke onset and the beginning of the rTMS treatment. Inhibitory rTMS of the contralesional hemisphere can induce beneficial effects on stroke patients with motor impairment, spasticity, aphasia, hemispatial neglect and dysphagia, but the therapeutic clinical significance is unclear. We observed considerable heterogeneity across studies in the stimulation protocols. The use of different patient populations, regardless of lesion site and stroke aetiology, different stimulation parameters and outcome measures means that the studies are not readily comparable, and estimating real effectiveness or reproducibility is very difficult. It seems that careful experimental design is needed and it should consider patient selection aspects, rTMS parameters and clinical assessment tools. Consecutive sessions of rTMS, as well as the combination with conventional rehabilitation therapy, may increase the magnitude and duration of the beneficial effects. In an increasing number of studies, the patients have been enrolled early after stroke. The prolonged follow-up in these patients suggests that the effects of contralesional LF-rTMS can be long-lasting. However, physiological evidence indicating increased synaptic plasticity, and thus, a more favourable outcome, in the early enrolled patients, is still lacking. Carefully designed clinical trials designed are required to address this question. LF rTMS over unaffected hemisphere may have therapeutic utility, but the evidence is still preliminary and the findings need to be confirmed in further randomized controlled trials.
Collapse
Affiliation(s)
- L. Sebastianelli
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - V. Versace
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - S. Martignago
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - F. Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurosciences, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - L. Saltuari
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
- Department of Neurology; Hochzirl Hospital; Zirl Austria
| | - R. Nardone
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| |
Collapse
|
30
|
Dionísio A, Duarte IC, Patrício M, Castelo-Branco M. The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review. J Stroke Cerebrovasc Dis 2017; 27:1-31. [PMID: 29111342 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/12/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Stroke is a leading cause of disability. Alternative and more effective techniques for stroke rehabilitation have been sought to overcome limitations of conventional therapies. Repetitive transcranial magnetic stimulation (rTMS) arises as a promising tool in this context. This systematic review aims to provide a state of the art on the application of rTMS in stroke patients and to assess its effectiveness in clinical rehabilitation of motor function. METHODS Studies included in this review were identified by searching PubMed and ISI Web of Science. The search terms were (rTMS OR "repetitive transcranial magnetic stimulation") AND (stroke OR "cerebrovascular accident" OR CVA) AND (rehab OR rehabilitation OR recover*). The retrieved records were assessed for eligibility and the most relevant features extracted to a summary table. RESULTS Seventy out of 691 records were deemed eligible, according to the selection criteria. The majority of the articles report rTMS showing potential in improving motor function, although some negative reports, all from randomized controlled trials, contradict this claim. Future studies are needed because there is a possibility that a bias for non-publication of negative results may be present. CONCLUSIONS rTMS has been shown to be a promising tool for stroke rehabilitation, in spite of the lack of standard operational procedures and harmonization. Efforts should be devoted to provide a greater understanding of the underlying mechanisms and protocol standardization.
Collapse
Affiliation(s)
- Ana Dionísio
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Department of Physics, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Catarina Duarte
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Patrício
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Brain Imaging Network, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
31
|
Azouvi P, Jacquin-Courtois S, Luauté J. Rehabilitation of unilateral neglect: Evidence-based medicine. Ann Phys Rehabil Med 2016; 60:191-197. [PMID: 27986428 DOI: 10.1016/j.rehab.2016.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the last decades, several rehabilitation methods have been developed to improve spatial neglect. These can be classified according to their theoretical basis: (i) enhance awareness of neglect behaviour through a top-down mechanism; (ii) low-level bottom-up sensory stimulation; (iii) modulation of inhibitory processes; (iv) increase arousal. OBJECTIVE The purpose of this study was to provide an overview of the evidence on the effectiveness of rehabilitation procedures for unilateral neglect. METHOD A systematic search was performed to look for all randomised controlled trials aimed at reducing left spatial neglect that included a functional assessment. In addition, recent review papers and meta-analyses were analysed. RESULTS Thirty-seven randomized controlled trials were found (12 bottom-up; 12 top-down; 1 interhemispheric competition; 12 combination of approaches) that included 1027 patients with neglect. Although there are some encouraging results, overall, the level of evidence remains low. Poor methodological quality and small sample sizes are major limitations in many published trials. CONCLUSION There is a need for well-conducted, large-scale randomised controlled trials that incorporate blinded assessments, evaluation of the generalization to activities of daily living and long-term follow-up.
Collapse
Affiliation(s)
- Philippe Azouvi
- AP-HP, hôpital Raymond-Poincaré, service de médecine physique et de réadaptation, 92380 Garches, France; EA 4047 HANDIReSP, université de Versailles-Saint-Quentin, 78180 Montigny-Le-Bretonneux, France.
| | - Sophie Jacquin-Courtois
- Service de médecine physique et de réadaptation, rééducation neurologique, hôpital Henry-Gabrielle, CHU de Lyon, 69230 Saint-Genis-Laval, France; Université de Lyon, université Lyon 1, 69100 Villeurbanne, France; Centre de recherche en neuroscience de Lyon (CRNL), équipe IMPACT, Inserm, U1028, CNRS, UMR5292, 69675 Bron, France
| | - Jacques Luauté
- Service de médecine physique et de réadaptation, rééducation neurologique, hôpital Henry-Gabrielle, CHU de Lyon, 69230 Saint-Genis-Laval, France; Université de Lyon, université Lyon 1, 69100 Villeurbanne, France; Centre de recherche en neuroscience de Lyon (CRNL), équipe IMPACT, Inserm, U1028, CNRS, UMR5292, 69675 Bron, France
| |
Collapse
|
32
|
|
33
|
Cazzoli D, Rosenthal CR, Kennard C, Zito GA, Hopfner S, Müri RM, Nyffeler T. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load. Cortex 2015; 73:317-29. [PMID: 26547867 DOI: 10.1016/j.cortex.2015.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.
Collapse
Affiliation(s)
- Dario Cazzoli
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Clive R Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giuseppe A Zito
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Simone Hopfner
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - René M Müri
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland; Division of Cognitive and Restorative Neurology, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Center for Cognition, Learning, and Memory, University of Bern, Bern, Switzerland
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland; Center of Neurology and Neurorehabilitation, Luzerner Kantonsspital, Luzern, Switzerland.
| |
Collapse
|