1
|
Pang J, Yang C, Liu J, Wang Z, Tao X, Cao Z. Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease. Food Funct 2024; 15:11342-11364. [PMID: 39494806 DOI: 10.1039/d4fo03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- College of Life Science, Northwest University, Xi'an City, 710069, China
| | - Chunshuo Yang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jiaqi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211103, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Panichella G, Tomasoni D, Aimo A. Metabolomics to predict heart failure development: A new frontier? Eur J Heart Fail 2024; 26:1655-1658. [PMID: 38714359 DOI: 10.1002/ejhf.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Affiliation(s)
| | - Daniela Tomasoni
- Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
3
|
Ashraf S, Frazier OH, Carranza S, McPherson DD, Taegtmeyer H, Harmancey R. A Two-Step Transcriptome Analysis of the Human Heart Reveals Broad and Disease-Responsive Expression of Ectopic Olfactory Receptors. Int J Mol Sci 2023; 24:13709. [PMID: 37762009 PMCID: PMC10530704 DOI: 10.3390/ijms241813709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are critical regulators of cardiac physiology and a key therapeutic target for the treatment of heart disease. Ectopic olfactory receptors (ORs) are GPCRs expressed in extra-nasal tissues which have recently emerged as new mediators in the metabolic control of cardiac function. The goals of this study were to profile OR gene expression in the human heart, to identify ORs dysregulated by heart failure caused by ischemic cardiomyopathy, and to provide evidence suggestive of a role for those altered ORs in the pathogenesis of heart failure. Left ventricular tissue from heart failure patients (n = 18) and non-failing heart samples (n = 4) were subjected to a two-step transcriptome analysis consisting of the quantification of 372 distinct OR transcripts on real-time PCR arrays and simultaneous determination of global cardiac gene expression by RNA sequencing. This strategy led to the identification of >160 ORs expressed in the human heart, including 38 receptors differentially regulated with heart failure. Co-expression analyses predicted the involvement of dysregulated ORs in the alteration of mitochondrial function, extracellular matrix remodeling, and inflammation. We provide this dataset as a resource for investigating roles of ORs in the human heart, with the hope that it will assist in the identification of new therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - O. Howard Frazier
- Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Sylvia Carranza
- Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - David D. McPherson
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| |
Collapse
|
4
|
The Genetic Variants in the Renin-Angiotensin System and the Risk of Heart Failure in Polish Patients. Genes (Basel) 2022; 13:genes13071257. [PMID: 35886041 PMCID: PMC9319667 DOI: 10.3390/genes13071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Heart failure (HF) is a complex disease and one of the major causes of morbidity and mortality in the world. The renin-angiotensin system (RAS) may contribute to the pathogenesis of HF. (2) Aim: To investigate the association of RAS key genetic variants, rs5051 (A-6G) in the gene encoding angiotensinogen (AGT), rs4646994 (I/D) in the gene for angiotensin I converting enzyme (ACE), and rs5186 (A1166C) in the gene encoding type 1 receptor for angiotensin II (AGTR1), with the HF risk in the cohort of Polish patients. (3) Methods: The study group consisted of 415 patients that were diagnosed with HF, while the control group comprised of 152 healthy individuals. Genomic DNA were extracted from blood and genotyping was carried out using either PCR or PCR-RFLP for ACE or AGT and AGTR1 variants, respectively. (4) Results: No association has been found between the I/D ACE and heart failure. The HF risk was significantly higher for AG AGT heterozygotes (overdominance: AG versus AA + GG) and for carriers of the G AGT allele in codominant and dominant modes of inheritance. However, the risk of HF was significantly lower in the carriers of at least one C AGTR1 allele (AC or CC genotypes) or in AC AGTR1 heterozygotes (overdominant mode). There was a significant relationship for AGT and HF patients in NYHA Class I-II for whom the risk was higher for the carriers of the G allele, and for the AG heterozygotes. There was also a significant interaction between heterozygote advantage of AGT and BMI increasing the risk for HF. (5) Conclusion: Our results suggest that the A(-6)G AGT polymorphism may be associated with HF in the Polish population and the HF risk seems to be modulated by the A1166C AGTR1 polymorphism.
Collapse
|
5
|
Gorący I, Rębacz-Maron E, Korbecki J, Gorący J. Concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in adults with chronic heart failure. PeerJ 2021; 9:e12207. [PMID: 34760349 PMCID: PMC8567860 DOI: 10.7717/peerj.12207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background The study investigated the relationship between the concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in the blood serum of patients with heart failure (HF) and the potential influence on the development and progression of HF. Material & methods The study included 214 patients (155 men and 59 women), aged 40–87 years, presenting symptoms or signs typical of HF (according to the NYHA functional classification). Serum concentrations were determined for Mg, Ca, Fe, Cu, Zn, P, C-reactive protein (CRP), creatinine, urea, triglyceride levels (TG), total cholesterol (CH), high density protein (HDL), low density protein (LDL). The levels of macro-and microminerals were analysed using inductively coupled serum optical emission spectrometry (ICP-OES). Results Our study confirmed the role of known risk factors in the development of heart failure, including: overweight, diabetes, hypertension, high triglycerides (TG), high total cholesterol (CH), high levels of low density protein (LDL) and reduced levels of high density protein (HDL), high CRP, high creatinine. Moreover, deficient serum concentrations of Mg (47% of the studied men and 54% of the women) and Cu (in 44% of men and more than 30% of women) were observed, as well as subnormal serum Fe (2% of women) and Zn (1% of men). Elevated serum Ca was found in 50% of men and 49% of women. In 44% of the studied men and 52% of the studied women, P levels in serum were also above-average. The study revealed a significant positive correlation between serum levels of Ca and Mg, and also Ca and Cu in women. In men, serum Cu was positively correlated with Mg and Ca concentrations. In patients from group 1 (NYHA I–II), Mg content was positively correlated with Ca and Cu. In this patient group, Ca was also positively associated with Cu content in serum. In group 2 (NYHA III-IV), serum Mg concentration was significantly positively correlated with that of Cu and Ca. Conclusions Changes in the serum concentrations of macro-and microminerals may significantly affect the severity of HF in Polish patients.
Collapse
Affiliation(s)
- Iwona Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Rębacz-Maron
- Institute of Biology, Department of Ecology and Anthropology, University of Szczecin, Szczecin, Poland
| | - Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Jarosław Gorący
- Clinic of Cardiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
6
|
Ramalingam S, Radhakrishnan S, Kaliappan T, Gopalan R, Subrahmanian M, Sankaran R. The genetics of cardiac failure: Role of a G protein-coupled receptor polymorphism in therapeutic response in an Indian population. J Clin Transl Res 2021; 7:501-510. [PMID: 34541364 PMCID: PMC8445626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM The incidence of heart failure (HF) is rising to epidemic proportions in developing countries like India. A lack of adequate Indian studies underscores the importance of pursuing research into HF in an Indian population. G protein-coupled receptor kinase 5 (GRK5) Gln41>Leu (rs2230345) polymorphism was reported as a genetic modifier associated with survival in HF patients. A prospective study was conducted to investigate the association of GRK5 Gln41>Leu polymorphism with response to β-blocker therapy in Indian HF patients. METHODS HF patients (n=584) were recruited for the study. The patients were genotyped by tetra-primer based allele specific polymerase chain reaction and confirmed with Sanger sequencing. The HF patients were evaluated for GRK5 gene expression and followed up for ~3 years. Drug dosages, cardiac output and hospitalization-free survival were evaluated as study outcomes. HF subgroups (i.e. systolic or diastolic dysfunction, biventricular dysfunction and pulmonary artery hypertension) were also analyzed in association with hospital-free survival. RESULTS HF patients showed genotype frequencies of AT (15%) and TT (1%). AT/TT genotype carriers showed downregulated GRK5 gene expression and significant reduction in carvedilol drug dosage (p=0.0001). Moreover, AT/TT genotype carriers on β-blockers showed improved ejection fraction from 27% to 36% (p=0.0007) and increased hospitalization-free survival in comparison to other HF patients. HF patients with AA genotype showed an increased rate of hospital admission in comparison with patients with the AT/TT genotype. HF subgroups with the AT/TT genotype showed an increased hospitalization-free survival versus subgroups with the AA genotype. CONCLUSIONS GRK5 Gln41>Leu polymorphism in response to β-blocker therapy improved cardiac function in HF patients. RELEVANCE FOR PATIENTS This study presents a comprehensive clinicofunctional pharmacogenetic characterization of GRK5 Gln41>Leu polymorphism in a cohort of Indian HF patients. GRK5 Gln41>Leu polymorphism can confer improved cardiac function and reduce hospitalization, thus improving the quality of life in HF patients.
Collapse
Affiliation(s)
- Sudha Ramalingam
- 1PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India,
Corresponding authors: Sudha Ramalingam and Ramalingam Sankaran, PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore - 641 004, Tamil Nadu, India. E-mail:
| | | | | | | | - Meenu Subrahmanian
- 1PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - Ramalingam Sankaran
- 1PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India,
Corresponding authors: Sudha Ramalingam and Ramalingam Sankaran, PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore - 641 004, Tamil Nadu, India. E-mail:
| |
Collapse
|
7
|
Suciu-Petrescu M, Truta A, Suciu MD, Trifa AP, Petrescu D, Roșianu HȘ, Sabin O, Popa DE, Macarie AE, Vesa ȘC, Buzoianu AD. Clinical impact of echocardiography parameters and molecular biomarkers in heart failure: Correlation of ACE2 and MCP-1 polymorphisms with echocardiography parameters: A comparative study. Exp Ther Med 2021; 22:686. [PMID: 33986851 DOI: 10.3892/etm.2021.10118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is still the leading cause of hospitalization in patients over 65 years of age and is defined as a multifactorial pathology which involves environmental factors and also genetic predispositions. The aim of the present study was to evaluate a possible correlation between single nucleotide polymorphisms (SNPs) of angiotensin converting enzyme 2 (ACE2) and monocyte chemoattractant protein-1 (MCP-1) genes and cardiac remodeling in Caucasian patients diagnosed with heart failure. Our comparative translational research study included 116 patients diagnosed with heart failure and was carried out in Cluj-Napoca, Romania between September 2017 and March 2019. Three SNPs, namely rs4646156, rs4646174 and rs1024611, were genotyped using a Taqman real-time PCR technique. Our results showed that carriers of the AA genotype for ACE2 rs4646156 had a significant dilatation of the left ventricle (LV) with signs of LV hypertrophy (LVH), while TT carriers had a significant left atrial dilatation. For ACE2 rs4646174, homozygotes for the C allele presented a dilated LV with signs of LVH with statistical significance and had a tendency towards a lower ejection fraction. MCP-1 rs1024611 AA variant carriers had a significant LVH in the dominant model. In conclusion, our study showed a strong association between echocardiographic parameters of cardiac remodeling and SNPs rs4646156, rs4646174 of ACE2 and rs1024611 of MCP-1.
Collapse
Affiliation(s)
- Mălina Suciu-Petrescu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Cardiology, 'Regina Maria' Hospital, 400117 Cluj-Napoca, Romania
| | - Anamaria Truta
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Mihai Domnutiu Suciu
- Department of Urology, Clinical Institute of Urology and Kidney Transplant, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400066 Cluj-Napoca, Romania
| | - Adrian Pavel Trifa
- Department of Medical Genetics, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Denisa Petrescu
- Department of Endocrinology, Emergency Clinical County Hospital Cluj, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Horia Ștefan Roșianu
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Daciana Elena Popa
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Antonia Eugenia Macarie
- Department of Geriatrics-Gerontology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
| | - Ștefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Peng X, Fan S, Tan J, Zeng Z, Su M, Zhang Y, Yang M, Xia L, Fan X, Cai W, Tang WH. Wnt2bb Induces Cardiomyocyte Proliferation in Zebrafish Hearts via the jnk1/c-jun/creb1 Pathway. Front Cell Dev Biol 2020; 8:323. [PMID: 32523947 PMCID: PMC7261892 DOI: 10.3389/fcell.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that inhibition of canonical Wnt signaling promotes zebrafish heart regeneration and that treatment of injured heart tissue with the Wnt activator 6-bromo-indirubin-3-oxime (BIO) can impede cardiomyocyte proliferation. However, the mechanism by which Wnt signaling regulates downstream gene expression following heart injury remains unknown. In this study, we have demonstrated that inhibition of injury-induced myocardial wnt2bb and jnk1/creb1/c-jun signaling impedes heart repair following apex resection. The expression of jnk1, creb1, and c-jun were inhibited in wnt2bb dominant negative (dn) mutant hearts and elevated in wnt2bb-overexpresssing hearts following ventricular amputation. The overexpression of creb1 sufficiently rescued the dn-wnt2bb-induced phenotype of reduced nkx2.5 expression and attenuated heart regeneration. In addition, wnt2bb/jnk1/c-jun/creb1 signaling was increased in Tg(hsp70l:dkk1) transgenic fish, whereas it was inhibited in Tg(hsp70l:wnt8) transgenic fish, indicating that canonical Wnt and non-canonical Wnt antagonize each other to regulate heart regeneration. Overall, the results of our study demonstrate that the wnt2bb-mediated jnk1/c-jun/creb1 non-canonical Wnt pathway regulates cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Xiangwen Peng
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Tan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Zeng
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Meiling Su
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhang
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ming Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Luoxing Xia
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xuejiao Fan
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wai Ho Tang
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Heliste J, Chheda H, Paatero I, Salminen TA, Akimov Y, Paavola J, Elenius K, Aittokallio T. Genetic and functional implications of an exonic TRIM55 variant in heart failure. J Mol Cell Cardiol 2019; 138:222-233. [PMID: 31866377 DOI: 10.1016/j.yjmcc.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND To tackle the missing heritability of sporadic heart failure, we screened for novel heart failure-associated genetic variants in the Finnish population and functionally characterized a novel variant in vitro and in vivo. METHODS AND RESULTS Heart failure-associated variants were screened in genotyping array data of the FINRISK study, consisting of 994 cases and 20,118 controls. Based on logistic regression analysis, a potentially damaging variant in TRIM55 (rs138811034), encoding an E140K variant, was selected for validations. In HL-1 cardiomyocytes, we used CRISPR/Cas9 technology to introduce the variant in the endogenous locus, and additionally TRIM55 wildtype or E140K was overexpressed from plasmid. Functional responses were profiled using whole-genome RNA sequencing, RT-PCR and Western analyses, cell viability and cell cycle assays and cell surface area measurements. In zebrafish embryos, cardiac contractility was measured using videomicroscopy after CRISPR-mediated knockout of trim55a or plasmid overexpression of TRIM55 WT or E140K. Genes related to muscle contraction and cardiac stress were highly regulated in Trim55 E140K/- cardiomyocytes. When compared to the WT/WT cells, the variant cells demonstrated reduced viability, significant hypertrophic response to isoproterenol, p21 protein overexpression and impaired cell cycle progression. In zebrafish embryos, the deletion of trim55a or overexpression of TRIM55 E140K reduced cardiac contractility as compared to embryos with wildtype genotype or overexpression of WT TRIM55, respectively. CONCLUSIONS A previously uncharacterized TRIM55 E140K variant demonstrated a number of functional implications for cardiomyocyte functions in vitro and in vivo. These findings suggest a novel role for TRIM55 polymorphism in predisposing to heart failure.
Collapse
Affiliation(s)
- Juho Heliste
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Himanshu Chheda
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Medicity Research Laboratories, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland; Department of Oncology, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland.
| |
Collapse
|
10
|
Prognostic role of genetic polymorphisms of the interleukin-6 signaling pathway in patients with severe heart failure. THE PHARMACOGENOMICS JOURNAL 2019; 19:428-437. [DOI: 10.1038/s41397-019-0068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/04/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
|
11
|
Relationship of polymorphisms in the tissue inhibitor of metalloproteinase (TIMP)-1 and -2 genes with chronic heart failure. Sci Rep 2018; 8:9446. [PMID: 29930267 PMCID: PMC6013444 DOI: 10.1038/s41598-018-27857-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
Dysregulated expression of tissue inhibitors of matrix metalloproteinases (TIMPs) is associated with systolic dysfunction and worsening heart failure (HF). However, no study has assessed the relationship between TIMP polymorphisms and chronic HF. In this study, 300 HF outpatients with reduced left ventricular ejection fraction and 304 healthy blood donors were genotyped for the 372 T > C polymorphism (Phe124Phe; rs4898) in the TIMP-1 gene and the −418 G > C polymorphism (rs8179090) in the TIMP-2 gene to investigate whether these polymorphisms are associated with HF susceptibility and prognosis. The genotype and allele frequencies of the 372 T > C polymorphism in HF patients were not significantly different from those observed among healthy subjects, and the C allele of the −418 G > C polymorphism was very rare in our population (frequency < 1%). After a median follow-up duration of 5.5 years, 121 patients (40.3%) died (67 of them from HF). Survival analysis did not show statistically significant differences in all-cause death and HF-related death between patients with and without the T allele (P > 0.05 for all comparisons). Thus, our findings do not support the hypothesis that the 372 T > C (Phe124Phe) polymorphism in the TIMP-1 gene and the −418 G > C polymorphism in the TIMP-2 gene are associated with HF susceptibility and prognosis in Southern Brazilians.
Collapse
|
12
|
Pang J, Wang J, Zhang Y, Xu F, Chen Y. Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure-Recent insights and perspectives. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1933-1941. [PMID: 27742538 DOI: 10.1016/j.bbadis.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/24/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Heart failure is one of the major causes of the ever-rising mortality globally. ALDH2 rs671 polymorphism is proven to be closely related to the prevalence of CAD, hypertension, diabetes mellitus and alcoholism, which are etiological factors of heart failure. In addition, growing evidence supports a possible role for ALDH2 in different forms of heart failure. In this mini-review, we will review the recent insights regarding the effects of ALDH2 polymorphism on etiological factors of heart failure and underlying mechanisms involved. In addition, we will also discuss the booming epigenetic information in this field which will greatly improve our understanding of the cardiovascular effect of ALDH2. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.
Collapse
Affiliation(s)
- Jiaojiao Pang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Jiali Wang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|