1
|
Jing J, Xu D, Li Z, Wang J, Dai J, Li FS. Genetic variation of six specific SNPs of chronic obstructive pulmonary disease among Chinese population. Pulmonology 2024; 30:113-121. [PMID: 35501282 DOI: 10.1016/j.pulmoe.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic bronchitis (or) emphysema with a high disability and fatality rate. This study aimed to explore the correlation between the six selected single nucleotide polymorphisms (SNPs) and the risk of COPD in the Chinese population. METHODS The Agena MassARRAY platform was used to select six SNPs from 629 subjects for genotyping. The correlation between SNPs and COPD risk was evaluated using calculated odds ratios (ORs) and 95% confidence intervals (CIs). Multi-factor dimensionality reduction (MDR) was performed to analyze the impact of SNP interactions on COPD risk. Multiple comparisons were performed using Bonferroni- correction. RESULTS Our results indicated that rs4719841 and rs7934083 variants were associated with a reduced risk of COPD. The analysis results of age, gender and non-smokers showed that rs4719841 and rs7934083 were associated with reducing the risk of COPD. In addition, the results showed that the genetic models of rs4719841, rs7934083 and rs7780562 were related to the forced vital capacity, respiratory rate per second, and respiratory rate / forced vital capacity of COPD patients, respectively. The results of the MDR analysis showed that the three-locus model (rs4719841, rs7934083, and rs78750958) is the best for COPD risk assessment. CONCLUSION This study shows that rs4719841 and rs7934083 are associated with the risk of COPD in the Chinese population, which provides some insights for early screening, prevention, and diagnosis of COPD in high-risk populations.
Collapse
Affiliation(s)
- J Jing
- The Fourth Clinical Medical College of Xinjiang Medical University, China; The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - D Xu
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - Z Li
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - J Wang
- The Clinical Research Base Laboratory, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - J Dai
- The Fourth Clinical Medical College of Xinjiang Medical University, China
| | - F S Li
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China; The Clinical Research Base Laboratory, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Yi E, Cao W, Zhang J, Lin B, Wang Z, Wang X, Bai G, Mei X, Xie C, Jin J, Liu X, Li H, Wu F, Lin Z, Sun R, Li B, Zhou Y, Ran P. Genetic screening of MMP1 as a potential pathogenic gene in chronic obstructive pulmonary disease. Life Sci 2023; 313:121214. [PMID: 36442527 DOI: 10.1016/j.lfs.2022.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Airway inflammation and remodeling are the two key processes involved in COPD pathogenesis. However, the key pathogenic genes driving COPD development have not been revealed. This study aims to identify and validate hub gene(s) underlying COPD development through bioinformatics analysis and experimental validation. METHODS Three lung tissue sequencing datasets of the COPD (including GSE38974, GSE103174, and GSE106986) were analyzed. Further, differentially expressed genes (DEGs) were used to compare patients with COPD with non-COPD individuals, and the Robust Rank Aggregation (RRA) analysis was also performed. Results revealed a series of potential pathogenic genes of COPD. DEGs were subjected to KEGG, GO, and GSEA analyses. The scRNA dataset of human lung tissues (Human Lung Cell Atlas), and human primary airway epithelial cells (GSE134147) were used to identify the cell subtype localization. The qRT-PCR assay was performed in the human lung tissues, COPD mice model, and primary bronchial epithelial cells at the air-liquid interface (ALI) under cigarette smoke extract (CSE) stimulation to verify the expression of the hub genes. LASSO and GLM analysis with the hub genes were performed to identify the most critical gene. RNA-seq was performed after knocking down the critical gene using siRNA in HBECs at ALI. The potential role of the critical gene was confirmed through qRT-PCR, Western blot, and Immunofluorescence (IF) assays. RESULTS A total of 98 genes were significantly and differently expressed in 3 GEO datasets. The KEGG and GO analyses showed that most of these genes are responsible for inflammation, immunity, and cell proliferation. The core gene set including 15 genes was screened out and consequently, the MMP1 was the most likely responsible for the progression of COPD. Moreover, we confirmed that MMP1 is significantly related to inflammatory effects and cilia function in human bronchial epithelial cells cultured at the air-liquid interface (ALI). CONCLUSION In summary, we confirmed that inflammation and cell proliferation are potentially critical processes in COPD occurrence and development. A total of 15 potential hub genes were identified among which MMP1 was the most likely gene responsible for the development of COPD. Therefore, MMP1 is a potential molecular target of COPD therapy.
Collapse
Affiliation(s)
- Erkang Yi
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ge Bai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - ChengShu Xie
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Jin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bioland, Guangzhou, China.
| |
Collapse
|
3
|
Mokina NA, Mokin ED. [Regional experience of a comprehensive dynamic assessment of the adolescents' health status with post-COVID-19 syndrome during aftercare in a sanatorium]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:39-44. [PMID: 37141521 DOI: 10.17116/kurort202310002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To determine the characteristics of sanatorium-resort therapy impact on children with post-COVID-19 syndrome of various severity, as well as to reveal association of its severity with family history data and genetic polymorphisms of alpha-1-antitrypsin-serpin-1 complex. MATERIAL AND METHODS This 2-week retrospective cohort study involved 42 adolescents after new coronavirus infection (COVID-19). The first group included 28 (67%) patients (mean age 13.1±0.8 years) after mild COVID-19 (without confirmed coronavirus pneumonia), the second group - 14 (33%) patients (mean age 14.5±0.1.2 years) after moderate or severe disease (with confirmed coronavirus pneumonia). A complex of procedures, according to the approved standard, was prescribed for all patients admitted after outpatient and hospital treatment to the pulmonology department of the state children's sanatorium in order to aftercare. The certain follow-up parameters were evaluated: symptoms severity, life quality, respiratory function and respiratory gases, as well as family medical history and alpha-1-antitrypsin-serpin-1 complex. RESULTS Patients after moderate and severe COVID-19 had initially lower and less dynamic growth of integral life quality index, more torpid follow-up rates of spirometry, pulse oximetry and exhaled gases. Additionally, the higher incidence degree of adverse family medical history associated with respiratory illnesses was established in the group after new coronavirus infection. Moreover, relatively more deficient alpha-1-antitrypsin and more frequent heterozygous polymorphism type of serpin-1 were found in the group after severe new coronavirus infection. CONCLUSION The revealed complex of epigenetic and genetic factors may indicate various risk and development phenotypes of both acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- N A Mokina
- Samara State children's sanatorium «Yunost», Samara, Russia
| | - E D Mokin
- Samara State Medical University, Samara, Russia
| |
Collapse
|
5
|
Klimczak-Bitner AA, Bitner J, Hiruta K, Szemraj J. Exploring a possible association between the occurrence of the SERPINE1-675 4G/5G (rs1799889) polymorphism and the increased risk of esophageal cancer in the Caucasian population. Biochem Biophys Rep 2021; 28:101147. [PMID: 34660916 PMCID: PMC8502711 DOI: 10.1016/j.bbrep.2021.101147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
The goal of this research was to analyze the SERPINE1 -675 4G/5G (rs1799889) and MMP9 T-1702A (rs2297864) polymorphisms in esophageal cancer among polish patients, classified as part of the Caucasian population. The analysis of polymorphic gene variants was performed on 35 randomly selected samples excised from patients with esophageal cancer. The tissue specimens were stored as Formalin-Fixed, Paraffin-Embedded (FFPE) blocks. All patients in the sample group were of Caucasian ethnicity. The genotype distribution of MMP9 T-1702A and SERPINE1 -675 polymorphisms was analyzed using the Restriction Fragment Length Polymorphism (RFLP) method. A correlation between the expression of −675 polymorphic form of SERPINE1 and alcohol abuse has been found. Additionally, a correlation between the −675 polymorphism and the subtype of EC developed by the patient has been shown. To the best of the authors’ knowledge, this is the first report investigating the SERPINE1 -675 4G/5G (rs1799889) polymorphism as a potential candidate for a prognostic biomarker of esophageal cancer. FFPE cancer samples serve as good material for detecting SERPINE1 -675 4G/5G (rs1799889) and MMP9 T-1702A (rs2297864) polymorphisms. Expression of −675 polymorphism of SERPINE1 may correlate with pathoclinical factors for esophageal cancer in Caucasians. SERPINE1 -675 4G/5G (rs1799889) polymorphism may potentially serve as a prognostic biomarker for esophageal cancer.
Collapse
Affiliation(s)
| | - Jan Bitner
- Department of Medicinal Biochemistry, Medical University of Lodz, 92-215, Lodz, Poland
| | - Komei Hiruta
- Graduate School of Science and Technology, Keio University, Japan
| | - Janusz Szemraj
- Department of Medicinal Biochemistry, Medical University of Lodz, 92-215, Lodz, Poland
| |
Collapse
|
6
|
Bayram B, Owen AR, Dudakovic A, Bettencourt JW, Limberg AK, Morrey ME, Sanchez-Sotelo J, Berry DJ, Kocher JP, van Wijnen AJ, Abdel MP. Elevated Expression of Plasminogen Activator Inhibitor (PAI-1/SERPINE1) is Independent from rs1799889 Genotypes in Arthrofibrosis. Meta Gene 2021; 28. [PMID: 33816122 DOI: 10.1016/j.mgene.2021.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Arthrofibrosis is characterized by excessive extracellular matrix deposition in patients with total knee arthroplasties (TKAs) and causes undesirable joint stiffness. The pathogenesis of arthrofibrosis remains elusive and currently there are no diagnostic biomarkers for the pathological formation of this connective tissue. Fibrotic soft tissues are known to have elevated levels of plasminogen activator inhibitor-1 (PAI-1) (encoded by SERPINE1), a secreted serine protease inhibitor that moderates extracellular matrix remodeling and tissue homeostasis. The 4G/5G insertion/deletion (rs1799889) is a well-known SERPINE1 polymorphism that directly modulates PAI-1 levels. Homozygous 4G/4G allele carriers typically have higher PAI-1 levels and may predispose patients to soft tissue fibrosis (e.g., liver, lung, and kidney). Here, we examined the genetic contribution of the SERPINE1 rs1799889 polymorphism to musculoskeletal fibrosis in arthrofibrotic (n = 100) and non-arthrofibrotic (n = 100) patients using Sanger Sequencing. Statistical analyses revealed that the allele frequencies of the SERPINE1 rs1799889 polymorphism are similar in arthrofibrotic and non-arthrofibrotic patient cohorts. Because the fibrosis related SERPINE1 rs1799889 polymorphism is independent of arthrofibrosis susceptibility in TKA patients, the possibility arises that fibrosis of joint connective tissues may involve unique genetic determinants distinct from those linked to classical soft tissue fibrosis.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron R Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | | | - Afton K Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Hu G, Dong T, Wang S, Jing H, Chen J. Vitamin D 3-vitamin D receptor axis suppresses pulmonary emphysema by maintaining alveolar macrophage homeostasis and function. EBioMedicine 2019; 45:563-577. [PMID: 31278070 PMCID: PMC6642288 DOI: 10.1016/j.ebiom.2019.06.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and/or obstructive bronchiolitis. Deficiency in vitamin D3 (VD3), which regulates gene expression through binding to vitamin D receptor (VDR), is associated with high risks of COPD susceptibility. Alveolar macrophages (AM), which are generated during early ontogeny and maintained in alveoli by self-renewal in response to cytokine GM-CSF, are positively correlated with severity of emphysema. However, whether and how VD3, VDR and AM interact to contribute to COPD pathogenesis at the molecular and cellular levels are largely unknown. Methods We used systems biology approaches to analyze gene expression in mouse macrophages from different tissues to identify key transcription factors (TF) for AM and infer COPD disease genes. We used RNA-seq and ChIP-seq to identify genes that are regulated by VD3 in AM. We used VDR-deficient (Vdr−/−) mice to investigate the role of VD3-VDR axis in the pathogenesis of COPD and characterized the transcriptional and functional alterations of Vdr−/− AM. Findings We find that VDR is a key TF for AM and a COPD disease gene. VDR is highly expressed in AM and in response to VD3 inhibits GM-CSF-induced AM proliferation. In Vdr−/− AM, genes involved in proliferation and immune response are upregulated. Consistently, Vdr−/− mice progressively accumulate AM and concomitantly develop emphysema without apparent infiltration of immune cells into the lung tissue. Intratracheal transfer of Vdr−/− AM into wildtype mice readily induces emphysema. The production of reactive oxygen species at basal level and in response to heme or lipopolysaccharide is elevated in Vdr−/− AM and suppressed by VD3 in wildtype AM. Interpretation These results show that the VD3-VDR axis is critical to counteract GM-CSF-induced AM proliferation and defect in this regulation leads to altered AM homeostasis and function. Our findings identify that VD3 deficiency contributes to emphysema by altering AM function without contributing to bronchiolitis. Our findings also suggest possibilities of modulating the VD3-VDR axis for inhibiting emphysema in COPD patients.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Ting Dong
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sisi Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Hongyu Jing
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|