1
|
Zhao X, Long Z, Zhong H, Lu R, Wei J, Li F, Sun Z. Anti-inflammatory Properties of Tongfeng Li'an Granules in an Acute Gouty Arthritis Rat Model. ACS OMEGA 2024; 9:34303-34313. [PMID: 39157086 PMCID: PMC11325525 DOI: 10.1021/acsomega.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES To examine the anti-inflammatory properties and underlying mechanisms of Tongfeng Li'an Granules (TFLA), a traditional medicine, in acute gouty arthritis using a rat model. MATERIALS AND METHODS We identified 55 major compounds in TFLA via ultrahigh-performance liquid chromatography connected to quadrupole time-of-flight mass spectrometry (UPLC-TQF-MS/MS). Databases were employed for the prediction of potential targets, followed by PPI network construction as well as GO and KEGG analyses. After network-pharmacology-based analysis, a rat gouty arthritis model was used to validate the anti-inflammatory mechanism of TFLA. RESULTS UPLC-TQF-MS/MS and network pharmacology analyses revealed 55 active ingredients and 160 targets of TFLA associated with gouty arthritis, forming an ingredient-target-disease network. The PPI network identified 20 core targets, including TLR2, TLR4, IL6, NFκB, etc. Functional enrichment analyses highlighted the Toll-like receptor signaling pathway as significantly enriched by multiple targets, validated in in vivo experiments. Animal experiments demonstrated that TFLA improved pathological changes in gouty joint synovium, with decreased ankle joint circumference, serum IL6, IL10, and TNFα levels, as well as reduced protein and mRNA expression of NLRP3, TLR2, and TLR4 in ankle joint synovial tissue observed in the middle- and high-dose TFLA and positive control groups compared to the model group (p < 0.05). CONCLUSION This research elucidated the pharmacological mechanisms of TFLA against gouty arthritis, implicating various ingredients, targets, and signaling pathways. Animal experiments confirmed TFLA's efficacy in alleviating inflammation in acute gouty arthritis by modulating Toll-like receptor signaling and NLRP3 expression.
Collapse
Affiliation(s)
- Xiangpei Zhao
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Zhaoyang Long
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Hua Zhong
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Rongping Lu
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Juan Wei
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | | | | |
Collapse
|
2
|
Fu Y, Chen YS, Xia DY, Luo XD, Luo HT, Pan J, Ma WQ, Li JZ, Mo QY, Tu Q, Li MM, Zhao Y, Li Y, Huang YT, Chen ZX, Li ZJ, Bernard L, Dione M, Zhang YM, Miao K, Chen JY, Zhu SS, Ren J, Zhou LJ, Jiang XZ, Chen J, Lin ZP, Chen JP, Ye H, Cao QY, Zhu YW, Yang L, Wang X, Wang WC. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model. NPJ Biofilms Microbiomes 2024; 10:25. [PMID: 38509085 PMCID: PMC10954633 DOI: 10.1038/s41522-024-00486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Song Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Dai-Yang Xia
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Xiao-Dan Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao-Tong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Pan
- Hunan Shihua Biotech Co. Ltd., Changsha, 410000, China
| | - Wei-Qing Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Ze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian-Yuan Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Meng-Meng Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yi-Teng Huang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhi-Xian Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhen-Jun Li
- Key Laboratory of Carcinogenesis and Translational Research, Departments of Lymphoma, Radiology and Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100080, China
| | - Lukuyu Bernard
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Michel Dione
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Jian-Ying Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shan-Shan Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ling-Juan Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Zhen-Ping Lin
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Jun-Peng Chen
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Hui Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qing-Yun Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Wen Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Wen-Ce Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Xie J, He C, Su Y, Ding Y, Zhu X, Xu Y, Ding J, Zhou H, Wang H. Research progress on microRNA in gout. Front Pharmacol 2022; 13:981799. [PMID: 36339582 PMCID: PMC9631428 DOI: 10.3389/fphar.2022.981799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
Gout is a common form of arthritis caused by the deposition of sodium urate crystals in the joints and tissues around them. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to be involved in regulating the pathogenesis of gout through multiple cellular signaling pathways, which may be potential targets for the treatment of gout. In this review, we systematically discuss the regulatory roles of related miRNAs in gout, which will provide help for the treatment of gout and miRNAs is expected to become a potential biomarker for gout diagnosis.
Collapse
Affiliation(s)
- Jing Xie
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Cuixia He
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuzhou Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xingyu Zhu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Xu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiaxiang Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhou
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongju Wang
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
4
|
Yu J, Li L, Liu J, Chen Z. Influence of intervention treatment by "heat-clearing and diuresis-promoting" prescription on NALP3, an inflammatory factor in acute gouty arthritis. J Orthop Surg Res 2022; 17:162. [PMID: 35292055 PMCID: PMC8922783 DOI: 10.1186/s13018-022-03046-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Background To investigate the efficacy of Qingre Lishi Decoction(QLRD), in the treatment of acute gouty arthritis, and its influence on the expression levels of inflammatory factor nucleotide-binding oligomerization domain-like receptor(NALP 3) in patients. Methods A total of 78 patients with acute gouty arthritis admitted to our hospital were randomly divided into the control group and the observation group, with 39 cases in each group. The control group was given basic treatment and colchicine tablets, and the observation group was given “heat-clearing and diuresis-promoting” prescription for intervention treatment. The main symptom score, treatment effective rate and laboratory indexes of the two groups were compared 7 days after treatment. Results After treatment, the scores of joint redness, hot pain, joint flexion and extension disorder, oliguria and constipation were improved in both groups, and the improvement degree in observation group was higher than that in control group (P < 0.05); the clinical effective rate in the observation group (94.87%) was higher than that in the control group (76.92%). The serum uric acid (UA), erythrocyte sedimentation rate (ESR), interleukin-1β (IL-1β) and NALP3 showed a decreasing trend, and the decrease degree of each index in observation group was higher than that in control group (P < 0.05). Conclusion The “heat-clearing and diuresis-promoting” prescription for intervention treatment can effectively improve the clinical symptoms of patients with acute gouty arthritis and reduce the level of inflammatory factor NALP3, maintaining remarkable effect.
Collapse
Affiliation(s)
- Jun Yu
- Department of Pharmacy, Tianjin Beichen District Chinese Medicine Hospital, No. 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Lianrui Li
- Department of Pharmacy, Tianjin Beichen District Chinese Medicine Hospital, No. 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Jie Liu
- Department of Pharmacy, Tianjin Beichen District Chinese Medicine Hospital, No. 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Zhiyong Chen
- Department of Pharmacy, Tianjin Beichen District Chinese Medicine Hospital, No. 436 Jingjin Road, Beichen District, Tianjin, 300400, China.
| |
Collapse
|
5
|
LI H, NIE D, WANG S, LI D, LIU C. Clinical value of turbidity-elimination gout soup combined with external application of traditional chinese medicine to improve the pain and the volume of tophi in patients with gout. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.37420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hongbo LI
- The Affiliated Hospital to Changchun University of Chinese Medicine, China
| | - Daqing NIE
- The Affiliated Hospital to Changchun University of Chinese Medicine, China
| | - Shaoqiong WANG
- The Affiliated Hospital to Changchun University of Chinese Medicine, China
| | - Da LI
- The Affiliated Hospital to Changchun University of Chinese Medicine, China
| | - Cheng LIU
- The Affiliated Hospital to Changchun University of Chinese Medicine, China
| |
Collapse
|
6
|
Traditional Chinese Herbal Medicine Plays a Role in the Liver, Kidney, and Intestine to Ameliorate Hyperuricemia according to Experimental Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4618352. [PMID: 34876914 PMCID: PMC8645359 DOI: 10.1155/2021/4618352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
In the last few decades, hyperuricemia has drawn increasing attention owing to its global prevalence. Observational surveys have manifested that there is a relation between hyperuricemia and increased risks of hypertension, chronic kidney disease, cardiovascular events, metabolic disorders, end stage renal disease, and mortality. As alternatives, Traditional Chinese medicinal herbs have demonstrated concrete effects in mitigating hyperuricemia in different experiments. Researchers have made efforts to investigate the role of herbal medicine in attenuating hyperuricemia. This review focuses on traditional Chinese herbal medicines that have been reported to ameliorate hyperuricemia in experimental studies.
Collapse
|
7
|
Liang H, Deng P, Ma YF, Wu Y, Ma ZH, Zhang W, Wu JD, Qi YZ, Pan XY, Huang FS, Lv SY, Han JL, Dai WD, Chen Z. Advances in Experimental and Clinical Research of the Gouty Arthritis Treatment with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8698232. [PMID: 34721646 PMCID: PMC8550850 DOI: 10.1155/2021/8698232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Gouty arthritis (GA) is a multifactorial disease whose pathogenesis is utterly complex, and the current clinical treatment methods cannot wholly prevent GA development. Western medicine is the primary treatment strategy for gouty arthritis, but it owns an unfavorable prognosis. Therefore, the prevention and treatment of GA are essential. In China, traditional Chinese medicine (TCM) has been adopted for GA prevention and treatment for thousands of years. Gout patients are usually treated with TCM according to their different conditions, and long-term results can be achieved by improving their physical condition. And TCM has been proved to be an effective method to treat gout in modern China. Nevertheless, the pharmacological mechanism of TCM for gout is still unclear, which limits its spread. The theory of prevention and treatment of gout with TCM is more well acknowledged in China than in abroad. In this article, Chinese herbs and ancient formula for gout were summarized first. A total of more than 570 studies published from 2004 to June 2021 in PubMed, Medline, CNKI, VIP, Web of Science databases and Chinese Pharmacopoeia and traditional Chinese books were searched; the current status of TCM in the treatment of GA was summarized from the following aspects: articular chondrocyte apoptosis inhibition, antioxidative stress response, inflammatory cytokine levels regulation, uric acid excretion promotion, immune function regulation, uric acid reduction, and intestinal flora improvement in subjects with gout. The literature review concluded that TCM has a specific curative effect on the prevention and treatment of GA, particularly when combined with modern medical approaches. However, lacking a uniform definition of GA syndrome differentiation and the support of evidence-based medicine in clinical practice have provoked considerable concern in previous studies, which needs to be addressed in future research.
Collapse
Affiliation(s)
- Huan Liang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Feng Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yan Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhan-Hua Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Wei Zhang
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jun-De Wu
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yin-Ze Qi
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Xu-Yue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Fa-Sen Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Yuan Lv
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Lu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Da Dai
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| |
Collapse
|
8
|
Wang YZ, Zhou C, Zhu LJ, He XLS, Li LZ, Zheng X, Xu WF, Dong YJ, Li B, Yu QX, Lv GY, Chen SH. Effects of Macroporous Resin Extract of Dendrobium officinale Leaves in Rats with Hyperuricemia Induced by Fructose and Potassium Oxonate. Comb Chem High Throughput Screen 2021; 25:1294-1303. [PMID: 34053424 DOI: 10.2174/1386207324666210528114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Fructose, as a ubiquitous monosaccharide, can promote ATP consumption and elevate circulating uric acid (UA) levels. Our previous studies confirmed that the macroporous resin extract of Dendrobium officinale leaves (DoMRE) could reduce the UA level of rats with hyperuricemia induced by a high-purine diet. This study aimed to investigate whether DoMRE had a UA-lowering effect on rats with hyperuricemia caused by fructose combined with potassium oxonate, so as to further clarify the UA-lowering effect of DoMRE, and to explore the UA-lowering effect of DoMRE on both UA production and excretion. MATERIALS AND METHODS Rats with hyperuricemia induced by fructose and potassium oxonate were administered with DoMRE and vehicle control, respectively, to compare the effects of the drugs. At the end of the experiment, the serum uric acid (SUA) and creatinine (Cr) levels were measured using an automatic biochemical analyzer, the activities of xanthine oxidase (XOD) were measured using an assay kit, and the protein expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette superfamily G member 2 (ABCG2) were assessed using immunohistochemical and western blot analyses. Hematoxylin and eosin staining was used to assess the histological changes in the kidney, liver, and intestine. RESULTS Rats with hyperuricemia were induced by fructose and potassiumFructose and potassium induced hyperuricemia in rats. Meanwhile, the activities of XOD were markedly augmented, the expression of URAT1 and GLUT9 was promoted, and the expression of ABCG2 was reduced, which were conducive to the elevation of UA. However, exposure to DoMRE reversed these fructose- and potassium oxonate-induced negative alternations in rats. The activities of XOD were recovered to the normal level, reducing UA formation; the expression of URAT1, ABCG2, and GLUT9 returned to the normal level, resulting in an increase in renal urate excretion. CONCLUSION DoMRE reduces UA levels in rats with hyperuricemia induced by fructose combined with potassium oxonate by inhibiting XOD activity and regulating the expression of ABCG2, URAT1, and GLUT9. DoMRE is a potential therapeutic agent for treating hyperuricemia through inhibiting UA formation and promoting UA excretion.
Collapse
Affiliation(s)
- Yu-Zhi Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Cong Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li-Jie Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, Yiwu, Zhejiang, 322099, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
9
|
Chen L, Luo Z, Wang M, Cheng J, Li F, Lu H, He Q, You Y, Zhou X, Kwan HY, Zhao X, Zhou L. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol 2021; 11:578318. [PMID: 33568990 PMCID: PMC7868570 DOI: 10.3389/fphar.2020.578318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background. Chinese herbal medicines are widely used to lower serum uric acid levels. However, no systemic review summarizes and evaluates their efficacies and the underlying mechanisms of action. Objectives. To evaluate the clinical and experimental evidences for the effectiveness and the potential mechanism of Chinese herbal medicines in lowering serum uric acid levels. Methods. Four electronic databases PubMed, Wed of Science, the Cochrane Library and Embase were used to search for Chinese herbal medicines for their effects in lowering serum uric acid levels, dated from 1 January 2009 to 19 August 2020. For clinical trials, randomized controlled trials (RCTs) were included; and for experimental studies, original articles were included. The methodological quality of RCTs was assessed according to the Cochrane criteria. For clinical trials, a meta-analysis of continuous variables was used to obtain pooled effects. For experimental studies, lists were used to summarize and integrate the mechanisms involved. Results. A total of 10 clinical trials and 184 experimental studies were included. Current data showed that Chinese herbal medicines have promising clinical efficacies in patients with elevated serum uric acid levels (SMD: −1.65, 95% CI: −3.09 to −0.22; p = 0.024). There was no significant difference in serum uric acid levels between Chinese herbal medicine treatments and Western medicine treatments (SMD: −0.13, 95% CI: −0.99 to 0.74; p = 0.772). Experimental studies revealed that the mechanistic signaling pathways involved in the serum uric acid lowering effects include uric acid synthesis, uric acid transport, inflammation, renal fibrosis and oxidative stress. Conclusions. The clinical studies indicate that Chinese herbal medicines lower serum uric acid levels. Further studies with sophisticated research design can further demonstrate the efficacy and safety of these Chinese herbal medicines in lowering serum uric acid levels and reveal a comprehensive picture of the underlying mechanisms of action.
Collapse
Affiliation(s)
- Liqian Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhengmao Luo
- Department of Nephrology, General Hospital of Southern Theatre Command, PLA, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Investigation of the Effects and Mechanisms of Dendrobium loddigesii Rolfe Extract on the Treatment of Gout. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4367347. [PMID: 33062010 PMCID: PMC7547349 DOI: 10.1155/2020/4367347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022]
Abstract
Objective Gout is a chronic disease that causes inflammatory arthritis, which is closely related to urate accumulation induced by a disorder of uric acid metabolism and the consequent deposition of monosodium urate crystals. Dendrobium loddigesii Rolfe is an herbal medicine that has been used in some traditional Chinese medicine formulae in the treatment of gout. This study aimed to explore and verify the antigout activity of Dendrobium loddigesii extract (DLE) on alleviating the hyperuricaemia of mice and the acute gouty arthritis of rats. Methods An animal model of hyperuricaemia was established using potassium oxonate (PO). We analysed the expression of uric acid transporter mRNA in the kidney in the hyperuricaemic mice after treatment with DLE. Simultaneously, a monosodium urate crystal-induced acute gouty arthritis rat model was used to evaluate the effects of DLE, according to the level of ankle swelling, as well as the protein levels of inflammatory receptors and cytokines, as assayed by WB and ELISA. Results DLE alleviated hyperuricaemia in mice and inhibited acute gouty arthritis in rats (P < 0.05). Meanwhile, DLE regulated the levels of uric acid transporters mRNA transcripts, including mouse organic anion transporter 1 (mOAT1), organic anion transporter 3 (mOAT3), urate transporter 1 (mURAT1), and glucose transporter 9 (mGLUT9) in the kidney (P < 0.05), suggesting that DLE promoted uric acid metabolism. Furthermore, DLE significantly suppressed the protein levels of TLRs, MyD88, and NF-κB in the ankle joint's synovium (P < 0.05), and the serum levels of IL-1β, IL-6, and TNF-α were also reduced, which demonstrated the anti-inflammatory effects of DLE. Conclusion DLE alleviates hyperuricaemia by regulating the transcription level of uric acid transporters in the kidney. It also inhibits acute gouty arthritis by inhibiting the pathway of TLRs/MyD88/NF-κB in the ankle joint's synovium. The findings of the present study imply that DLE alleviates gout by promoting uric acid metabolism and inhibiting inflammation related to the TLRs/MyD88/NF-κB pathway.
Collapse
|