1
|
Renteria AE, Valera FCP, Maniakas A, Adam D, Filali-Mouhim A, Ruffin M, Mfuna LE, Brochiero E, Desrosiers MY. Azithromycin Mechanisms of Action in CRS Include Epithelial Barrier Restoration and Type 1 Inflammation Reduction. Otolaryngol Head Neck Surg 2023; 169:1055-1063. [PMID: 37125631 DOI: 10.1002/ohn.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Previous in vitro transcriptomic profiling suggests azithromycin exerts its effects in patients with chronic rhinosinusitis (CRS) via modulation of type 1 inflammation and restoration of epithelial barrier function. We wished to verify these postulated effects using in vitro models of epithelial repair and in vivo transcriptional profiling. STUDY DESIGN Functional effects of azithromycin in CRS were verified using in vitro models of wounding. The mechanism of the effect of azithromycin was assessed in vivo using transcriptomic profiling. SETTING Academic medical center. METHODS Effects of azithromycin on the speed of epithelial repair were verified in a wounding model using primary nasal epithelial cells (pNEC) from CRS patients. Nasal brushings collected pre-and posttreatment during a placebo-controlled trial of azithromycin for CRS patients unresponsive to surgery underwent transcriptomic profiling to identify implicated pathways. RESULTS Administration of azithromycin improved the wound healing rates in CRS pNECs and prevented the negative effect of Staphylococcus aureus on epithelial repair. In vivo, response to azithromycin was associated with downregulation in pathways of type 1 inflammation, and upregulation of pathways implicated in the restoration of the cell cycle. CONCLUSION Restoration of healthy epithelial function may represent a major mode of action of azithromycin in CRS. In vitro models show enhanced epithelial repair, while in vivo transcriptomics shows downregulation of pathways type 1 inflammation accompanied by upregulation of DNA repair and cell-cycle pathways. The maximal effect in patients with high levels of type 1-enhanced inflammation suggests that azithromycin may represent a novel therapeutic option for surgery-unresponsive CRS patients.
Collapse
Affiliation(s)
- Axel E Renteria
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Fabiana C P Valera
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Ali Filali-Mouhim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Leandra Endam Mfuna
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
2
|
Cuevas E, Huertas D, Montón C, Marin A, Carrera-Salinas A, Pomares X, García-Nuñez M, Martí S, Santos S. Systemic and functional effects of continuous azithromycin treatment in patients with severe chronic obstructive pulmonary disease and frequent exacerbations. Front Med (Lausanne) 2023; 10:1229463. [PMID: 37554497 PMCID: PMC10406447 DOI: 10.3389/fmed.2023.1229463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Continuous treatment with azithromycin may lead to fewer acute exacerbations of chronic obstructive pulmonary disease (AECOPD), but little is known of its impact on systemic and functional outcomes in real-life settings. METHODS This was a multicenter prospective observational study of patients with severe COPD who started treatment with azithromycin. Tests were compared at baseline and after 3 and 12 months of treatment. These included lung function tests, a 6-min walking test (6MWT), and enzyme-linked immunosorbent assays of serum and sputum markers, such as interleukins (IL-6, IL-8, IL-13, IL-5), tumor necrosis factor receptor 2 (TNFR2), and inflammatory markers. Incidence rate ratios (IRR) and their 95% confidence intervals (95% CI) are reported. RESULTS Of the 478 eligible patients, the 42 who started azithromycin experienced reductions in AECOPDs (IRR, 0.34; 95% CI, 0.26-0.45) and hospitalizations (IRR, 0.39; 95% CI, 0.28-0.49). Treatment was also associated with significant improvement in the partial arterial pressure of oxygen (9.2 mmHg, 95% CI 1.4-16.9) at 12 months. While TNFR2 was reduced significantly in both serum and sputum samples, IL-13 and IL-6 were only significantly reduced in serum samples. Moreover, an elevated serum and sputum IL-8 level significantly predicted good clinical response to treatment. CONCLUSION Continuous azithromycin treatment in a cohort of patients with severe COPD and frequent exacerbations can significantly reduce the number and severity of exacerbations and improve gas exchange. Treatment changes the pattern of microorganism isolates and decreases the inflammatory response. Of note, IL-8 may have utility as a predictor of clinical response to azithromycin treatment.
Collapse
Affiliation(s)
- Ester Cuevas
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Institut d’Investigacio Biomedica de Bellvitge – IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Huertas
- Department of Respiratory Medicine, Consorci Sanitari Alt Penedès Garraf, Barcelona, Spain
| | - Concepción Montón
- Department of Respiratory Medicine, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Alicia Marin
- Research Network for Respiratory Diseases (CIBERes), ISCIII, Madrid, Spain
- Department of Respiratory Medicine, Hospital Germans Trias i Pujol, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol – IGTP, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Anna Carrera-Salinas
- Department of Microbiology, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Pomares
- Department of Respiratory Medicine, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Marian García-Nuñez
- Department of Respiratory Medicine, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain
- Research Network for Respiratory Diseases (CIBERes), ISCIII, Madrid, Spain
| | - Sara Martí
- Research Network for Respiratory Diseases (CIBERes), ISCIII, Madrid, Spain
- Department of Microbiology, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Salud Santos
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Institut d’Investigacio Biomedica de Bellvitge – IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERes), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Huynh DTM, Hai HT, Hau NM, Lan HK, Vinh TP, Tran VD, Pham DT. Preparations and characterizations of effervescent granules containing azithromycin solid dispersion for children and elder: Solubility enhancement, taste-masking, and digestive acidic protection. Heliyon 2023; 9:e16592. [PMID: 37292293 PMCID: PMC10245243 DOI: 10.1016/j.heliyon.2023.e16592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Azithromycin, a macrolide antibiotics, is one of the frequently used drugs in the children and elder. However, due to these population difficulty in swallowing and inefficient absorption, and azithromycin inherent poor solubility, bitter taste, and instability in the stomach acidic condition, it is a challenge to reach high oral bioavailability of this drug. To overcome these issues, we developed and characterized the effervescent granules containing azithromycin solid dispersion. Firstly, the solid dispersion was prepared, employing both wet grinding and solvent evaporation methods, with different types/amounts of polymers. The optimal solid dispersion with β-cyclodextrin at a drug:polymer ratio of 1:2 (w/w), prepared by the solvent evaporation method, significantly enhanced the azithromycin solubility 4-fold compared to the free drug, improved its bitterness from "bitter" to "normal", possessed intermolecular bonding between the drug and polymer, and transformed the azithromycin molecules from crystalline to amorphous state. Secondly, the effervescent granules incorporating the solid dispersion were formulated with varied excipients of sweeteners, gas-generators, pH modulators, and glidants/lubricants. The optimal formula satisfied all the properties stated in the Vietnamese Pharmacopoeia. In summary, the final effervescent granules product could be further investigated in in-vivo and in clinical settings to become a potential azithromycin delivery system with high bioavailability for the children and elder.
Collapse
Affiliation(s)
- Duyen Thi My Huynh
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Thien Hai
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Nguyen Minh Hau
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Kim Lan
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Truong Phu Vinh
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Viet Nam
| |
Collapse
|
4
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Huang Y, Wang W, Huang Q, Wang Z, Xu Z, Tu C, Wan D, He M, Yang X, Xu H, Wang H, Zhao Y, Tu M, Zhou Q. Clinical Efficacy and In Vitro Drug Sensitivity Test Results of Azithromycin Combined With Other Antimicrobial Therapies in the Treatment of MDR P. aeruginosa Ventilator-Associated Pneumonia. Front Pharmacol 2022; 13:944965. [PMID: 36034783 PMCID: PMC9399346 DOI: 10.3389/fphar.2022.944965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the research was to study the effect of azithromycin (AZM) in the treatment of MDR P. aeruginosa VAP combined with other antimicrobial therapies. Methods: The clinical outcomes were retrospectively collected and analyzed to elucidate the efficacy of different combinations involving azithromycin in the treatment of MDR-PA VAP. The minimal inhibitory concentration (MIC) of five drugs was measured by the agar dilution method against 27 isolates of MDR-PA, alone or in combination. Results: The incidence of VAP has increased approximately to 10.4% (961/9245) in 5 years and 18.4% (177/961) caused by P. aeruginosa ranking fourth. A total of 151 cases of MDR P. aeruginosa were included in the clinical retrospective study. Clinical efficacy results are as follows: meropenem + azithromycin (MEM + AZM) was 69.2% (9/13), cefoperazone/sulbactam + azithromycin (SCF + AZM) was 60% (6/10), and the combination of three drugs containing AZM was 69.2% (9/13). The curative effect of meropenem + amikacin (MEM + AMK) was better than that of the meropenem + levofloxacin (MEM + LEV) group, p = 0.029 (p < 0.05). The curative effect of cefoperazone/sulbactam + amikacin (SCF + AMK) was better than that of the cefoperazone/sulbactam + levofloxacin (SCF + LEV) group, p = 0.025 (p < 0.05). There was no significant difference between combinations of two or three drugs containing AZM, p > 0.05 (p = 0.806). From the MIC results, the AMK single drug was already very sensitive to the selected strains. When MEM or SCF was combined with AZM, the sensitivity of them to strains can be significantly increased. When combined with MEM and AZM, the MIC50 and MIC90 of MEM decreased to 1 and 2 ug/mL from 8 to 32 ug/mL. When combined with SCF + AZM, the MIC50 of SCF decreased to 16 ug/mL, and the curve shifted obviously. However, for the combination of SCF + LEV + AZM, MIC50 and MIC90 could not achieve substantive changes. From the FIC index results, the main actions of MEM + AZM were additive effects, accounting for 72%; for the combination of SCF + AZM, the additive effect was 40%. The combination of AMK or LEV with AZM mainly showed unrelated effects, and the combination of three drugs could not improve the positive correlation between LEV and AZM. Conclusion: AZM may increase the effect of MEM or SCF against MDR P. aeruginosa VAP. Based on MEM or SCF combined with AMK or AZM, we can achieve a good effect in the treatment of MDR P. aeruginosa VAP.
Collapse
Affiliation(s)
- Yuqin Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Wenguo Wang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiang Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhengyan Wang
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhuanzhuan Xu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chaochao Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Dongli Wan
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Miaobo He
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Xiaoyi Yang
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Huaqiang Xu
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Ying Zhao
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Mingli Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Quan Zhou
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| |
Collapse
|
6
|
Prathapan P. A determination of pan-pathogen antimicrobials? MEDICINE IN DRUG DISCOVERY 2022; 14:100120. [PMID: 35098103 PMCID: PMC8785259 DOI: 10.1016/j.medidd.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
While antimicrobial drug development has historically mitigated infectious diseases that are known, COVID-19 revealed a dearth of 'in-advance' therapeutics suitable for infections by pathogens that have not yet emerged. Such drugs must exhibit a property that is antithetical to the classical paradigm of antimicrobial development: the ability to treat infections by any pathogen. Characterisation of such 'pan-pathogen' antimicrobials requires consolidation of drug repositioning studies, a new and growing field of drug discovery. In this review, a previously-established system for evaluating repositioning studies is used to highlight 4 therapeutics which exhibit pan-pathogen properties, namely azithromycin, ivermectin, niclosamide, and nitazoxanide. Recognition of the pan-pathogen nature of these antimicrobials is the cornerstone of a novel paradigm of antimicrobial development that is not only anticipatory of pandemics and bioterrorist attacks, but cognisant of conserved anti-infective mechanisms within the host-pathogen interactome which are only now beginning to emerge. Ultimately, the discovery of pan-pathogen antimicrobials is concomitantly the discovery of a new class of antivirals, and begets significant implications for pandemic preparedness research in a world after COVID-19.
Collapse
Affiliation(s)
- Praveen Prathapan
- New Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
7
|
Kadushkin AG, Tahanovich AD, Movchan LV, Kolesnikova TS, Khadasouskaya EV, Shman TV. The Effect of Glucocorticoids in Combination with Azithromycin or Theophylline on Cytokine Production by NK and NKT-Like Blood Cells of Patients with Chronic Obstructive Pulmonary Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2021. [DOI: 10.1134/s1990750821040053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Zhang J, Ye Z, Tan L, Luo J. Giant Hepatic Hemangioma Regressed Significantly Without Surgical Management: A Case Report and Literature Review. Front Med (Lausanne) 2021; 8:712324. [PMID: 34490301 PMCID: PMC8416894 DOI: 10.3389/fmed.2021.712324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatic hemangioma (HH) is a congenital vascular anomaly comprising networks of abnormal blood and/or lymphatic vessels with endothelial cell proliferation. Their pathophysiology is not fully understood, and no specific drug is available to treat them. Conservative management, which limits observation, is preferred for most patients. A HH larger than 4 cm is considered a giant HH that may be treated using surgery ranging from embolization to hepatic resection or liver transplantation. Here, we describe a case with multiple and giant HHs that regressed significantly after treatment with azithromycin (AZM). A systematic literature review of HH and the effects of AZM on angiogenesis was then conducted.
Collapse
Affiliation(s)
- Jingcong Zhang
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuyang Ye
- Department of Nephrology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Tan
- Department of Medical Ultrasonic, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinmei Luo
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Kadushkin AG, Tahanovich AD, Movchan LV, Kolesnikova TS, Khadasouskaya AV, Shman TV. [The effect of glucocorticoids in combination with azithromycin or theophylline on cytokine production by NK and NKT-like blood cells of patients with chronic obstructive pulmonary disease]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:352-359. [PMID: 34414894 DOI: 10.18097/pbmc20216704352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by reduced sensitivity of cells to the anti-inflammatory effects of glucocorticoids (GCs). Azithromycin and a low dose theophylline have a significant impact on molecular mechanisms leading to corticosteroid resistance. The aim of this study was to evaluate the ability of azithromycin and theophylline to enhance the anti-inflammatory effects of GCs on the production of cytokines by NK and NKT-like blood cells of COPD patients. Whole blood cells from COPD patients (n=21) were incubated in the presence of budesonide (10 nM), azithromycin (10 μg/mL), theophylline (1 μM), or their combinations and stimulated with phorbol myristate acetate (50 ng/mL). Intracellular production of proinflammatory cytokines in NK (CD3-CD56+) and NKT-like (CD3+CD56+) blood cells was analyzed by flow cytometry. Budesonide reduced synthesis of interleukin 4 (IL-4), CXCL8, tumor necrosis factor α (TNFα) by NK and NKT-like cells, as well as production of interferon γ (IFNγ) by NK cells. Azithromycin suppressed production of IL-4 and CXCL8 by NK and NKT-like cells, and theophylline inhibited IL-4 synthesis by these lymphocytes. The combination of azithromycin and budesonide had a more pronounced inhibitory effect on the production of IL-4 and CXCL8 by NK and NKT-like cells than the effect of these drugs alone. The combination of theophylline and budesonide suppressed synthesis of IL-4 and CXCL8 by NK and NKT-like cells, as well as the production of TNFα and IFNγ by NK cells stronger than budesonide alone. The obtained results demonstrate the benefits for the combined use of GCs with theophylline at a low dose or azithromycin to suppress the inflammatory process in patients with COPD.
Collapse
Affiliation(s)
| | | | - L V Movchan
- Republican Scientific and Practical Center of Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | | | - T V Shman
- Republican Scientific and Practical Center of Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|