1
|
Xu H, Lu J, Huang F, Zhang Q, Liu S, Chen Z, Li S. A genome-wide CRISPR screen identified host genes essential for intracellular Brucella survival. Microbiol Spectr 2024; 12:e0338323. [PMID: 38376367 PMCID: PMC10986529 DOI: 10.1128/spectrum.03383-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Brucella is a zoonotic intracellular bacterium that poses threats to human health and economic security. Intracellular infection is a hallmark of the agent Brucella and a primary cause of distress, through which the bacterium regulates the host intracellular environment to promote its own colonization and replication, evading host immunity and pharmaceutical killing. Current studies of Brucella intracellular processes are typically premised on bacterial phenotype such as intracellular bacterial survival, followed by biochemical or molecular biological approaches to reveal detailed mechanisms. While such processes can deepen the understanding of Brucella-host interaction, the insights into host alterations in infection would be easily restricted to known pathways. In the current study, we applied CRISPR Cas9 screen to identify host genes that are most affected by Brucella infection on cell viability at the genomic level. As a result of CRISPR screening, we firstly identified that knockout of the negatively selected genes GOLGA6L6, DEFB103B, OR4F29, and ERCC6 attenuate the viability of both the host cells and intracellular Brucella, suggesting these genes to be potential therapeutic targets for Brucella control. In particular, knockout of DEFB103B diminished Brucella intracellular survival by altering host cell autophagy. Conversely, knockout of positive screening genes promoted intracellular proliferation of Brucella. In summary, we screened host genes at the genomic level throughout Brucella infection, identified host genes that are previously not recognized to be involved in Brucella infection, and provided targets for intracellular infection control.IMPORTANCEBrucella is a Gram-negative bacterium that infects common mammals causing arthritis, myalgia, neuritis, orchitis, or miscarriage and is difficult to cure with antibiotics due to its intracellular parasitism. Therefore, unraveling the mechanism of Brucella-host interactions will help controlling Brucella infections. CRISPR-Cas9 is a gene editing technology that directs knockout of individual target genes by guided RNA, from which genome-wide gene-knockout cell libraries can be constructed. Upon infection with Brucella, the cell library would show differences in viability as a result of the knockout and specific genes could be revealed by genomic DNA sequencing. As a result, genes affecting cell viability during Brucella infection were identified. Further testing of gene function may reveal the mechanisms of Brucella-host interactions, thereby contributing to clinical therapy.
Collapse
Affiliation(s)
- Heling Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jingjing Lu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qi Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shuang Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
4
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Mohammadi E, Golchin M. High protection of mice against Brucella abortus by oral immunization with recombinant probiotic Lactobacillus casei vector vaccine, expressing the outer membrane protein OMP19 of Brucella species. Comp Immunol Microbiol Infect Dis 2020; 70:101470. [PMID: 32208191 DOI: 10.1016/j.cimid.2020.101470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 03/01/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
Brucellosis is a zoonotic disease threatening the public health and hindering the trade of animals and their products, which has a negative impact on the economic development of a country. Vaccination is the most effective way to control brucellosis. The recombinant vector vaccines are promising candidates for immunization in humans and animals. In this study, the gene encoding OMP19 antigen was primarily amplified and cloned into an expression vector called pT1NX, and then transformed to L. casei cell via electroporation technique. The expression was confirmed using specific antibody against the recombinant protein via immunological screening tests such as western blot and immunofluorescence assay. Finally, recombinant L. casei was orally fed to mice and the results were further recorded, indicating that the mice group which received OMP19 through L. casei based vaccine represented a very good general and mucosal immune responses protective against challenges with virulent B. abortus 544 strain compared with negative control recipient groups. Therefore, the vaccine produced in this research plan can be a very good candidate for protection against brucellosis.
Collapse
Affiliation(s)
- Elham Mohammadi
- Section of Microbiology, Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Section of Microbiology, Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
6
|
Celli J. The Intracellular Life Cycle of Brucella spp. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0006-2019. [PMID: 30848234 PMCID: PMC6448592 DOI: 10.1128/microbiolspec.bai-0006-2019] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
Bacteria of the genus Brucella colonize a wide variety of mammalian hosts, in which their infectious cycle and ability to cause disease predominantly rely on an intracellular lifestyle within phagocytes. Upon entry into host cells, Brucella organisms undergo a complex, multistage intracellular cycle in which they sequentially traffic through, and exploit functions of, the endocytic, secretory, and autophagic compartments via type IV secretion system (T4SS)-mediated delivery of bacterial effectors. These effectors modulate an array of host functions and machineries to first promote conversion of the initial endosome-like Brucella-containing vacuole (eBCV) into a replication-permissive organelle derived from the host endoplasmic reticulum (rBCV) and then to an autophagy-related vacuole (aBCV) that mediates bacterial egress. Here we detail and discuss our current knowledge of cellular and molecular events of the Brucella intracellular cycle. We discuss the importance of the endosomal stage in determining T4SS competency, the roles of autophagy in rBCV biogenesis and aBCV formation, and T4SS-driven mechanisms of modulation of host secretory traffic in rBCV biogenesis and bacterial egress.
Collapse
Affiliation(s)
- Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| |
Collapse
|
7
|
Brucella neotomae Recapitulates Attributes of Zoonotic Human Disease in a Murine Infection Model. Infect Immun 2018; 87:IAI.00255-18. [PMID: 30373892 DOI: 10.1128/iai.00255-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
Members of the genus Brucella are Gram-negative pathogens that cause chronic systemic infection in farm animals and zoonotic infection in humans. Study of the genus Brucella has been hindered by the need for biosafety level 3 select agent containment. Brucella neotomae, originally isolated from the desert pack rat, presented an opportunity to develop an alternative, non-select agent experimental model. Our prior in vitro work indicated that the cell biology and type IV secretion system (T4SS) dependence of B. neotomae intracellular replication were similar to observations for human-pathogenic select agent Brucella species. Therefore, here, we investigated the pathobiology of B. neotomae infection in the BALB/c mouse. During a sustained infectious course, B. neotomae replicated and persisted in reticuloendothelial organs. Bioluminescent imaging and histopathological and PCR-based analysis demonstrated that the T4SS contributed to efficient early infection of the liver, spleen, and lymph nodes; granuloma formation and hepatosplenomegaly; and early induction of Th1-associated cytokine gene expression. The infectious course and pathologies in the murine model showed similarity to prior observations of primate and native host infection with zoonotic Brucella species. Therefore, the B. neotomae BALB/c infection model offers a promising system to accelerate and complement experimental work in the genus Brucella.
Collapse
|
8
|
Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Infect Immun 2018; 86:IAI.00312-18. [PMID: 29844240 DOI: 10.1128/iai.00312-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.
Collapse
|
9
|
Im YB, Shim S, Soh SH, Kim S, Yoo HS. Cytokines production and toll-like receptors expression in human leukemic monocyte cells, THP-1, stimulated with Brucella abortus cellular antigens. Microb Pathog 2018; 122:7-12. [PMID: 29883656 DOI: 10.1016/j.micpath.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
A zoonotic pathogen, Brucella spp. is the causative agent of brucellosis, which results in abortion and loss in milk production in domestic animals, and undulant fever, osteoarticular pain and splenomegaly in humans. Due to the capability of the bacteria to modulate the host cell functions and survive in macrophages, early detection and eradication of the intracellular bacteria has received significant attention. Moreover, understanding the immunological alterations in Brucella infection is crucial to help develop control measures. Cytokines and toll-like receptors (TLRs) are some of the major compounds that play important roles in modulating the innate immunity and acquired immunity in host after infection. In this study, therefore, human leukemic monocyte cells (THP-1 cells) were stimulated with five Brucella abortus cellular components: outer membrane protein 10 (OMP10), outer membrane protein 19 (OMP19), thiamine transporter substrate-binding protein (TbpA), arginase (RocF), and malate dehydrogenase (Mdh). Post stimulation, the cytokine productions and TLR expressions in the cells were evaluated at different time points (12 h and 24 h), and analyzed using ELISA and real time RT-PCR, respectively. In the production of cytokines, it was observed that the production of TNF-α and IL-6 was highly induced in THP-1 cells stimulated with five recombinant protein antigens. Also, TLR8 was induced in a time-dependent manner after stimulation with two recombinant proteins, rOMP19 and rMdh, until 24 h. These results suggest that the two B. abortus antigens, rOMP19 and rMdh, might be involved in TLR8 signaling pathway in THP-1 cells in a time-dependent manner. These two proteins are therefore potentially effective antigen candidates which would help to provide better understandings of the immune responses after Brucella infection.
Collapse
Affiliation(s)
- Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Im YB, Park WB, Jung M, Kim S, Yoo HS. Comparative Analysis of Immune Responses to Outer Membrane Antigens OMP10, OMP19, and OMP28 of Brucella abortus. Jpn J Infect Dis 2018; 71:197-204. [PMID: 29709972 DOI: 10.7883/yoken.jjid.2017.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brucella infection is accompanied by cytokine production, which serves as an important factor to evaluate the innate and adaptive immune responses. Several researchers have been investigating the mechanisms involved in Brucella infection in the host. Here, we conducted an analytical study to define pathogenic pathways and immune mechanisms involved in Brucella infection by investigating the antigenic efficacy of recombinant outer membrane protein 10 (rOMP10), outer membrane protein 19 (rOMP19), and outer membrane protein 28 (rOMP28) in vitro and in vivo upon stimulation/immunization. Cytokine production was analyzed by nitric oxide (NO) assay and enzyme-linked immunosorbent assay (ELISA) after stimulation of RAW 264.7 cells and naive splenocytes with the recombinant proteins. Our results show that levels of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 increased in RAW 264.7 cells in a time-dependent manner following recombinant protein stimulation. In contrast, levels of interferon (IFN)-γ and IL-2 increased in naive splenocytes after stimulation with proteins. ELISA and ELISpot assays were performed after immunization of mice with recombinant proteins. rOMP28 greatly increased IFN-γ, IL-2, and TNF-α levels than IL-4 and IL-6 levels in vitro. Of the recombinant proteins, rOMP19 elicited a mixed Th1/Th2 immune response by increasing the number of IgG-secreting cells in vivo.
Collapse
Affiliation(s)
- Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University.,Institute of Green Bio Science and Technology, Seoul National University
| |
Collapse
|
11
|
Sedzicki J, Tschon T, Low SH, Willemart K, Goldie KN, Letesson JJ, Stahlberg H, Dehio C. 3D correlative electron microscopy reveals continuity of Brucella-containing vacuoles with the endoplasmic reticulum. J Cell Sci 2018; 131:jcs.210799. [PMID: 29361547 DOI: 10.1242/jcs.210799] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/04/2018] [Indexed: 01/17/2023] Open
Abstract
Entry of the facultative intracellular pathogen Brucella into host cells results in the formation of endosomal Brucella-containing vacuoles (eBCVs) that initially traffic along the endocytic pathway. eBCV acidification triggers the expression of a type IV secretion system that translocates bacterial effector proteins into host cells. This interferes with lysosomal fusion of eBCVs and supports their maturation to replicative Brucella-containing vacuoles (rBCVs). Bacteria replicate in rBCVs to large numbers, eventually occupying most of the cytoplasmic volume. As rBCV membranes tightly wrap each individual bacterium, they are constantly being expanded and remodeled during exponential bacterial growth. rBCVs are known to carry endoplasmic reticulum (ER) markers; however, the relationship of the vacuole to the genuine ER has remained elusive. Here, we have reconstructed the 3-dimensional ultrastructure of rBCVs and associated ER by correlative structured illumination microscopy (SIM) and focused ion beam/scanning electron microscopic tomography (FIB/SEM). Studying B. abortus-infected HeLa cells and trophoblasts derived from B. melitensis-infected mice, we demonstrate that rBCVs are complex and interconnected compartments that are continuous with neighboring ER cisternae, thus supporting a model that rBCVs are extensions of genuine ER.
Collapse
Affiliation(s)
- Jaroslaw Sedzicki
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland.,Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Therese Tschon
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Shyan Huey Low
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Kevin Willemart
- Microorganisms Biology Research Unit (URBM, Unité de Recherche en Biologie des Microorganismes), University of Namur, 5000 Namur, Belgium
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jean-Jacques Letesson
- Microorganisms Biology Research Unit (URBM, Unité de Recherche en Biologie des Microorganismes), University of Namur, 5000 Namur, Belgium
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Pujol M, Castillo F, Alvarez C, Rojas C, Borie C, Ferreira A, Vernal R. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Vet Res 2017; 48:72. [PMID: 29096717 PMCID: PMC5667440 DOI: 10.1186/s13567-017-0476-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/16/2017] [Indexed: 01/30/2023] Open
Abstract
Brucella canis is a small intracellular Gram-negative bacterium whose primary host is the dog, but it also can cause mild human brucellosis. One of the main causes of an inefficient immune response against other species of Brucella is their interaction with dendritic cells (DCs), which affects antigen presentation and impairs the development of an effective Th1 immune response. This study analysed the cytokine pattern production, by RT-qPCR and ELISA, in human and canine DCs against whole B. canis or its purified LPS. Human and canine DCs produced different patterns of cytokines after stimulation with B. canis. In particular, while human DCs produced a Th1-pattern of cytokines (IL-1β, IL-12, and TNF-α), canine cells produced both Th1 and Th17-related cytokines (IL-6, IL-12, IL-17, and IFN-γ). Thus, differences in susceptibility and pathogenicity between these two hosts could be explained, at least partly, by the distinct cytokine patterns observed in this study, where we propose that human DCs induce an effective Th1 immune response to control the infection, while canine DCs lead to a less effective immune response, with the activation of Th17-related response ineffective to control the B. canis infection.
Collapse
Affiliation(s)
- Myriam Pujol
- Doctoral Program in Agronomy Forestry and Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile.,Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Camila Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Laboratory of Veterinary Bacteriology, Department of Animal Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile. .,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Gutiérrez S, Wolke M, Plum G, Robinson N. Isolation of Salmonella typhimurium-containing Phagosomes from Macrophages. J Vis Exp 2017. [PMID: 29155747 DOI: 10.3791/56514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella typhimurium is a facultative intracellular bacterium that causes gastroenteritis in humans. After invasion of the lamina propria, S. typhimurium bacteria are quickly detected and phagocytized by macrophages, and contained in vesicles known as phagosomes in order to be degraded. Isolation of S. typhimurium-containing phagosomes have been widely used to study how S. typhimurium infection alters the process of phagosome maturation to prevent bacterial degradation. Classically, the isolation of bacteria-containing phagosomes has been performed by sucrose gradient centrifugation. However, this process is time-consuming, and requires specialized equipment and a certain degree of dexterity. Described here is a simple and quick method for the isolation of S. typhimurium-containing phagosomes from macrophages by coating the bacteria with biotin-streptavidin-conjugated magnetic beads. Phagosomes obtained by this method can be suspended in any buffer of choice, allowing the utilization of isolated phagosomes for a broad range of assays, such as protein, metabolite, and lipid analysis. In summary, this method for the isolation of S. typhimurium-containing phagosomes is specific, efficient, rapid, requires minimum equipment, and is more versatile than the classical method of isolation by sucrose gradient-ultracentrifugation.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Martina Wolke
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Georg Plum
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Nirmal Robinson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne;
| |
Collapse
|
14
|
Th2-related immune responses by the Brucella abortus cellular antigens, malate dehydrogenase, elongation factor, and arginase. Microb Pathog 2017. [PMID: 28629726 DOI: 10.1016/j.micpath.2017.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brucellosis is an important zoonotic disease caused by Brucella species. The disease is difficult to control due to the intracellular survival of the bacterium and the lack of precise understanding of pathogenesis. Despite of continuous researches on the pathogenesis of Brucella spp. infection, there is still question on the pathogenesis, especially earlier immune response in the bacterial infection. Malate dehydrogenase (MDH), elongation factor (Tsf), and arginase (RocF), which showed serological reactivity, were purified after gene cloning, and their immune modulating activities were then analyzed in a murine model. Cytokine production profiles were investigated by stimulating RAW 264.7 cells and naïve splenocytes with the three recombinant proteins. Also, immune responses were analyzed by ELISA and an ELIspot assay after immunizing mice with the three proteins. Only TNF-α was produced in stimulated RAW 264.7 cells, whereas Th1-related cytokines, IFN-γ and IL-2, were induced in naïve splenocytes. In contrast, Th2-type immune response was more strongly induced in antigen-secreting cells in the splenocytes obtained 28 days after immunizing mice with the three proteins, as were IgM and IgG. The induction of Th2-related antibody, IgG1, was higher than the Th1-related antibody, IgG2a, in immunized mice. These results suggest that the three proteins strongly induce Th2-type immune response in vivo, even though Th1-related cytokines were produced in vitro.
Collapse
|
15
|
Di Russo Case E, Smith JA, Ficht TA, Samuel JE, de Figueiredo P. Space: A Final Frontier for Vacuolar Pathogens. Traffic 2016; 17:461-74. [PMID: 26842840 PMCID: PMC6048968 DOI: 10.1111/tra.12382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
There is a fundamental gap in our understanding of how a eukaryotic cell apportions the limited space within its cell membrane. Upon infection, a cell competes with intracellular pathogens for control of this same precious resource. The struggle between pathogen and host provides us with an opportunity to uncover the mechanisms regulating subcellular space by understanding how pathogens modulate vesicular traffic and membrane fusion events to create a specialized compartment for replication. By comparing several important intracellular pathogens, we review the molecular mechanisms and trafficking pathways that drive two space allocation strategies, the formation of tight and spacious pathogen-containing vacuoles. Additionally, we discuss the potential advantages of each pathogenic lifestyle, the broader implications these lifestyles might have for cellular biology and outline exciting opportunities for future investigation.
Collapse
Affiliation(s)
- Elizabeth Di Russo Case
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Brucella canis is an intracellular pathogen that induces a lower proinflammatory response than smooth zoonotic counterparts. Infect Immun 2015; 83:4861-70. [PMID: 26438796 DOI: 10.1128/iai.00995-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly.
Collapse
|
17
|
Celli J. The changing nature of the Brucella-containing vacuole. Cell Microbiol 2015; 17:951-8. [PMID: 25916795 DOI: 10.1111/cmi.12452] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
Bacteria of the genus Brucella are intracellular vacuolar pathogens of mammals that cause the worldwide zoonosis brucellosis, and reside within phagocytes of infected hosts to promote their survival, persistence and proliferation. These traits are essential to the bacterium's ability to cause disease and have been the subject of much investigation to gain an understanding of Brucella pathogenic mechanisms. Although the endoplasmic reticulum-derived nature of the Brucella replicative niche has been long known, major strides have recently been made in deciphering the molecular mechanisms of its biogenesis, including the identification of bacterial determinants and host cellular pathways involved in this process. Here I will review and discuss the most recent advances in our knowledge of Brucella intracellular pathogenesis, with an emphasis on bacterial exploitation of the host endoplasmic reticulum-associated functions, and how autophagy-related processes contribute to the bacterium's intracellular cycle.
Collapse
Affiliation(s)
- Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
18
|
Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 2014; 13:71-82. [PMID: 25534809 DOI: 10.1038/nrmicro3393] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.
Collapse
|
19
|
Saeedinia AR, Zeinoddini M, Soleimani M, Sadeghizadeh M. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1. Microbiol Res 2014; 170:114-23. [PMID: 25249309 DOI: 10.1016/j.micres.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression.
Collapse
Affiliation(s)
- Ali Reza Saeedinia
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Genetics, Science and Biotechnology Research Center, Mallek-Ashtar University of Technology, P.O. Box: 15875-1774, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| |
Collapse
|
20
|
Lim JJ, Kim DH, Lee JJ, Kim DG, Min W, Lee HJ, Rhee MH, Kim S. Protective effects of recombinant Brucella abortus Omp28 against infection with a virulent strain of Brucella abortus 544 in mice. J Vet Sci 2013; 13:287-92. [PMID: 23000585 PMCID: PMC3467404 DOI: 10.4142/jvs.2012.13.3.287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The outer membrane proteins (OMPs) of Brucella (B.) abortus have been extensively studied, but their immunogenicity and protective ability against B. abortus infection are still unclear. In the present study, B. abortus Omp28, a group 3 antigen, was amplified by PCR and cloned into a maltose fusion protein expression system. Recombinant Omp28 (rOmp28) was expressed in Escherichia coli and was then purified. Immunogenicity of rOmp28 was confirmed by Western blot analysis with Brucella-positive mouse serum. Furthermore, humoral- or cell-mediated immune responses measured by the production of IgG1 or IgG2a in rOmp28-immunized mice and the ability of rOmp28 immunization to protect against B. abortus infection were evaluated in a mouse model. In the immunogenicity analysis, the mean titers of IgG1 and IgG2a produced by rOmp28-immunized mice were 20-fold higher than those of PBS-treated mice throughout the entire experimental period. Furthermore, spleen proliferation and bacterial burden in the spleen of rOmp28-immunized mice were approximately 1.5-fold lower than those of PBS-treated mice when challenged with virulent B. abortus. These findings suggest that rOmp28 from B. abortus is a good candidate for manufacturing an effective subunit vaccine against B. abortus infection in animals.
Collapse
Affiliation(s)
- Jeong Ju Lim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells. Vet Microbiol 2012; 158:322-8. [DOI: 10.1016/j.vetmic.2012.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
|
22
|
Abstract
Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts.
Collapse
|
23
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
24
|
Eskra L, Covert J, Glasner J, Splitter G. Differential expression of iron acquisition genes by Brucella melitensis and Brucella canis during macrophage infection. PLoS One 2012; 7:e31747. [PMID: 22403618 PMCID: PMC3293887 DOI: 10.1371/journal.pone.0031747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/12/2012] [Indexed: 12/27/2022] Open
Abstract
Brucella spp. cause chronic zoonotic disease often affecting individuals and animals in impoverished economic or public health conditions; however, these bacteria do not have obvious virulence factors. Restriction of iron availability to pathogens is an effective strategy of host defense. For brucellae, virulence depends on the ability to survive and replicate within the host cell where iron is an essential nutrient for the growth and survival of both mammalian and bacterial cells. Iron is a particularly scarce nutrient for bacteria with an intracellular lifestyle. Brucella melitensis and Brucella canis share ∼99% of their genomes but differ in intracellular lifestyles. To identify differences, gene transcription of these two pathogens was examined during infection of murine macrophages and compared to broth grown bacteria. Transcriptome analysis of B. melitensis and B. canis revealed differences of genes involved in iron transport. Gene transcription of the TonB, enterobactin, and ferric anguibactin transport systems was increased in B. canis but not B. melitensis during infection of macrophages. The data suggest differences in iron requirements that may contribute to differences observed in the lifestyles of these closely related pathogens. The initial importance of iron for B. canis but not for B. melitensis helps elucidate differing intracellular survival strategies for two closely related bacteria and provides insight for controlling these pathogens.
Collapse
Affiliation(s)
- Linda Eskra
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jill Covert
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, California, United States of America
| | - Jeremy Glasner
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gary Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kim DH, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Kim KD, Chang HH, Endale M, Rhee MH, Watarai M, Kim S. RGS2-Mediated Intracellular Ca2+ Level Plays a Key Role in the Intracellular Replication of Brucella abortus Within Phagocytes. J Infect Dis 2011; 205:445-52. [DOI: 10.1093/infdis/jir765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Li Q, Jagannath C, Rao PK, Singh CR, Lostumbo G. Analysis of phagosomal proteomes: from latex-bead to bacterial phagosomes. Proteomics 2011; 10:4098-116. [PMID: 21080496 DOI: 10.1002/pmic.201000210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phagosomal proteome characterization has contributed significantly to the understanding of host-pathogen interaction and the mechanism of infectious diseases caused by intracellular bacteria. The latex bead-containing phagosome has been widely used as a model system to study phagosomal proteomes at a global level. In contrast, the study of bacteria-containing phagosomes at a similar level has just begun. A number of intracellular microbial species are studied for their proteomes during the invasion of a host, providing insight into their metabolic adaptation in host cells and interaction with host-cell antimicrobial environments. In this review, we attempt to summarize the most recent advancements in the proteomic study of microbial phagosomes, especially those originating from mouse or human cells. We also briefly describe the proteomics of latex bead-containing phagosomes because they are often used as model phagosomes for study. We provide descriptions on major biological and technological components in phagosomal proteome studies. We also discuss the role of phagosomal proteome study in the broader horizon of systems biology and the technological challenges in phagosomal proteome characterization.
Collapse
Affiliation(s)
- Qingbo Li
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
27
|
Neta AVC, Mol JP, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. Vet J 2010; 184:146-55. [DOI: 10.1016/j.tvjl.2009.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/05/2009] [Accepted: 04/13/2009] [Indexed: 12/14/2022]
|
28
|
Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 2009; 198:221-38. [PMID: 19830453 DOI: 10.1007/s00430-009-0123-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Indexed: 02/06/2023]
Abstract
Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlies their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts, and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host.
Collapse
|
29
|
Chen F, He Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One 2009; 4:e6830. [PMID: 19714247 PMCID: PMC2729395 DOI: 10.1371/journal.pone.0006830] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/29/2009] [Indexed: 12/15/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed.
Collapse
Affiliation(s)
- Fang Chen
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rossetti CA, Galindo CL, Lawhon SD, Garner HR, Adams LG. Brucella melitensis global gene expression study provides novel information on growth phase-specific gene regulation with potential insights for understanding Brucella:host initial interactions. BMC Microbiol 2009; 9:81. [PMID: 19419566 PMCID: PMC2684542 DOI: 10.1186/1471-2180-9-81] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/06/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella spp. are the etiological agents of brucellosis, a zoonotic infectious disease that causes abortion in animals and chronic debilitating illness in humans. Natural Brucella infections occur primarily through an incompletely defined mechanism of adhesion to and penetration of mucosal epithelium. In this study, we characterized changes in genome-wide transcript abundance of the most and the least invasive growth phases of B. melitensis cultures to HeLa cells, as a preliminary approach for identifying candidate pathogen genes involved in invasion of epithelial cells. RESULTS B. melitensis at the late logarithmic phase of growth are more invasive to HeLa cells than mid-logarithmic or stationary growth phases. Microarray analysis of B. melitensis gene expression identified 414 up- and 40 down-regulated genes in late-log growth phase (the most invasive culture) compared to the stationary growth phase (the least invasive culture). As expected, the majority of up-regulated genes in late-log phase cultures were those associated with growth, including DNA replication, transcription, translation, intermediate metabolism, energy production and conversion, membrane transport, and biogenesis of the cell envelope and outer membrane; while the down-regulated genes were distributed among several functional categories. CONCLUSION This Brucella global expression profile study provides novel information on growth phase-specific gene expression. Further characterization of some genes found differentially expressed in the most invasive culture will likely bring new insights into the initial molecular interactions between Brucella and its host.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77483-4467, USA.
| | | | | | | | | |
Collapse
|
31
|
Proinflammatory response of human osteoblastic cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect Immun 2008; 77:984-95. [PMID: 19103778 DOI: 10.1128/iai.01259-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ability of Brucella spp. to infect human osteoblasts and the cytokine response of these cells to infection were investigated in vitro. Brucella abortus, B. suis, B. melitensis, and B. canis were able to infect the SaOS-2 and MG-63 osteoblastic cell lines, and the first three species exhibited intracellular replication. B. abortus internalization was not significantly affected by pretreatment of cells with cytochalasin D but was inhibited up to 92% by colchicine. A virB10 mutant of B. abortus could infect but not replicate within osteoblasts, suggesting a role for the type IV secretion system in intracellular survival. Infected osteoblasts produced low levels of chemokines (interleukin-8 [IL-8] and macrophage chemoattractant protein 1 [MCP-1]) and did not produce proinflammatory cytokines (IL-1beta, IL-6, and tumor necrosis factor alpha [TNF-alpha]). However, osteoblasts stimulated with culture supernatants from Brucella-infected human monocytes (THP-1 cell line) produced chemokines at levels 12-fold (MCP-1) to 17-fold (IL-8) higher than those of infected osteoblasts and also produced IL-6. In the inverse experiment, culture supernatants from Brucella-infected osteoblasts induced the production of IL-8, IL-1beta, IL-6, and TNF-alpha by THP-1 cells. The induction of TNF-alpha and IL-1beta was largely due to granulocyte-macrophage colony-stimulating factor produced by infected osteoblasts, as demonstrated by inhibition with a specific neutralizing antibody. This study shows that Brucella can invade and replicate within human osteoblastic cell lines, which can directly and indirectly mount a proinflammatory response. Both phenomena may have a role in the chronic inflammation and bone and joint destruction observed in osteoarticular brucellosis.
Collapse
|
32
|
González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Álvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 2008; 3:e2760. [PMID: 18648644 PMCID: PMC2453230 DOI: 10.1371/journal.pone.0002760] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
Collapse
Affiliation(s)
- David González
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - María-Jesús De Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Tara Ali
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Rose-May Delrue
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Pilar Muñoz
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio López-Goñi
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Maite Iriarte
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Clara-M. Marín
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Andrej Weintraub
- Karolinska Institute, Department Laboratory Medicine, Division of Clinical Bacteriology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Widmalm
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Michel Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France
| | - Jean-Jacques Letesson
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - José-María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio Moriyón
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
33
|
Nijskens C, Copin R, De Bolle X, Letesson JJ. Intracellular rescuing of a B. melitensis 16M virB mutant by co-infection with a wild type strain. Microb Pathog 2008; 45:134-41. [PMID: 18547782 DOI: 10.1016/j.micpath.2008.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Brucella is a broad-range, facultative intracellular pathogen that can survive and replicate in an endoplasmic reticulum (ER)-derived replication niche by preventing fusion of its membrane-bound compartment with late endosomes and lysosomes. This vacuolar hijacking was demonstrated to be dependent on the type IV secretion system VirB but no secreted effectors have been identified yet. A virB mutant is unable to reach its ER-derived replicative niche and does not multiply intracellularly. In this paper, we showed that, by co-infecting bovine macrophages or HeLa cells with the wild type (WT) strain of Brucella melitensis 16M and a deletion mutant of the complete virB operon, the replication of DeltavirB is rescued in almost 20% of the co-infected cells. Furthermore, we demonstrated that co-infections with the WT strains of Brucella abortus or Brucella suis were equally able to rescue the replication of the B. melitensis DeltavirB mutant. By contrast, no rescue was observed when the WT strain was given 1h before or after the infection with the DeltavirB mutant. Finally, vacuoles containing the rescued DeltavirB mutant were shown to exclude the LAMP-1 marker in a way similar to the WT containing vacuoles.
Collapse
Affiliation(s)
- C Nijskens
- Unité de Recherche en Biologie Moléculaire (URBM), University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
34
|
Tachibana M, Watanabe K, Yamasaki Y, Suzuki H, Watarai M. Expression of heme oxygenase-1 is associated with abortion caused by Brucella abortus infection in pregnant mice. Microb Pathog 2008; 45:105-9. [PMID: 18501554 DOI: 10.1016/j.micpath.2008.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/04/2008] [Accepted: 04/03/2008] [Indexed: 01/02/2023]
Abstract
Brucella abortus is a facultative intracellular pathogen that can survive inside macrophages and trophoblast giant (TG) cells, and the causative agent of brucellosis. In the present study, we found that expression of heme oxygenase-1 (HO-1) in TG cells is correlated with abortion induced by B. abortus infection in pregnant mice. Expression of HO-1 in the placenta was decreased by B. abortus infection and treatment with cobalt-protoporphyrin (Co-PP), which is known to up-regulate HO-1 expression, inhibited abortion due to the bacterial infection. In TG cells, treatment with Co-PP was shown to up-regulate HO-1, whereas its expression was decreased by B. abortus infection. Such down-regulation of HO-1 in the TG cells was enhanced by IFN-gamma treatment. HO-1 down-regulation in TG cells due to knockdown or IFN-gamma treatment served to induce cell death caused by B. abortus infection. These results suggest that down-regulation of HO-1 in TG cells due to B. abortus infection is an important event in infectious abortion.
Collapse
Affiliation(s)
- Masato Tachibana
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro-shi, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
35
|
Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect Immun 2008; 76:1897-907. [PMID: 18316388 DOI: 10.1128/iai.01554-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brucellosis is still a widespread zoonotic disease. Very little is known about the interaction between Brucella abortus and trophoblastic cells, which is essential for better understanding the pathogenesis of the Brucella-induced placentitis and abortion, a key event for transmission of the disease. The goal of this study was to evaluate the profile of gene expression by bovine trophoblastic cells during infection with B. abortus. Explants of chorioallantoic membranes were inoculated with B. abortus strain 2308. Microarray analysis was performed at 4 h after infection, and expression of cytokines and chemokines by trophoblastic cells was assessed by real-time reverse transcription-PCR at 6 and 12 h after inoculation. In addition, cytokine and chemokine expression in placentomes from experimentally infected cows was evaluated. Expression of proinflammatory genes by trophoblastic cells was suppressed at 4 h after inoculation, whereas a significant upregulation of CXC chemokines, namely, CXCL6 (GCP-2) and CXCL8 (interleukin 8), was observed at 12 but not at 6 h after inoculation. Placentomes of experimentally infected cows had a similar profile of chemokine expression, with upregulation of CXCL6 and CXCL8. Our data indicate that B. abortus modulates the innate immune response by trophoblastic cells, suppressing the expression of proinflammatory mediators during the early stages of infection that is followed by a delayed and mild expression of proinflammatory chemokines, which is similar to the profile of chemokine expression in the placentomes of experimentally infected cows. This trophoblastic response is likely to contribute to the pathogenesis of B. abortus-induced placentitis.
Collapse
|
36
|
WATANABE K, IWAI N, TACHIBANA M, FURUOKA H, SUZUKI H, WATARAI M. Regulated upon Activation Normal T-Cell Expressed and Secreted (RANTES) Contributes to Abortion Caused by Brucella abortus Infection in Pregnant Mice. J Vet Med Sci 2008; 70:681-6. [DOI: 10.1292/jvms.70.681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kenta WATANABE
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Natsumi IWAI
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Masato TACHIBANA
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Hidefumi FURUOKA
- Department of Pathological Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Hiroshi SUZUKI
- Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| | - Masahisa WATARAI
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
37
|
Ratushna VG, Sturgill DM, Ramamoorthy S, Reichow SA, He Y, Lathigra R, Sriranganathan N, Halling SM, Boyle SM, Gibas CJ. Molecular targets for rapid identification of Brucella spp. BMC Microbiol 2006; 6:13. [PMID: 16504063 PMCID: PMC1413539 DOI: 10.1186/1471-2180-6-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/22/2006] [Indexed: 11/10/2022] Open
Abstract
Background Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. Results We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. Conclusion Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.
Collapse
Affiliation(s)
- Vladyslava G Ratushna
- Department of Computer Science, College of Information Technology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - David M Sturgill
- Department of Biology, College of Science, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| | - Sheela Ramamoorthy
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| | - Sherry A Reichow
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Raju Lathigra
- Walter Reed Army Institute of Research, Department of Bacterial Diseases, Division of Communicable Diseases and Immunology, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Nammalwar Sriranganathan
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| | - Shirley M Halling
- Bacterial Diseases of Livestock Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Rd, Ames, IA, 50010, USA
| | - Stephen M Boyle
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| | - Cynthia J Gibas
- Department of Computer Science, College of Information Technology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
38
|
Vemulapalli TH, Vemulapalli R, Schurig GG, Boyle SM, Sriranganathan N. Role in virulence of a Brucella abortus protein exhibiting lectin-like activity. Infect Immun 2006; 74:183-91. [PMID: 16368972 PMCID: PMC1346633 DOI: 10.1128/iai.74.1.183-191.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a facultative, intracellular zoonotic pathogen which can cause undulant fever in humans and abortions in cattle. A 14-kDa protein of B. abortus was previously identified to be immunogenic in animals infected with Brucella spp. In this study, we discovered that the 14-kDa protein possessed immunoglobulin binding and hemagglutination properties that appeared to be based on the protein's lectin-like properties. Hemagglutination inhibition experiments suggested that the 14-kDa protein has affinity towards mannose. Disruption of the gene encoding the 14-kDa protein in virulent B. abortus strain 2308 induced a rough-like phenotype with an altered smooth lipopolysaccharide (LPS) immunoblot profile and a significant reduction in the bacterium's ability to replicate in mouse spleens. However, the mutant strain was stably maintained in mouse spleens at 2.0 to 2.6 log(10) CFU/spleen from day 1 to week 6 after intraperitoneal inoculation with 4.65 log(10) CFU. In contrast to the case for the smooth virulent strain 2308, in the rough attenuated strain RB51 disruption of the 14-kDa protein's gene had no effect on the mouse clearance pattern. These findings indicate that the 14-kDa protein of B. abortus possesses lectin-like properties and is essential for the virulence of the species, probably because of its direct or indirect role in the synthesis of smooth LPS.
Collapse
Affiliation(s)
- Tracy H Vemulapalli
- Center for Molecular Medicine and Infectious Diseases, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
39
|
Bellaire BH, Roop RM, Cardelli JA. Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect Immun 2005; 73:3702-13. [PMID: 15908400 PMCID: PMC1111828 DOI: 10.1128/iai.73.6.3702-3713.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/16/2004] [Accepted: 02/15/2005] [Indexed: 11/20/2022] Open
Abstract
Cells in the Brucella spp. are intracellular pathogens that survive and replicate within host monocytes. Brucella maintains persistent infections in animals despite the production of high levels of anti-Brucella-specific antibodies. To determine the effect of antibody opsonization on the ability of Brucella to establish itself within monocytes, the intracellular trafficking of virulent Brucella abortus 2308 and attenuated hfq and bacA mutants was followed in the human monocytic cell line THP-1. Early trafficking events of B. abortus 2308-containing phagosomes (BCP) were indistinguishable from those seen for control particles (heat-killed B. abortus 2308, live Escherichia coli HB101, or latex beads). All phagosomes transiently communicated the early-endosomal compartment and rapidly matured into LAMP-1(+), cathepsin D(+), and acidic phagosomes. By 2 h postinfection, however, the number of cathepsin D(+) BCP was significantly lower for live B. abortus 2308-infected cells than for either Brucella mutant strains or control particles. B. abortus 2308 persisted within these cathepsin D(-), LAMP-1(+), and acidic vesicles; however, at the onset of intracellular replication, the numbers of acidic B. abortus 2308 BCP decreased while remaining cathepsin D(-) and LAMP-1(+). In contrast to B. abortus 2308, the isogenic hfq and bacA mutants remained in acidic, LAMP-1(+) phagosomes and failed to initiate intracellular replication. Notably, markers specific for the host endoplasmic reticulum were absent from the BCPs throughout the course of the infection. Thus, opsonized B. abortus in human monocytes survives within phagosomes that remain in the endosomal pathway and replication of virulent B. abortus 2308 within these vesicles corresponds with an increase in intraphagosomal pH.
Collapse
Affiliation(s)
- Bryan H Bellaire
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
40
|
Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M. Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol 2005; 5:22. [PMID: 15869716 PMCID: PMC1090583 DOI: 10.1186/1471-2180-5-22] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/04/2005] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The mechanisms of abortion induced by bacterial infection are largely unknown. In the present study, we investigated abortion induced by Brucella abortus, a causative agent of brucellosis and facultative intracellular pathogen, in a mouse model. RESULTS High rates of abortion were observed for bacterial infection on day 4.5 of gestation, but not for other days. Regardless of whether fetuses were aborted or stayed alive, the transmission of bacteria into the fetus and bacterial replication in the placenta were observed. There was a higher degree of bacterial colonization in the placenta than in other organs and many bacteria were detected in trophoblast giant cells in the placenta. Intracellular growth-defective virB4 mutant and attenuated vaccine strain S19 did not induce abortion. In the case of abortion, around day 7.5 of gestation (period of placental development), transient induction of IFN-gamma production was observed for infection by the wild type strain, but not by the virB4 mutant and S19. Neutralization of IFN-gamma, whose production was induced by infection with B. abortus, served to prevent abortion. CONCLUSION These results indicate that abortion induced by B. abortus infection is a result of transient IFN-gamma production during the period of placental development.
Collapse
Affiliation(s)
- Suk Kim
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Dong Soo Lee
- Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kenta Watanabe
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hidefumi Furuoka
- Department of Pathological Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hiroshi Suzuki
- Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
- Department of Development and Medical Technology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Masahisa Watarai
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
41
|
Watanabe K, Kim S, Nishiguchi M, Suzuki H, Watarai M. Brucella melitensis infection associated with Guillain-Barré syndrome through molecular mimicry of host structures. ACTA ACUST UNITED AC 2005; 45:121-7. [PMID: 16051063 DOI: 10.1016/j.femsim.2005.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Brucella melitensis is a facultative intracellular bacterium that can survive inside macrophages and the causative agent of brucellosis. In the present study, we found that a lipooligosaccharide of B. melitensis has a GM1 ganglioside-like structure and shows a strong antibody response in mice. The cholera toxin B subunit, which binds to GM1 ganglioside specifically, reacted with the surface of B. melitensis. Immunization with B. melitensis induced the production of anti-GM1 ganglioside antibodies in mice and serum from immunized mice showed a cross-reaction with Guillain-Barré syndrome (GBS)-associated Campylobacter jejuni, but not non-GBS-associated C. jejuni. When B. melitensis was treated with a neuraminidase, antibody responses disappeared. B. melitensis immunization induced the production of anti-GM1 ganglioside antibodies in BALB/c mice but not in C57BL/6 and ddY mice, and for BALB/c mice, immunization with B. melitensis induced much greater production of anti-GM1 ganglioside than GBS-associated C. jejuni. Flaccid limb weakness was observed in B. melitensis immunized mice. These results suggest that B. melitensis is a new etiological agent for GBS and that immunological responses between it and GBS-associated C. jejuni in the mouse model may be different.
Collapse
Affiliation(s)
- Kenta Watanabe
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
42
|
den Hartigh AB, Sun YH, Sondervan D, Heuvelmans N, Reinders MO, Ficht TA, Tsolis RM. Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun 2004; 72:5143-9. [PMID: 15322008 PMCID: PMC517456 DOI: 10.1128/iai.72.9.5143-5149.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/12/2004] [Accepted: 06/02/2004] [Indexed: 11/20/2022] Open
Abstract
The Brucella abortus virB operon, encoding a type IV secretion system (T4SS), is required for intracellular replication and persistent infection in the mouse model. The products of the first two genes of the virB operon, virB1 and virB2, are predicted to be localized at the bacterial surface, where they could potentially interact with host cells. Studies to date have focused on characterization of transposon mutations in these genes, which are expected to exert polar effects on downstream genes in the operon. In order to determine whether VirB1 and VirB2 are required for the function of the T4SS apparatus, we constructed and characterized nonpolar deletion mutations of virB1 and virB2. Both mutants were shown to be nonpolar, as demonstrated by their ability to express the downstream gene virB5 during stationary phase of growth in vitro. Both VirB1 and VirB2 were essential for intracellular replication in J774 macrophages. The nonpolar virB2 mutant was unable to cause persistent infection in the mouse model, demonstrating the essential role of VirB2 in the function of the T4SS apparatus during infection. In contrast, the nonpolar virB1 mutant persisted at wild-type levels, showing that the function of VirB1 is dispensable in the mouse model of persistent infection.
Collapse
Affiliation(s)
- Andreas B den Hartigh
- Department of Medical Microbiology & Immunology, Texas A&M University Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Castañeda-Roldán EI, Avelino-Flores F, Dall'Agnol M, Freer E, Cedillo L, Dornand J, Girón JA. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 2004; 6:435-45. [PMID: 15056214 DOI: 10.1111/j.1462-5822.2004.00372.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The basis for the interaction of Brucella species with the surface of epithelial cells before migration in the host within polymorphonuclear leucocytes is largely unknown. Here, we studied the ability of Brucella abortus and Brucella melitensis to adhere to cultured epithelial (HeLa and HEp-2) cells and THP-1-derived macrophages, and to bind extracellular matrix proteins (ECM). The brucellae adhered to epithelial cells forming localized bacterial microcolonies on the cell surface, and this process was inhibited significantly by pretreatment of epithelial cells with neuraminidase and sodium periodate and by preincubation of the bacteria with heparan sulphate and N-acetylneuraminic acid. Trypsinization of epithelial cells yielded increased adherence, suggesting unmasking of target sites on host cells. Notably, the brucellae also adhered to cultured THP-1 cells, and this event was greatly reduced upon removal of sialic acid residues from these cells with neuraminidase. B. abortus bound in a dose-dependent manner to immobilized fibronectin and vitronectin and, to a lesser extent, to chondroitin sulphate, collagen and laminin. In sum, our data strongly suggest that the adherence mechanism of brucellae to epithelial cells and macrophages is mediated by cellular receptors containing sialic acid and sulphated residues. The recognition of ECM (fibronectin and vitronectin) by the brucellae may represent a mechanism for spread within the host tissues. These are novel findings that offer new insights into understanding the interplay between Brucella and host cells.
Collapse
Affiliation(s)
- Elsa I Castañeda-Roldán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio 76, Complejo de Ciencias, Puebla, México
| | | | | | | | | | | | | |
Collapse
|
44
|
Jiménez de Bagüés MP, Terraza A, Gross A, Dornand J. Different responses of macrophages to smooth and rough Brucella spp.: relationship to virulence. Infect Immun 2004; 72:2429-33. [PMID: 15039375 PMCID: PMC375206 DOI: 10.1128/iai.72.4.2429-2433.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
By comparing smooth wild-type Brucella strains to their rough mutants, we show that the lipopolysaccharide (LPS) O side chain of pathogenic Brucella has a dramatic impact on macrophage activation. It favors the development of virulent Brucella by preventing the synthesis of immune mediators, important for host defense. We conclude that this O chain property is firmly linked to Brucella virulence.
Collapse
Affiliation(s)
- María P Jiménez de Bagüés
- Unidad de Sanidad Animal, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, 50080 Zaragoza, Spain.
| | | | | | | |
Collapse
|
45
|
Kim S, Kurokawa D, Watanabe K, Makino SI, Shirahata T, Watarai M. Brucella abortusnicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09546.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Abstract
Rough mutants of Brucella spp. are attenuated for survival in animal models. However, conflicting in vitro evidence has been obtained concerning the intracellular survival of rough mutants. Transposon-derived rough mutants isolated in our laboratory were previously shown to exhibit small but significant reductions in intracellular survival in a 12-h in vitro assay. Several recent publications report that rough mutants exhibited increased macrophage uptake relative to their smooth parental strains, and a reduction in numbers at the end of the assay has been interpreted as intracellular killing. In an effort to explore the role of O antigen in the interaction between Brucella abortus and macrophages, we have monitored the uptake of rough mutants and survival in vitro by using the murine macrophage cell line J774.A1. The results confirm a 10- to 20-fold-increased uptake of rough mutants over that of smooth organisms under standard conditions. Recovery of the rough mutants persisted up to 8 h postinfection, but at the point when intracellular replication of the smooth organisms was observed, the number of rough organisms recovered declined. Fluorescence microscopy revealed the intracellular multiplication of both smooth and rough organisms, and assays performed in the absence of antibiotic confirmed the replication of the rough organisms. Examination by phase-contrast microscopy revealed the lytic death of macrophages infected with the rough mutants, which was confirmed by the release of lactate dehydrogenase (LDH) from the cell cytoplasm. Thus, the decline in the number of rough organisms was the result of the lysis of macrophages and not from intracellular killing. The cytopathic effect is characterized as necrotic rather than apoptotic cell death based on early LDH release, annexin V and propidium iodide staining, morphological changes of infected cells and nuclei, and glycine protection. The cytopathic effect was observed with macrophages at multiplicities of infection (MOIs) of as low as 20 and was not observed with epithelial cells at MOIs of as high as 2000. These findings suggest a role for O antigen during the early stages of host-agent interaction that is essential in establishing an intracellular niche that maintains and supports persistent intracellular infection resulting in disease.
Collapse
Affiliation(s)
- Jianwu Pei
- Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment Station, College Station, Texas 77843-4467, USA
| | | |
Collapse
|
47
|
Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, De Bolle X, Letesson JJ, Tibor A. Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun 2004; 71:7053-60. [PMID: 14638795 PMCID: PMC308902 DOI: 10.1128/iai.71.12.7053-7060.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For this study, we screened 1,152 signature-tagged mutagenesis mutants of Brucella melitensis 16M in a mouse model of infection and found 36 of them to be attenuated in vivo. Molecular characterization of transposon insertion sites showed that for four mutants, the affected genes were only present in Rhizobiaceae. Another mutant contained a disruption in a gene homologous to mosA, which is involved in rhizopine biosynthesis in some strains of Rhizobium, suggesting that this sugar may be involved in Brucella pathogenicity. A mutant was disrupted in a gene homologous to fliF, a gene potentially coding for the MS ring, a basal component of the flagellar system. Surprisingly, a mutant was affected in the rpoA gene, coding for the essential alpha-subunit of the RNA polymerase. This disruption leaves a partially functional protein, impaired for the activation of virB transcription, as demonstrated by the absence of induction of the virB promoter in the Tn5::rpoA background. The results presented here highlight the fact that the ability of Brucella to induce pathogenesis shares similarities with the molecular mechanisms used by both Rhizobium and Agrobacterium to colonize their hosts.
Collapse
Affiliation(s)
- P Lestrate
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et de Microbiologie, University of Namur, 5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B, Dornand J. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 2003; 74:1045-55. [PMID: 12960272 DOI: 10.1189/jlb.0103015] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Virulence of the intracellular pathogen Brucella for humans is mainly associated with its lipopolysaccharide (LPS) phenotype, with smooth LPS phenotypes generally being virulent and rough ones not. The reason for this association is not quite understood. We now demonstrate by flow cytometry, electron microscopy, and ELISA that human peripheral blood monocytes interact both quantitatively and qualitatively different with smooth and rough Brucella organisms in vitro. We confirm that considerably higher numbers of rough than smooth brucellae attach to and enter the monocytes in nonopsonic conditions; but only smooth brucellae replicate in the host cells. We show for the first time that rough brucellae induce higher amounts than smooth brucellae of several CXC (GRO-alpha, IL-8) and CC (MIP-1alpha, MIP-1beta, MCP-1, RANTES) chemokines, as well as pro- (IL-6, TNF-alpha) and anti-inflammatory (IL-10) cytokines released by challenged monocytes. Upon uptake, phagosomes containing rough brucellae develop selective fusion competence to form spacious communal compartments, whereas phagosomes containing smooth brucellae are nonfusiogenic. Collectively, our data suggest that rough brucellae attract and infect monocytes more effectively than smooth brucellae, but only smooth LPS phenotypes establish a specific host cell compartment permitting successful parasitism. These novel findings link the LPS phenotype of Brucella and its virulence for humans at the level of the infected host cells. Whether this is due to a direct effect of the LPS molecules or to upstream bacterial mechanisms remains to be established.
Collapse
Affiliation(s)
- Michael G Rittig
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198:545-56. [PMID: 12925673 PMCID: PMC2194179 DOI: 10.1084/jem.20030088] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 06/30/2003] [Accepted: 06/30/2003] [Indexed: 11/04/2022] Open
Abstract
The intracellular pathogen Brucella is the causative agent of brucellosis, a worldwide zoonosis that affects mammals, including humans. Essential to Brucella virulence is its ability to survive and replicate inside host macrophages, yet the underlying mechanisms and the nature of the replicative compartment remain unclear. Here we show in a model of Brucella abortus infection of murine bone marrow-derived macrophages that a fraction of the bacteria that survive an initial macrophage killing proceed to replicate in a compartment segregated from the endocytic pathway. The maturation of the Brucella-containing vacuole involves sustained interactions and fusion with the endoplasmic reticulum (ER), which creates a replicative compartment with ER-like properties. The acquisition of ER membranes by replicating Brucella is independent of ER-Golgi COPI-dependent vesicular transport. A mutant of the VirB type IV secretion system, which is necessary for intracellular survival, was unable to sustain interactions and fuse with the ER, and was killed via eventual fusion with lysosomes. Thus, we demonstrate that live intracellular Brucella evade macrophage killing through VirB-dependent sustained interactions with the ER. Moreover, we assign an intracellular function to the VirB system, as being required for late maturation events necessary for the biogenesis of an ER-derived replicative organelle.
Collapse
Affiliation(s)
- Jean Celli
- Centre d'Immunologie INSERM-CNRS-Université Mediterranée de Marseille-Luminy, 13288 Marseille cedex 09, France
| | | | | | | | | | | |
Collapse
|
50
|
Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino SI, Shirahata T. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 2003; 71:3020-7. [PMID: 12761078 PMCID: PMC155700 DOI: 10.1128/iai.71.6.3020-3027.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Revised: 02/11/2003] [Accepted: 02/28/2003] [Indexed: 11/20/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and nonprofessional phagocytes and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. To identify genes related to internalization and multiplication in host cells, Brucella abortus was mutagenized by mini-Tn5Km2 transposon that carryied the kanamycin resistance gene, 4,400 mutants were screened, and HeLa cells were infected with each mutant. Twenty-three intracellular-growth-defective mutants were screened and were characterized for internalization and intracellular growth. From these results, we divided the mutants into the following three groups: class I, no internalization and intracellular growth within HeLa cells; class II, an internalization similar to that of the wild type but with no intracellular growth; and class III, internalization twice as high as the wild type but with no intracellular growth. Sequence analysis of DNA flanking the site of transposon showed various insertion sites of bacterial genes that are virulence-associated genes, including virB genes, an ion transporter system, and biosynthesis- and metabolism-associated genes. These internalization and intracellular-growth-defective mutants in HeLa cells also showed defective intracellular growth in macrophages. These results suggest that the virulence-associated genes isolated here contributed to the intracellular growth of both nonprofessional and professional phagocytes.
Collapse
Affiliation(s)
- Suk Kim
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|