1
|
De Schoenmacker I, Costa Marques D, Scheuren PS, Lütolf R, Gorrell LM, Mehli SC, Curt A, Rosner J, Hubli M. Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions. Clin Neurophysiol 2024; 166:31-42. [PMID: 39094528 DOI: 10.1016/j.clinph.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - David Costa Marques
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay M Gorrell
- Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| | - Sarah C Mehli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Noh E, Namgung JY, Park Y, Jang Y, Lee MJ, Park BY. Shifts in structural connectome organization in the limbic and sensory systems of patients with episodic migraine. J Headache Pain 2024; 25:99. [PMID: 38862883 PMCID: PMC11165833 DOI: 10.1186/s10194-024-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.
Collapse
Affiliation(s)
- Eunchan Noh
- College of Medicine, Inha University, Incheon, Republic of Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea.
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Szabo E, Ashina S, Melo-Carrillo A, Bolo NR, Borsook D, Burstein R. Peripherally acting anti-CGRP monoclonal antibodies alter cortical gray matter thickness in migraine patients: A prospective cohort study. Neuroimage Clin 2023; 40:103531. [PMID: 37866119 PMCID: PMC10623369 DOI: 10.1016/j.nicl.2023.103531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Migraine is underpinned by central nervous system neuroplastic alterations thought to be caused by the repetitive peripheral afferent barrage the brain receives during the headache phase (cortical hyperexcitability). Calcitonin gene-related peptide monoclonal antibodies (anti-CGRP-mAbs) are highly effective migraine preventative treatments. Their ability to alter brain morphometry in treatment-responders vs. non-responders is not well understood. Our aim was to determine the effects of the anti-CGRP-mAb galcanezumab on cortical thickness after 3-month treatment of patients with high-frequency episodic or chronic migraine. High-resolution magnetic resonance imaging was performed pre- and post-treatment in 36 migraine patients. In this group, 19 patients were classified responders (≥50 % reduction in monthly migraine days) and 17 were considered non-responders (<50 % reduction in monthly migraine days). Following cross-sectional processing to analyze the baseline differences in cortical thickness, two-stage longitudinal processing and symmetrized percent change were conducted to investigate treatment-related brain changes. At baseline, no significant differences were found between the responders and non-responders. After 3-month treatment, decreased cortical thickness (compared to baseline) was observed in the responders in regions of the somatosensory cortex, anterior cingulate cortex, medial frontal cortex, superior frontal gyrus, and supramarginal gyrus. Non-responders demonstrated decreased cortical thickness in the left dorsomedial cortex and superior frontal gyrus. We interpret the cortical thinning seen in the responder group as suggesting that reduction in head pain could lead to changes in neural swelling and dendritic complexity and that such changes reflect the recovery process from maladaptive neural activity. This conclusion is further supported by our recent study showing that 3 months after treatment initiation, the incidence of premonitory symptoms and prodromes that are followed by headache decreases but not the incidence of the premonitory symptoms or prodromes themselves (that is, cortical thinning relates to reductions in the nociceptive signals in the responders). We speculate that a much longer recovery period is required to allow the brain to return to a more 'normal' functioning state whereby prodromes and premonitory symptoms no longer occur.
Collapse
Affiliation(s)
- Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Borsook
- Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
4
|
van der Miesen MM, Vossen CJ, Joosten EA. Habituation to Pain in Patients with Chronic Pain: Clinical Implications and Future Directions. J Clin Med 2023; 12:4305. [PMID: 37445339 DOI: 10.3390/jcm12134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In this review, the latest insights into habituation to pain in chronic pain are summarized. Using a systematic search, results of studies on the evidence of habituation to (experimental) pain in migraine, chronic low back pain, fibromyalgia, and a variety of chronic pain indications are presented. In migraine, reduced habituation based on self-report and the EEG-based N1 and N2-P2 amplitude is reported, but the presence of contradictory results demands further replication in larger, well-designed studies. Habituation to pain in chronic low back pain seems not to differ from controls, with the exception of EEG measures. In fibromyalgia patients, there is some evidence for reduced habituation of the N2-P2 amplitude. Our analysis shows that the variability between outcomes of studies on habituation to pain is high. As the mechanisms underlying habituation to pain are still not fully understood and likely involve several pathways, it is now too early to conclude that habituation to pain is related to clinical outcomes and can be used as a diagnostic marker. The review ends with a discussion on future directions for research including the use of standard outcome measures to improve comparisons of habituation to pain in patients and controls, as well as a focus on individual differences.
Collapse
Affiliation(s)
- Maite M van der Miesen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Catherine J Vossen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
5
|
Mignot C, Faria V, Hummel T, Frost M, Michel CM, Gossrau G, Haehner A. Migraine with aura: less control over pain and fragrances? J Headache Pain 2023; 24:55. [PMID: 37198532 DOI: 10.1186/s10194-023-01592-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Accumulating data emphasizes the importance of olfaction in migraine pathophysiology. However, there are only a few studies evaluating how the migraine brain processes olfactory stimulation, and virtually no studies comparing patients with and without aura in this context. METHODS This cross-sectional study recorded event-related potentials from 64 electrodes during a pure olfactory or pure trigeminal stimulus in females with episodic migraine with aura (n = 13) and without aura (n = 15), to characterize the central nervous processing of these intranasal stimuli. Patients were tested in interictal state only. Data were analyzed in the time domain and in the time-frequency domain. Source reconstruction analysis was also performed. RESULTS Patients with aura had higher event-related potentials amplitudes for left-sided trigeminal and left-sided olfactory stimulations, and higher neural activity for right-sided trigeminal stimulation in brain areas related to trigeminal and visual processing. Following olfactory stimulations patients with aura displayed decreased neural activity in secondary olfactory structures compared to patients without aura. Oscillations in the low frequency bands (< 8 Hz) differed between patient groups. CONCLUSIONS Altogether this may reflect hypersensitivity to nociceptive stimuli in patients with aura relative to patients without aura. Patients with aura have a bigger deficit in engaging secondary olfactory-related structures, possibly leading to distorted attention and judgements towards odors. The cerebral overlap between trigeminal nociception and olfaction might explain these deficits.
Collapse
Affiliation(s)
- Coralie Mignot
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Vanda Faria
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Psychology, Uppsala University, 752 37, Uppsala, Sweden
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, MA 02115, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, MA 02115, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Marie Frost
- Comprehensive Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, CH-1211, Geneva 4, Switzerland
- CIBM Center for Biomedical Imaging, 1015, Lausanne, Switzerland
| | - Gudrun Gossrau
- Comprehensive Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Antje Haehner
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
6
|
Wang Z, Lin Q, Peng YB. Multi-region local field potential signatures and brain coherence alternations in response to nitroglycerin-induced migraine attacks. Headache 2023; 63:523-538. [PMID: 37036141 DOI: 10.1111/head.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE To decipher the underlying mechanisms of nitroglycerin (NTG)-induced migraine electrophysiologically. BACKGROUND Migraine is a recurrent primary headache disorder with moderate to severe disability; however, the pathophysiology is not fully understood. Consequently, safe and effective therapies to alleviate migraine headaches are limited. Local field potential (LFP) recording, as a neurophysiological tool, has been widely utilized to investigate combined neuronal activity. METHODS We recorded LFP changes simultaneously from the anterior cingulate cortex, posterior nucleus of the thalamus, trigeminal ganglion, and primary visual cortex after NTG injection in both anesthetized and freely moving rats. Additionally, brain coherence was processed, and light-aversive behavior measurements were implemented. RESULTS Significant elevations of LFP powers with various response patterns for the delta, theta, alpha, beta, and gamma bands following NTG injection were detected in both anesthetized and freely moving rats; however, a surge of coherence alternations was exclusively observed in freely moving rats after NTG injection. CONCLUSION The multi-region LFP signatures and brain coherence alternations in response to NTG-induced migraine attacks were determined. Furthermore, the results of behavior measurements in the freely moving group indicated that NTG induced the phenomenon of photophobia in our study. All these findings offer novel insights into the interpretation of migraine mechanisms and related treatments.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Yuan B Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
7
|
Peck CM, Bereiter DA, Eberly LE, Lenglet C, Moana-Filho EJ. Altered brain responses to noxious dentoalveolar stimuli in high-impact temporomandibular disorder pain patients. PLoS One 2022; 17:e0266349. [PMID: 36240243 PMCID: PMC9565712 DOI: 10.1371/journal.pone.0266349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
High-impact temporomandibular disorder (TMD) pain may involve brain mechanisms related to maladaptive central pain modulation. We investigated brain responses to stimulation of trigeminal sites not typically associated with TMD pain by applying noxious dentoalveolar pressure to high- and low-impact TMD pain cases and pain-free controls during functional magnetic resonance imaging (fMRI). Fifty female participants were recruited and assigned to one of three groups based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and Graded Chronic Pain Scale: controls (n = 17), low-impact (n = 17) and high-impact TMD (n = 16). Multimodal whole-brain MRI was acquired following the Human Connectome Project Lifespan protocol, including stimulus-evoked fMRI scans during which painful dentoalveolar pressure was applied to the buccal gingiva of participants. Group analyses were performed using non-parametric permutation tests for parcellated cortical and subcortical neuroimaging data. There were no significant between-group differences for brain activations/deactivations evoked by the noxious dentoalveolar pressure. For individual group mean activations/deactivations, a gradient in the number of parcels surviving thresholding was found according to the TMD pain grade, with the highest number seen in the high-impact group. Among the brain regions activated in chronic TMD pain groups were those previously implicated in sensory-discriminative and motivational-affective pain processing. These results suggest that dentoalveolar pressure pain evokes abnormal brain responses to sensory processing of noxious stimuli in high-impact TMD pain participants, which supports the presence of maladaptive brain plasticity in chronic TMD pain.
Collapse
Affiliation(s)
- Connor M. Peck
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - David A. Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Lynn E. Eberly
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Christophe Lenglet
- Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Estephan J. Moana-Filho
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| |
Collapse
|
8
|
Resting-state occipital alpha power is associated with treatment outcome in patients with chronic migraine. Pain 2022; 163:1324-1334. [PMID: 35708466 DOI: 10.1097/j.pain.0000000000002516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Preventive treatment is crucial for patients with chronic migraine (CM). This study explored the association between resting-state cortical oscillations and 3-month treatment outcome in patients with CM. Treatment-naïve patients with CM were recruited with their demographic data, psychosocial data, and headache profiles as well as the healthy controls (HCs). Resting-state cortical activities were recorded using an electroencephalogram and analysed using source-based and electrode-based spectral power method. The regions of interest were the bilateral primary somatosensory (S1) and visual (V1) cortices. After 3-month treatment with flunarizine, patients with CM were categorized into responders and nonresponders. Demographic, clinical, and electroencephalogram data from 72 patients with CM and 50 HCs were analysed. Elevated anxiety, depression, and stress were observed in patients with CM. Theta power in bilateral S1 and alpha and gamma powers in the right S1 increased in patients with CM. Nonresponders (n = 34) exhibited larger alpha powers in bilateral V1 than those in responders (n = 38). Alpha powers also exhibited significant correlations with changes of monthly headache days. Notably, in responders and nonresponders, occipital alpha powers did not differ at baseline and in the third month. In conclusion, patients with CM who were not responsive to preventive treatment were associated with augmented resting-state occipital alpha activity. Moreover, changes in migraine attack frequency were associated with baseline occipital alpha power. However, the prognostic feature of visual alpha oscillation seems to be inherent because it is not altered by flunarizine treatment. These findings may be useful for developing personalised migraine treatment plans.
Collapse
|
9
|
Savignac C, Ocay DD, Mahdid Y, Blain-Moraes S, Ferland CE. Clinical use of Electroencephalography in the Assessment of Acute Thermal Pain: A Narrative Review Based on Articles From 2009 to 2019. Clin EEG Neurosci 2022; 53:124-132. [PMID: 34133245 DOI: 10.1177/15500594211026280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nowadays, no practical system has successfully been able to decode and predict pain in clinical settings. The inability of some patients to verbally express their pain creates the need for a tool that could objectively assess pain in these individuals. Neuroimaging techniques combined with machine learning are seen as possible candidates for the identification of pain biomarkers. This review aimed to address the potential use of electroencephalographic features as predictors of acute experimental pain. Twenty-six studies using only thermal stimulations were identified using a PubMed and Scopus search. Combinations of the following terms were used: "EEG," "Electroencephalography," "Acute," "Pain," "Tonic," "Noxious," "Thermal," "Stimulation," "Brain," "Activity," "Cold," "Subjective," and "Perception." Results revealed that contact-heat-evoked potentials have been widely recorded over central areas during noxious heat stimulations. Furthermore, a decrease in alpha power over central regions was revealed, as well as increased theta and gamma powers over frontal areas. Gamma and theta rhythms were associated with connectivity between sensory and affective regions involved in pain processing. A machine learning analysis revealed that the gamma band is a predominant predictor of acute thermal pain. This review also addressed the need of supplementing current spectral features with techniques that allow the investigation of network dynamics.
Collapse
Affiliation(s)
- Chloé Savignac
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | - Don Daniel Ocay
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | | | | | - Catherine E Ferland
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Improved acquisition of contact heat evoked potentials with increased heating ramp. Sci Rep 2022; 12:925. [PMID: 35042939 PMCID: PMC8766469 DOI: 10.1038/s41598-022-04867-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 12/05/2022] Open
Abstract
Contact heat evoked potentials (CHEPs) represent an objective and non-invasive measure to investigate the integrity of the nociceptive neuraxis. The clinical value of CHEPs is mostly reflected in improved diagnosis of peripheral neuropathies and spinal lesions. One of the limitations of conventional contact heat stimulation is the relatively slow heating ramp (70 °C/s). This is thought to create a problem of desynchronized evoked responses in the brain, particularly after stimulation in the feet. Recent technological advancements allow for an increased heating ramp of contact heat stimulation, however, to what extent these improve the acquisition of evoked potentials is still unknown. In the current study, 30 healthy subjects were stimulated with contact heat at the hand and foot with four different heating ramps (i.e., 150 °C/s, 200 °C/s, 250 °C/s, and 300 °C/s) to a peak temperature of 60 °C. We examined changes in amplitude, latency, and signal-to-noise ratio (SNR) of the vertex (N2-P2) waveforms. Faster heating ramps decreased CHEP latency for hand and foot stimulation (hand: F = 18.41, p < 0.001; foot: F = 4.19, p = 0.009). Following stimulation of the foot only, faster heating ramps increased SNR (F = 3.32, p = 0.024) and N2 amplitude (F = 4.38, p = 0.007). Our findings suggest that clinical applications of CHEPs should consider adopting faster heating ramps up to 250 °C/s. The improved acquisition of CHEPs might consequently reduce false negative results in clinical cohorts. From a physiological perspective, our results demonstrate the importance of peripherally synchronizing afferents recruitment to satisfactorily acquire CHEPs.
Collapse
|
11
|
When a Head Is about to Burst: Attachment Mediates the Relationship Between Childhood Trauma and Migraine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124579. [PMID: 32630556 PMCID: PMC7344657 DOI: 10.3390/ijerph17124579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Background: People exposed to childhood trauma show insecure attachment patterns and are more prone to chronic and pain-related conditions, including migraine. The aim of this study was to explore the mediating role of attachment in the association between childhood trauma and adulthood chronic health conditions, with a focus on migraine. Methods: Respondents from a representative sample of citizens of the Czech Republic (n = 1800, mean age: 46.6 years, 48.7% male) were asked to report various chronic and pain-related conditions, childhood trauma (The Childhood Trauma Questionnaire, CTQ), and attachment anxiety and avoidance (The Experience in Close Relationships Revised, ECR-R) in a cross-sectional, questionnaire-based survey conducted in 2016. Structural equation models (SEM) adjusted for sociodemographic variables were used to assess the relationship between childhood trauma, adulthood attachment, and adulthood chronic health conditions (migraine, other pain-related conditions, chronic health conditions other than pain, no chronic health complaints). Results: After adjusting for sociodemographic variables, SEM confirmed a significant mediation of the relationship between childhood trauma and migraine through adulthood attachment. There was no mediation effect of adulthood attachment found in other health complaints. Conclusion: This study highlights the mediation effect of attachment in the link between childhood trauma and migraine. Attachment-based therapeutic interventions can be useful in the treatment of patients with migraine.
Collapse
|
12
|
Chen XY, Chen ZY, Dong Z, Liu MQ, Yu SY. Regional volume changes of the brain in migraine chronification. Neural Regen Res 2020; 15:1701-1708. [PMID: 32209774 PMCID: PMC7437590 DOI: 10.4103/1673-5374.276360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of migraine is complex. Neuroimaging studies reveal functional and structural changes in the brains of migraine patients. We sought to explore regional volume differences in intracranial structures in patients with episodic and chronic migraine. Sixteen episodic migraine patients, 16 chronic migraine patients, and 24 normal controls were recruited and underwent 3.0 T MRI scanning. The volumes of 142 brain regions were calculated by an automatic volumetric algorithm and compared with clinical variables. Results demonstrated that the volumes of specific regions in the frontal and occipital lobes, and the right putamen, were increased and the volume of the fourth ventricle was decreased in the episodic migraine patients compared with controls. The volumes of the left basal forebrain, optic chiasm, and, the fourth ventricle were decreased in the chronic migraine patients, while the occipital cortex and the right putamen were larger. Compared to episodic migraine patiants, chronic migraine patients displayed larger left thalamus and smaller frontal regions. Correlation analysis showed that headache frequency was negatively correlated with the volume of the right frontal pole, right lateral orbital gyrus, and medial frontal lobes and positively correlated with the volume of the left thalamus. The sleep disturbance score was negatively correlated with the volume of the left basal forebrain. This suggests that migraine patients have structural changes in regions associated with pain processing and modulation, affective and cognitive processing, and visual perception. The remodeling of selective intracranial structures may be involved in migraine attacks. This study was approved by the Ethics Committee of Chinese PLA General Hospital (approval No. S2018-027-02) on May 31, 2018.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Ye Chen
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing; Department of Radiology, Hainan Hospital of First Medical Center of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Zhao Dong
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng-Qi Liu
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing; Department of Radiology, Hainan Hospital of First Medical Center of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Sheng-Yuan Yu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Bar-Shalita T, Granovsky Y, Parush S, Weissman-Fogel I. Sensory Modulation Disorder (SMD) and Pain: A New Perspective. Front Integr Neurosci 2019; 13:27. [PMID: 31379526 PMCID: PMC6659392 DOI: 10.3389/fnint.2019.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory modulation disorder (SMD) affects sensory processing across single or multiple sensory systems. The sensory over-responsivity (SOR) subtype of SMD is manifested clinically as a condition in which non-painful stimuli are perceived as abnormally irritating, unpleasant, or even painful. Moreover, SOR interferes with participation in daily routines and activities (Dunn, 2007; Bar-Shalita et al., 2008; Chien et al., 2016), co-occurs with daily pain hyper-sensitivity, and reduces quality of life due to bodily pain. Laboratory behavioral studies have confirmed abnormal pain perception, as demonstrated by hyperalgesia and an enhanced lingering painful sensation, in children and adults with SMD. Advanced quantitative sensory testing (QST) has revealed the mechanisms of altered pain processing in SOR whereby despite the existence of normal peripheral sensory processing, there is enhanced facilitation of pain-transmitting pathways along with preserved but delayed inhibitory pain modulation. These findings point to central nervous system (CNS) involvement as the underlying mechanism of pain hypersensitivity in SOR. Based on the mutual central processing of both non-painful and painful sensory stimuli, we suggest shared mechanisms such as cortical hyper-excitation, an excitatory-inhibitory neuronal imbalance, and sensory modulation alterations. This is supported by novel findings indicating that SOR is a risk factor and comorbidity of chronic non-neuropathic pain disorders. This is the first review to summarize current empirical knowledge investigating SMD and pain, a sensory modality not yet part of the official SMD realm. We propose a neurophysiological mechanism-based model for the interrelation between pain and SMD. Embracing the pain domain could significantly contribute to the understanding of this condition’s pathogenesis and how it manifests in daily life, as well as suggesting the basis for future potential mechanism-based therapies.
Collapse
Affiliation(s)
- Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine, Technion-Israel Institute of Technology, Rambam Health Care Campus, Haifa, Israel
| | - Shula Parush
- School of Occupational Therapy, Faculty of Medicine of Hadassah, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Baeumler PI, Conzen P, Irnich D. High Temporal Summation of Pain Predicts Immediate Analgesic Effect of Acupuncture in Chronic Pain Patients-A Prospective Cohort Study. Front Neurosci 2019; 13:498. [PMID: 31354400 PMCID: PMC6637793 DOI: 10.3389/fnins.2019.00498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives: This prospective cohort study explored whether two distinguished sensory parameters predicted acupuncture effects in chronic pain patients; namely high temporal summation of pain (TS) indicating spinal synaptic facilitation as well as a low vibration detection threshold (VDT) indicating a loss of Aβ-fiber function. Methods: Pinprick induced TS and VDT were assessed by standardized, validated methods at the most painful body site and a pain free control site in 100 chronic pain patients receiving six acupuncture sessions as part of an interdisciplinary multimodal pain treatment (IMPT). Immediate change in pain intensity after the first acupuncture session (first treatment on the first day of IMPT) was assessed by the verbal rating scale (VRS, 0-100). After 4 weeks of treatment, patients indicated in a questionnaire whether acupuncture had relieved pain immediately and whether it had contributed to overall pain reduction and well-being after IMPT. Results: Logistic regression analysis revealed an association between high TS at the control site and a reduction in pain intensity of at least 30% (VRS) after the first acupuncture (OR [95%-CI] 4.3 [1.6-11.8]). Questionnaire ratings of immediate pain relief after acupuncture were associated with high TS at the control site (OR [95%-CI] 3.8 [1.4-10.2] any pain relief, OR [95%-CI] 5.5 [1.7-17.1] over 50% pain reduction) and at the pain site (OR [95%-CI] 3.2 [1.2-8.9] any pain relief). Appraisals of the contribution of acupuncture to overall pain reduction and well-being after IMPT were not associated with TS. The VDT was not associated with any outcome. Conclusion: This explorative study provides first-time evidence that high TS, especially at a pain free control site, but not VDT, might predict immediate analgesic response to acupuncture in chronic pain patients. Thus, highly centrally sensitized chronic pain patients might respond particularly well to acupuncture.
Collapse
Affiliation(s)
- Petra Iris Baeumler
- Multidisciplinary Pain Center, Department of Anaesthesiology, University Hospital Ludwig-Maximilians-University, Munich, Germany
| | - Peter Conzen
- Department of Anaesthesiology, University Hospital Ludwig-Maximilians-University, Munich, Germany
| | - Dominik Irnich
- Multidisciplinary Pain Center, Department of Anaesthesiology, University Hospital Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
15
|
Russo A, Coppola G, Pierelli F, Parisi V, Silvestro M, Tessitore A, Tedeschi G. Pain Perception and Migraine. Front Neurol 2018; 9:576. [PMID: 30116215 PMCID: PMC6082953 DOI: 10.3389/fneur.2018.00576] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background: It is well-known that both inter- and intra-individual differences exist in the perception of pain; this is especially true in migraine, an elusive pain disorder of the head. Although electrophysiology and neuroimaging techniques have greatly contributed to a better understanding of the mechanisms involved in migraine during recent decades, the exact characteristics of pain threshold and pain intensity perception remain to be determined, and continue to be a matter of debate. Objective: The aim of this review is to provide a comprehensive overview of clinical, electrophysiological, and functional neuroimaging studies investigating changes during various phases of the so-called “migraine cycle” and in different migraine phenotypes, using pain threshold and pain intensity perception assessments. Methods: A systematic search for qualitative studies was conducted using search terms “migraine,” “pain,” “headache,” “temporal summation,” “quantitative sensory testing,” and “threshold,” alone and in combination (subject headings and keywords). The literature search was updated using the additional keywords “pain intensity,” and “neuroimaging” to identify full-text papers written in English and published in peer-reviewed journals, using PubMed and Google Scholar databases. In addition, we manually searched the reference lists of all research articles and review articles. Conclusion: Consistent data indicate that pain threshold is lower during the ictal phase than during the interictal phase of migraine or healthy controls in response to pressure, cold and heat stimuli. There is evidence for preictal sub-allodynia, whereas interictal results are conflicting due to either reduced or no observed difference in pain threshold. On the other hand, despite methodological limitations, converging observations support the concept that migraine attacks may be characterized by an increased pain intensity perception, which normalizes between episodes. Nevertheless, future studies are required to longitudinally evaluate a large group of patients before and after pharmacological and non-pharmacological interventions to investigate phases of the migraine cycle, clinical parameters of disease severity and chronic medication usage.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, G. B. Bietti Foundation-IRCCS, Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, G. B. Bietti Foundation-IRCCS, Rome, Italy
| | - Marcello Silvestro
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy.,Institute for Diagnosis and Care "Hermitage Capodimonte," Naples, Italy
| |
Collapse
|
16
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
17
|
Quantitative sensory testing in patients with migraine: a systematic review and meta-analysis. Pain 2018; 159:1202-1223. [DOI: 10.1097/j.pain.0000000000001231] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Weissman-Fogel I, Granovsky Y, Bar-Shalita T. Sensory Over-Responsiveness among Healthy Subjects is Associated with a Pronociceptive State. Pain Pract 2017; 18:473-486. [PMID: 28782305 DOI: 10.1111/papr.12619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/28/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Chronic pain patients show hypersensitivity to sensory nonpainful stimuli. Sensory over-responsiveness (SOR) to innocuous daily stimuli, experienced as painful, is prevalent in 10% of the healthy population. This altered sensory processing may be an expression of overfacilitation, or a less efficient pain-inhibitory process in the pain pathways. We therefore aimed to investigate specifically the pain-inhibitory system of subjects with SOR who are otherwise healthy, not studied as of yet. METHODS Thirty healthy subjects, divided into an SOR group (n = 14) and a non-SOR group (n = 16) based on responses to the Sensory Responsiveness Questionnaire, were psychophysically tested in order to evaluate (1) hyperalgesic responses; (2) adaptation/sensitization to 14 phasic heat stimuli; (3) habituation; (4) 6-minute after-sensations; and (5) conditioned pain modulation (CPM) (ie, phasic heat stimuli applied with and without hand immersion in a hot water bath). RESULTS The SOR group differed from the non-SOR group in (1) a steeper escalation in NPS ratings to temperature increase (P = 0.003), indicating hyperalgesia; (2) increased sensitization (P < 0.001); (3) habituation responses (P < 0.001); (4) enhanced pain ratings during the after-sensation (P = 0.006); and (5) no group difference was found in CPM. CONCLUSIONS SOR is associated with a pronociceptive state, expressed by amplification of experimental pain, yet with sufficient inhibitory processes. Our results support previous findings of enhanced facilitation of pain-transmitting pathways but also reveal preserved inhibitory mechanisms, although they were slower to react.
Collapse
Affiliation(s)
- Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus and the Laboratory of Clinical Neurophysiology, Faculty of Medicine, Technion, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep 2017; 7:36887. [PMID: 28139664 PMCID: PMC5282530 DOI: 10.1038/srep36887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Sensory disturbance is associated with socio-emotional problems in individuals with autism spectrum disorder (ASD). Most studies assess sensory symptoms by self-reports, which are largely limited by the language ability and self-awareness of the individuals. This study aims to investigate sensory disturbance by contact heat-evoked potentials (CHEP) in ASD individuals, and to examine the clinical correlates of CHEP parameters. We compared the CHEP parameters and reported pain between 31 ASD individuals (aged 20.5 ± 5.2 years) and and 22 typically-developing controls (TD, aged 21.4 ± 2.6), and correlated the CHEP parameters with self-reported sensory symptoms and attention/socio-emotional symptoms. We found that ASD individuals showed smaller P2-wave amplitudes than TD, even though they reported a similar level of pain. In TD individuals, a smaller P2-wave amplitude was related to higher scores on ‘low registration,’ ‘attention to detail,’ and ‘attention switching difficulties.’ In ASD individuals, longer N2-wave latency was related to higher scores on ‘sensory sensitivity’ and socio-emotional problems; while higher reported pain was associated with higher scores on ‘low registration,’ overall autistic severity, and longer N2-wave latency. Our findings of attenuated CHEP response in ASD, which was associated with sensory symptoms and socio-emotional problems, suggest a potential role for CHEP in studying sensory disturbances in ASD.
Collapse
|
20
|
Vecchio E, Ricci K, Montemurno A, Delussi M, Invitto S, de Tommaso M. Effects of left primary motor and dorsolateral prefrontal cortex transcranial direct current stimulation on laser-evoked potentials in migraine patients and normal subjects. Neurosci Lett 2016; 626:149-57. [DOI: 10.1016/j.neulet.2016.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
|
21
|
Defrin R, Riabinin M, Feingold Y, Schreiber S, Pick CG. Deficient pain modulatory systems in patients with mild traumatic brain and chronic post-traumatic headache: implications for its mechanism. J Neurotrauma 2015; 32:28-37. [PMID: 25068510 DOI: 10.1089/neu.2014.3359] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed.
Collapse
Affiliation(s)
- Ruth Defrin
- 1 Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
22
|
Beese LC, Putzer D, Osada N, Evers S, Marziniak M. Contact heat evoked potentials and habituation measured interictally in migraineurs. J Headache Pain 2015; 16:1. [PMID: 25564352 PMCID: PMC5395697 DOI: 10.1186/1129-2377-16-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A lack of habituation of different evoked potential modalities in migraine patients in-between attacks has been suggested. METHODS This study investigates cortical response after painful stimuli evaluated by contact heat evoked potentials (CHEPs) and quantitative sensory testing (QST) during the migraine-free interval. We enrolled 22 migraine patients and 22 healthy subjects. RESULTS Cortical potentials after contact heat stimulation of the cheeks and the volar forearm at a temperature of 51°C showed significantly reduced A-δ-amplitudes in patients and healthy controls. When the subjects' attention was drawn to an arithmetic task, a partial lack of habituation of amplitude could be seen in migraine patients. QST did not show any difference between migraineurs and controls. CONCLUSION Our findings can be primarily deemed to demonstrate that patients and healthy controls show significantly lower amplitudes while performing the calculation task. Without performing the calculation task we could not show the expected lack of habituation in migraineurs. Yet, while performing the calculation task our results partly suggest that hypothesis.
Collapse
Affiliation(s)
- Lena Clara Beese
- Department of General Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Denise Putzer
- Department of General Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Nani Osada
- Department of Medical Informatics and Biomathematics, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stefan Evers
- Krankenhaus Lindenbrunn, Lindenbrunn 1, 31863 Coppenbrügge, Germany
| | - Martin Marziniak
- Department of General Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of Neurology, Isar-Amper-Clinic, Munic-East, Ringstrasse 56A, 85540 Haar, Germany
| |
Collapse
|
23
|
Coppola G, Di Lorenzo C, Schoenen J, Pierelli F. Habituation and sensitization in primary headaches. J Headache Pain 2013; 14:65. [PMID: 23899115 PMCID: PMC3733593 DOI: 10.1186/1129-2377-14-65] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022] Open
Abstract
The phenomena of habituation and sensitization are considered most useful for studying the neuronal substrates of information processing in the CNS. Both were studied in primary headaches, that are functional disorders of the brain characterized by an abnormal responsivity to any kind of incoming innocuous or painful stimuli and it's cycling pattern over time (interictal, pre-ictal, ictal). The present review summarizes available data on stimulus responsivity in primary headaches obtained with clinical neurophysiology. In migraine, the majority of electrophysiological studies between attacks have shown that, for a number of different sensory modalities, the brain is characterised by a lack of habituation of evoked responses to repeated stimuli. This abnormal processing of the incoming information reaches its maximum a few days before the beginning of an attack, and normalizes during the attack, at a time when sensitization may also manifest itself. An abnormal rhythmic activity between thalamus and cortex, namely thalamocortical dysrhythmia, may be the pathophysiological mechanism subtending abnormal information processing in migraine. In tension-type headache (TTH), only few signs of deficient habituation were observed only in subgroups of patients. By contrast, using grand-average responses indirect evidence for sensitization has been found in chronic TTH with increased nociceptive specific reflexes and evoked potentials. Generalized increased sensitivity to pain (lower thresholds and increased pain rating) and a dysfunction in supraspinal descending pain control systems may contribute to the development and/or maintenance of central sensitization in chronic TTH. Cluster headache patients are characterized during the bout and on the headache side by a pronounced lack of habituation of the brainstem blink reflex and a general sensitization of pain processing. A better insight into the nature of these ictal/interictal electrophysiological dysfunctions in primary headaches paves the way for novel therapeutic targets and may allow a better understanding of the mode of action of available therapies.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation IRCCS, Via Livenza 3, 00198, Rome, Italy
| | | | - Jean Schoenen
- Headache Research Unit, University Department of Neurology & GIGA-Neurosciences, Liège University, Liège, Belgium
| | | |
Collapse
|
24
|
Nahman-Averbuch H, Granovsky Y, Coghill RC, Yarnitsky D, Sprecher E, Weissman-Fogel I. Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine. Headache 2013; 53:1104-15. [PMID: 23594167 DOI: 10.1111/head.12117] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the decay of the conditioned pain modulation (CPM) response along repeated applications as a possible expression of subtle pronociception in migraine. BACKGROUND One of the most explored mechanisms underlying the pain modulation system is "diffuse noxious inhibitory controls," which is measured psychophysically in the lab by the CPM paradigm. There are contradicting reports on CPM response in migraine, questioning whether migraineurs express pronociceptive pain modulation. METHODS Migraineurs (n = 26) and healthy controls (n = 35), all females, underwent 3 stimulation series, consisting of repeated (1) "test-stimulus" (Ts) alone that was given first followed by (2) parallel CPM application (CPM-parallel), and (3) sequential CPM application (CPM-sequential), in which the Ts is delivered during or following the conditioning-stimulus, respectively. In all series, the Ts repeated 4 times (0-3). In the CPM series, repetition "0" consisted of the Ts-alone that was followed by 3 repetitions of the Ts with a conditioning-stimulus application. RESULTS Although there was no difference between migraineurs and controls for the first CPM response in each series, we found waning of CPM-parallel efficiency along the series for migraineurs (P = .005 for third vs first CPM), but not for controls. Further, greater CPM waning in the CPM-sequential series was correlated with less reported extent of pain reduction by episodic medication (r = 0.493, P = .028). CONCLUSIONS Migraineurs have subtle deficits in endogenous pain modulation which requires a more challenging test protocol than the commonly used single CPM. Waning of CPM response seems to reveal this pronociceptive state. The clinical relevance of the CPM waning effect is highlighted by its association with clinical parameters of migraine.
Collapse
|
25
|
Granovsky Y, Yarnitsky D. Personalized pain medicine: the clinical value of psychophysical assessment of pain modulation profile. Rambam Maimonides Med J 2013; 4:e0024. [PMID: 24228167 PMCID: PMC3820297 DOI: 10.5041/rmmj.10131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental pain stimuli can be used to simulate patients' pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests-conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.
Collapse
Affiliation(s)
- Yelena Granovsky
- Department of Neurology, Rambam Medical Center, and Clinical Neurophysiology Lab, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
26
|
Ossipov MH. The perception and endogenous modulation of pain. SCIENTIFICA 2012; 2012:561761. [PMID: 24278716 PMCID: PMC3820628 DOI: 10.6064/2012/561761] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
Pain is often perceived an unpleasant experience that includes sensory and emotional/motivational responses. Accordingly, pain serves as a powerful teaching signal enabling an organism to avoid injury, and is critical to survival. However, maladaptive pain, such as neuropathic or idiopathic pain, serves no survival function. Genomic studies of individuals with congenital insensitivity to pain or paroxysmal pain syndromes considerable increased our understanding of the function of peripheral nociceptors, and especially of the roles of voltage-gated sodium channels and of nerve growth factor (NGF)/TrkA receptors in nociceptive transduction and transmission. Brain imaging studies revealed a "pain matrix," consisting of cortical and subcortical regions that respond to noxious inputs and can positively or negatively modulate pain through activation of descending pain modulatory systems. Projections from the periaqueductal grey (PAG) and the rostroventromedial medulla (RVM) to the trigeminal and spinal dorsal horns can inhibit or promote further nociceptive inputs. The "pain matrix" can explain such varied phenomena as stress-induced analgesia, placebo effect and the role of expectation on pain perception. Disruptions in these systems may account for the existence idiopathic pan states such as fibromyalgia. Increased understanding of pain modulatory systems will lead to development of more effective therapeutics for chronic pain.
Collapse
Affiliation(s)
- Michael H. Ossipov
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
27
|
|
28
|
Lev R, Granovsky Y, Yarnitsky D. Enhanced pain expectation in migraine: EEG-based evidence for impaired prefrontal function. Headache 2012; 53:1054-70. [PMID: 23216259 DOI: 10.1111/j.1526-4610.2012.02297.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dysexcitability characterizes the interictal migraineous brain. The main central expressions of this dysexcitability are decreased habituation and enhanced anticipation and attention to pain and other external sensory stimuli. OBJECTIVE This study evaluates the effects of anticipation on pain modulation and their neural correlates in migraine. METHODS In 39 migraineurs (20 migraine with aura [MWA] and 19 migraine without aura [MOA]) and 22 healthy controls, cortical responses to 2 successive trains of noxious contact-heat stimuli, presented in either predicted or unpredicted manner, were analyzed using standardized low-resolution electromagnetic tomography key. RESULTS A lack of habituation to repeated predicted pain was associated with significantly increased pain-evoked potential amplitudes in MWAs (increase of 3.9 μV) and unchanged ones in MOAs (1.1 μV) but not in controls (decrease of 5 μV). Repeated unpredicted pain resulted in enhanced pain-evoked potential amplitudes in both MWA and MOA groups (increase of 5.5 μV and 4.4 μV, respectively) compared with controls (decrease of 0.2 μV). Source localization revealed reduced activations in the anterior-medial prefrontal cortices and subsequent increased somatosensory activity in migraineurs (P < .05). The prefrontal-somatosensory dysfunction positively correlated with lifetime headache duration (P < .05) and concern of upcoming migraine attacks (P < .05) in MWAs, and with frequency of migraine attacks in MOAs (P < .05). CONCLUSIONS Our findings of impaired modulation of anticipated pain in migraine suggest a heightened state of anticipatory readiness combined with ineffective recruitment of prefrontal inhibitory pathways during experience of pain; the latter might account for the former, at least partially. In line, less efficient inhibitory capability is a plausible mechanistic explanation for patients' high concern about their upcoming migraine attacks.
Collapse
Affiliation(s)
- Rina Lev
- Department of Clinical Neurophysiology, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
29
|
Baumgärtner U, Greffrath W, Treede RD. Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: Merits and limitations for basic science and clinical use. Neurophysiol Clin 2012; 42:267-80. [DOI: 10.1016/j.neucli.2012.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/05/2012] [Accepted: 06/25/2012] [Indexed: 12/13/2022] Open
|
30
|
Abstract
OBJECTIVES AND BACKGROUND The possible effects of migraine on executive abilities remain controversial; hence, we studied inter-ictal cognitive performance of individuals with migraine and non migraine headaches (NMH) compared with headache free controls. DESIGN AND METHOD In a cross-sectional observational study, taking place in primary care, adults aged 50 or above were evaluated by a neurobehavioral battery including several executive measures. Present history of headache was sought, and migraine was diagnosed by the ID-Migraine questionnaire. The effect of headache type on cognitive measures was analyzed with multiple regression with adjustment by diagnosis, age, gender, education, and depressive symptoms. RESULTS Among 478 participants, 23.2% reported current headache, of whom 50 were NMH, and 61 were migraine headaches. No group differences were found in the majority of cognitive measures. Compared with controls, migraine subjects performed worse on a test of attention, while NMH participants presented more intrusions and worse discriminability in memory recognition plus a lower performance on semantic memory tests. CONCLUSION The presence of headaches in late adulthood was related to a worse performance on few measures of executive functioning, suggesting that cognitive impact is not specific to migraine but might be associated to headache.
Collapse
Affiliation(s)
- Isabel Pavão Martins
- Department of Clinical Neurosciences (UNIC), Instituto de Medicina Molecular, Lisbon Faculty of Medicine, Portugal.
| | | | | | | | | |
Collapse
|
31
|
Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. Neuroimage 2011; 55:277-86. [DOI: 10.1016/j.neuroimage.2010.12.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/30/2010] [Accepted: 12/05/2010] [Indexed: 01/07/2023] Open
|
32
|
Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 2011; 152:1469-1477. [PMID: 21339052 DOI: 10.1016/j.pain.2011.01.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/12/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala.
Collapse
Affiliation(s)
- Ruth Moont
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel Faculty of Social Welfare and Health Sciences, University of Haifa, Israel Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | |
Collapse
|