1
|
Arias DE, Buneo CA. Effects of online and offline trigeminal nerve stimulation on visuomotor learning. Front Hum Neurosci 2024; 18:1436365. [PMID: 39483193 PMCID: PMC11526447 DOI: 10.3389/fnhum.2024.1436365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction A current thrust in neurology involves using exogenous neuromodulation of cranial nerves (e.g, vagus, trigeminal) to treat the signs and symptoms of various neurological disorders. These techniques also have the potential to augment cognitive and/or sensorimotor functions in healthy individuals. Although much is known about the clinical effects of trigeminal nerve stimulation (TNS), effects on sensorimotor and cognitive functions such as learning have received less attention, despite their potential impact on neurorehabilitation. Here we describe the results of experiments aimed at assessing the effects of TNS on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. Objective Assessing the effects of TNS on motor learning. Methods Motor learning was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Experiment 1, effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three healthy young adults received TNS before performing a task that involved reaching with perturbed hand visual feedback. In Experiment 2, the effects of 120 and 60 Hz online TNS were characterized with the same task. Sixty-three new participants received either TNS or sham stimulation concurrently with perturbed visual feedback. Results Experiment 1 results showed that 60 Hz stimulation was associated with slower rates of learning than both sham and 120 Hz stimulation, indicating frequency-dependent effects of TNS. Experiment 2 however showed no significant differences among stimulation groups. A post-hoc, cross-study comparison of the 60 Hz offline and online TNS results showed a statistically significant improvement in learning rates with online stimulation relative to offline, pointing to timing-dependent effects of TNS on visuomotor learning. Discussion The results indicate that both the frequency and timing of TNS can influence rates of motor learning in healthy adults. This suggests that optimization of one or both parameters could potentially increase learning rates, which would provide new avenues for enhancing performance in healthy individuals and augmenting rehabilitation in patients with sensorimotor dysfunction resulting from stroke or other neurological disorders.
Collapse
Affiliation(s)
| | - Christopher A. Buneo
- Visuomotor Learning Lab, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Heholt J, Patel R, Vedaei F, Zabrecky G, Wintering N, Monti DA, Wang Z, Newberg AB, Mohamed FB. Simultaneous arterial spin labeling functional MRI and fluorodeoxyglucose PET in mild chronic traumatic brain injury. J Neuroradiol 2024; 51:101211. [PMID: 38908545 DOI: 10.1016/j.neurad.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND AND PURPOSE To determine the effect of mild chronic traumatic brain injury (cTBI) on cerebral blood flow and metabolism. METHODS 62 cTBI and 40 healthy controls (HCs) with no prior history of cTBI underwent both pulsed arterial spin labeling functional magnetic resonance imaging (PASL-fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) scanning via a Siemens mMR (simultaneous PET/MRI) scanner. 30 participants also took part in a series of neuropsychological clinical measures (NCMs). Images were processed using statistical parametric mapping software relevant to each modality to generate relative cerebral blood flow (rCBF) and glucose metabolic standardized uptake value ratio (gSUVR) grey matter maps. A voxel-wise two-sample T-test and two-tailed gaussian random field correction for multiple comparisons was performed. RESULTS cTBI patients showed a significant increase in rCBF and gSUVR in the right thalamus as well as a decrease in bilateral occipital lobes and calcarine sulci. An inverse relationship between rCBF and gSUVR was found in the left frontal lobe, the left precuneus and regions in the right temporal lobe. Within those regions rCBF values correlated with 9 distinct NCMs and gSUVR with 3. CONCLUSION Simultaneous PASL-fMRI and FDG-PET can identify functional changes in a mild cTBI population. Within this population FDG-PET identified more regions of functional disturbance than ASL fMRI and NCMs are shown to correlate with rCBF and glucose metabolism (gSUVR) in various brain regions. As a result, both imaging modalities contribute to understanding the underlying pathophysiology and clinical course of mild chronic traumatic brain injury.
Collapse
Affiliation(s)
- Justin Heholt
- Department of Radiology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Riya Patel
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Faezeh Vedaei
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ze Wang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lim M, Kim DJ, Nascimento TD, DaSilva AF. High-definition tDCS over primary motor cortex modulates brain signal variability and functional connectivity in episodic migraine. Clin Neurophysiol 2024; 161:101-111. [PMID: 38460220 PMCID: PMC11610772 DOI: 10.1016/j.clinph.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE This study investigated how high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) affects brain signal variability and functional connectivity in the trigeminal pain pathway, and their association with changes in migraine attacks. METHODS Twenty-five episodic migraine patients were randomized for ten daily sessions of active or sham M1 HD-tDCS. Resting-state blood-oxygenation-level-dependent (BOLD) signal variability and seed-based functional connectivity were assessed pre- and post-treatment. A mediation analysis was performed to test whether BOLD signal variability mediates the relationship between treatment group and moderate-to-severe headache days. RESULTS The active M1 HD-tDCS group showed reduced BOLD variability in the spinal trigeminal nucleus (SpV) and thalamus, but increased variability in the rostral anterior cingulate cortex (rACC) compared to the sham group. Connectivity decreased between medial pulvinar-temporal pole, medial dorsal-precuneus, and the ventral posterior medial nucleus-SpV, but increased between the rACC-amygdala, and the periaqueductal gray-parahippocampal gyrus. Changes in medial pulvinar variability mediated the reduction in moderate-to-severe headache days at one-month post-treatment. CONCLUSIONS M1 HD-tDCS alters BOLD signal variability and connectivity in the trigeminal somatosensory and modulatory pain system, potentially alleviating migraine headache attacks. SIGNIFICANCE M1 HD-tDCS realigns brain signal variability and connectivity in migraineurs closer to healthy control levels.
Collapse
Affiliation(s)
- Manyoel Lim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Rubia K, Johansson L, Carter B, Stringer D, Santosh P, Mehta MA, Conti AA, Bozhilova N, Eraydin IE, Cortese S. The efficacy of real versus sham external Trigeminal Nerve Stimulation (eTNS) in youth with Attention-Deficit/Hyperactivity Disorder (ADHD) over 4 weeks: a protocol for a multi-centre, double-blind, randomized, parallel-group, phase IIb study (ATTENS). BMC Psychiatry 2024; 24:326. [PMID: 38689273 PMCID: PMC11059677 DOI: 10.1186/s12888-024-05650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Attention Deficit/Hyperactivity Disorder (ADHD), if severe, is usually treated with stimulant or non-stimulant medication. However, users prefer non-drug treatments due to side effects. Alternative non-medication treatments have so far only shown modest effects. External trigeminal nerve stimulation (eTNS) is a minimal risk, non-invasive neuromodulation device, targeting the trigeminal system. It was approved for ADHD in 2019 by the USA Food and Drug administration (FDA) based on a small proof of concept randomised controlled trial (RCT) in 62 children with ADHD showing improvement of ADHD symptoms after 4 weeks of nightly real versus sham eTNS with minimal side effects. We present here the protocol of a larger confirmatory phase IIb study testing efficacy, longer-term persistency of effects and underlying mechanisms of action. METHODS A confirmatory, sham-controlled, double-blind, parallel-arm, multi-centre phase IIb RCT of 4 weeks of eTNS in 150 youth with ADHD, recruited in London, Portsmouth, and Southampton, UK. Youth with ADHD will be randomized to either real or sham eTNS, applied nightly for 4 weeks. Primary outcome is the change in the investigator-administered parent rated ADHD rating scale. Secondary outcomes are other clinical and cognitive measures, objective hyperactivity and pupillometry measures, side effects, and maintenance of effects over 6 months. The mechanisms of action will be tested in a subgroup of 56 participants using magnetic resonance imaging (MRI) before and after the 4-week treatment. DISCUSSION This multi-centre phase IIb RCT will confirm whether eTNS is effective in a larger age range of children and adolescents with ADHD, whether it improves cognition and other clinical measures, whether efficacy persists at 6 months and it will test underlying brain mechanisms. The results will establish whether eTNS is effective and safe as a novel non-pharmacological treatment for ADHD. TRIAL REGISTRATION ISRCTN82129325 on 02/08/2021, https://doi.org/10.1186/ISRCTN82129325 .
Collapse
Affiliation(s)
- Katya Rubia
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Department of Child & Adolescent Psychiatry, Technical University, Dresden, Germany.
| | - Lena Johansson
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Ben Carter
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Stringer
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
- National and Specialist CAMHS, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Department for Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aldo Alberto Conti
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Natali Bozhilova
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Irem Ece Eraydin
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- SOLENT NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Center, New York City, NY, USA
| |
Collapse
|
5
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Potential of focal cortical dysplasia in migraine pathogenesis. Cereb Cortex 2024; 34:bhae158. [PMID: 38615241 DOI: 10.1093/cercor/bhae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
Focal cortical dysplasias are abnormalities of the cerebral cortex associated with an elevated risk of neurological disturbances. Cortical spreading depolarization/depression is a correlate of migraine aura/headache and a trigger of migraine pain mechanisms. However, cortical spreading depolarization/depression is associated with cortical structural changes, which can be classified as transient focal cortical dysplasias. Migraine is reported to be associated with changes in various brain structures, including malformations and lesions in the cortex. Such malformations may be related to focal cortical dysplasias, which may play a role in migraine pathogenesis. Results obtained so far suggest that focal cortical dysplasias may belong to the causes and consequences of migraine. Certain focal cortical dysplasias may lower the threshold of cortical excitability and facilitate the action of migraine triggers. Migraine prevalence in epileptic patients is higher than in the general population, and focal cortical dysplasias are an established element of epilepsy pathogenesis. In this narrative/hypothesis review, we present mainly information on cortical structural changes in migraine, but studies on structural alterations in deep white matter and other brain regions are also presented. We develop the hypothesis that focal cortical dysplasias may be causally associated with migraine and link pathogeneses of migraine and epilepsy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Ezbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plac Generała Dabrowskiego 2, 09-420 Plock, Mazowieckie, Poland
| |
Collapse
|
6
|
Ceriani CEJ. Vestibular Migraine Pathophysiology and Treatment: a Narrative Review. Curr Pain Headache Rep 2024; 28:47-54. [PMID: 37889468 DOI: 10.1007/s11916-023-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW To review the diagnosis of vestibular migraine (VM) and update the clinician on the most recent developments in our understanding of its pathophysiology and treatment. RECENT FINDINGS Functional imaging studies have identified multiple regions of the brain with abnormal activity and connectivity in VM. There is evidence of abnormal sensory processing and integration in VM patients. Calcitonin gene-related peptide (CGRP) has also been found to play a role in trigeminal and vestibular nucleus pathways. Research into treatment modalities has identified several neuromodulation devices that may be effective in VM. There are a growing number of evidence-based preventive options for VM, including medications that target CGRP. VM is best understood as a sensory processing disorder. CGRP appears to play a role, and further research is needed to fully understand its effects. Treatment options are expanding, but there is still a need for more randomly controlled trials in this area.
Collapse
Affiliation(s)
- Claire E J Ceriani
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut St., Ste 200, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
8
|
Kim JH, Kim HK, Son YD, Kim JH. In Vivo Serotonin 5-HT2A Receptor Availability and Its Relationship with Aggression Traits in Healthy Individuals: A Positron Emission Tomography Study with C-11 MDL100907. Int J Mol Sci 2023; 24:15697. [PMID: 37958691 PMCID: PMC10647245 DOI: 10.3390/ijms242115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonergic neurotransmission has been associated with aggression in several psychiatric disorders. Human aggression is a continuum of traits, ranging from normal to pathological phenomena. However, the individual differences in serotonergic neurotransmission and their relationships with aggression traits in healthy individuals remain unclear. In this study, we explored the relationship between 5-HT2A receptor availability in vivo and aggression traits in healthy participants. Thirty-three healthy participants underwent 3-Tesla magnetic resonance imaging and positron emission tomography (PET) with [11C]MDL100907, a selective radioligand for 5-HT2A receptors. To quantify 5-HT2A receptor availability, the binding potential (BPND) was derived using the basis function implementation of the simplified reference tissue model, with the cerebellum as the reference region. The participants' aggression levels were assessed using the Buss-Perry Aggression Questionnaire. The voxel-based correlation analysis with age and sex as covariates revealed that the total aggression score was significantly positively correlated with [11C]MDL100907 BPND in the right middle temporal gyrus (MTG) pole, left fusiform gyrus (FUSI), right parahippocampal gyrus, and right hippocampus. The physical aggression subscale score had significant positive correlations with [11C]MDL100907 BPND in the left olfactory cortex, left orbital superior frontal gyrus (SFG), right anterior cingulate and paracingulate gyri, left orbitomedial SFG, left gyrus rectus, left MTG, left inferior temporal gyrus, and left angular gyrus. The verbal aggression subscale score showed significant positive correlations with [11C]MDL100907 BPND in the bilateral SFG, right medial SFG, left FUSI, and right MTG pole. Overall, our findings suggest the possibility of positive correlations between aggression traits and in vivo 5-HT2A receptor availability in healthy individuals. Future research should incorporate multimodal neuroimaging to investigate the downstream effects of 5-HT2A receptor-mediated signaling and integrate molecular and systems-level information in relation to aggression traits.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
9
|
Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:4025-4043. [PMID: 37674019 PMCID: PMC10827664 DOI: 10.1038/s41380-023-02227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
This pre-registered (CRD42022322038) systematic review and meta-analysis investigated clinical and cognitive outcomes of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders. PubMed, OVID, Web of Science, Chinese National Knowledge Infrastructure, Wanfang, and VIP database for Chinese technical periodicals were searched (until 16/03/2022) to identify trials investigating cognitive and clinical outcomes of eTNS in neurological or psychiatric disorders. The Cochrane Risk of Bias 2.0 tool assessed randomized controlled trials (RCTs), while the Risk of Bias of Non-Randomized Studies (ROBINS-I) assessed single-arm trials. Fifty-five peer-reviewed articles based on 48 (27 RCTs; 21 single-arm) trials were included, of which 12 trials were meta-analyzed (N participants = 1048; of which ~3% ADHD, ~3% Epilepsy, ~94% Migraine; age range: 10-49 years). The meta-analyses showed that migraine pain intensity (K trials = 4, N = 485; SMD = 1.03, 95% CI[0.84-1.23]) and quality of life (K = 2, N = 304; SMD = 1.88, 95% CI[1.22-2.53]) significantly improved with eTNS combined with anti-migraine medication. Dimensional measures of depression improved with eTNS across 3 different disorders (K = 3, N = 111; SMD = 0.45, 95% CI[0.01-0.88]). eTNS was well-tolerated, with a good adverse event profile across disorders. eTNS is potentially clinically relevant in other disorders, but well-blinded, adequately powered RCTs must replicate findings and support optimal dosage guidance.
Collapse
Affiliation(s)
- Samuel J Westwood
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Social Science, University of Westminster, London, UK.
| | - Aldo Alberto Conti
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wanjie Tang
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Xue
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Technical University Dresden, Dresden, Germany
| |
Collapse
|
10
|
Messina R, Christensen RH, Cetta I, Ashina M, Filippi M. Imaging the brain and vascular reactions to headache treatments: a systematic review. J Headache Pain 2023; 24:58. [PMID: 37221469 DOI: 10.1186/s10194-023-01590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Neuroimaging studies have made an important contribution to our understanding of headache pathophysiology. This systematic review aims to provide a comprehensive overview and critical appraisal of mechanisms of actions of headache treatments and potential biomarkers of treatment response disclosed by imaging studies. MAIN BODY We performed a systematic literature search on PubMed and Embase databases for imaging studies investigating central and vascular effects of pharmacological and non-pharmacological treatments used to abort and prevent headache attacks. Sixty-three studies were included in the final qualitative analysis. Of these, 54 investigated migraine patients, 4 cluster headache patients and 5 patients with medication overuse headache. Most studies used functional magnetic resonance imaging (MRI) (n = 33) or molecular imaging (n = 14). Eleven studies employed structural MRI and a few used arterial spin labeling (n = 3), magnetic resonance spectroscopy (n = 3) or magnetic resonance angiography (n = 2). Different imaging modalities were combined in eight studies. Despite of the variety of imaging approaches and results, some findings were consistent. This systematic review suggests that triptans may cross the blood-brain barrier to some extent, though perhaps not sufficiently to alter the intracranial cerebral blood flow. Acupuncture in migraine, neuromodulation in migraine and cluster headache patients, and medication withdrawal in patients with medication overuse headache could promote headache improvement by reverting headache-affected pain processing brain areas. Yet, there is currently no clear evidence for where each treatment acts, and no firm imaging predictors of efficacy. This is mainly due to a scarcity of studies and heterogeneous treatment schemes, study designs, subjects, and imaging techniques. In addition, most studies used small sample sizes and inadequate statistical approaches, which precludes generalizable conclusions. CONCLUSION Several aspects of headache treatments remain to be elucidated using imaging approaches, such as how pharmacological preventive therapies work, whether treatment-related brain changes may influence therapy effectiveness, and imaging biomarkers of clinical response. In the future, well-designed studies with homogeneous study populations, adequate sample sizes and statistical approaches are needed.
Collapse
Affiliation(s)
- R Messina
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - R H Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - I Cetta
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - M Filippi
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
11
|
Ma H, Fan S, Xu Z, Wan X, Yang Q, Yin Y, Wu X, Wu S, Zhang H, Ma C. Trigeminal nerve stimulation for prolonged disorders of consciousness: A randomized double-blind sham-controlled study. Brain Stimul 2023; 16:819-827. [PMID: 37182683 DOI: 10.1016/j.brs.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Trigeminal nerve stimulation (TNS) has been proposed as a promising intervention for coma awakening. However, the effect of TNS on patients with prolonged disorders of consciousness (pDoC) is still unclear. OBJECTIVE This study aimed to investigate the therapeutic effects of TNS in pDoC caused by stroke, trauma, and anoxia. METHODS A total of 60 patients (male =25, female =35) aged over 18 who were in a vegetative state or minimally conscious state were randomly assigned to the TNS (N = 30) or sham TNS (N = 30) groups. 4 weeks of intervention and a followed up for 8 weeks were performed. The Glasgow Coma Scale (GCS) and Coma Recovery Scale-Revised (CRS-R) scores as primary outcomes were assessed at baseline and at 2, 4, 8, and 12 weeks. RESULTS The score changes in the TNS group over time for CRS-R (2-week: mean difference = 0.9, 95% CI = [0.3, 1.5], P = 0.006; 4-week: 1.6, 95% CI = [0.8, 2.5], P < 0.001; 8-week: mean difference = 2.4, 95% CI = [1.3, 3.5], P < 0.001; 12-week: mean difference = 2.3, 95% CI = [1.1, 3.4], P < 0.001) and GCS (4-week: mean difference = 0.7, 95% CI = [0.3, 1.2], P = 0.002; 8-week: mean difference = 1.1, 95% CI = [0.6, 1.7], P < 0.001; 12-week: 1.1, 95% CI = [0.5, 1.7], P = 0.003) were higher than those in the sham group. 18-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) revealed that the metabolism of the right parahippocampal cortex, right precuneus, and bilateral middle cingulate cortex was significantly increased in TNS group. CONCLUSION The results of this study indicate that TNS could increase local brain metabolism and may promote functional recovery in patients with prolonged disorders of consciousness. REGISTRATION INFORMATION Name of the registry: Chinese Clinical Trial Registry. REGISTRATION NUMBER ChiCTR1900025573. The date that the study was submitted to a registry: 2019-09-01. The date when the first patient was enrolled was 2021-01-20.
Collapse
Affiliation(s)
- Haiyun Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Shengnuo Fan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Zhen Xu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoting Wan
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qian Yang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Yuping Yin
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xuemeng Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Hong Zhang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Ritland BM, Neumeier WH, Jiang SH, Smith CD, Heaton KJ, Hildebrandt AM, Jabbar MA, Liao HJ, Coello E, Zhao W, Bay CP, Lin AP. Short-term neurochemical effects of transcutaneous trigeminal nerve stimulation using 7T magnetic resonance spectroscopy. J Neuroimaging 2023; 33:279-288. [PMID: 36495053 DOI: 10.1111/jon.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose was to explore the effects of transcutaneous trigeminal nerve stimulation (TNS) on neurochemical concentrations (brainstem, anterior cingulate cortex [ACC], dorsolateral prefrontal cortex [DLPFC], ventromedial prefrontal cortex [VMPFC], and the posterior cingulate cortex [PCC]) using ultrahigh-field magnetic resonance spectroscopy. METHODS This double-blinded study tested 32 healthy males (age: 25.4 ± 7.3 years) on two separate occasions where participants received either a 20-minute TNS or sham session. Participants were scanned at baseline and twice post-TNS/sham administration. RESULTS There were no group differences in concentration changes of glutamate, gamma-aminobutyric acid, glutamine, myoinositol (mI), total N-acetylaspartate, total creatine (tCr), and total choline between the baseline scan and the first post-TNS/sham scan and between the first and second post-TNS/sham scan in the brainstem, ACC, DLPFC, VMPFC, and PCC. Between the baseline scan and the second post-TNS/sham scan, changes in tCr (mean difference = 0.280 mM [0.075 to 0.485], p = .026) and mI (mean difference = 0.662 mM [0.203 to 1.122], p = .026) in the DLPFC differed between groups. Post hoc analyses indicated that there was a decrease in tCr (mean change = -0.201 mM [-0.335 to -0.067], p = .003) and no change in mI (mean change = -0.327 mM [-0.737 to 0.083], p = .118) in the TNS group; conversely, there was no change in tCr (mean change = -0.100 mM [-0.074 to 0.274], p = .259) and an increase in mI (mean change = 0.347 mM [0.106 to 0.588], p = .005) in the sham group. CONCLUSION These data demonstrate that a single session of unilateral TNS slightly decreased tCr concentrations in the DLPFC region.
Collapse
Affiliation(s)
- Bradley M Ritland
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - William H Neumeier
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Sam H Jiang
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl D Smith
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Kristin J Heaton
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Audrey M Hildebrandt
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Muhammad A Jabbar
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Hui Jun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eduardo Coello
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wufan Zhao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Camden P Bay
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Cai M, Liu J, Wang X, Ma J, Ma L, Liu M, Zhao Y, Wang H, Fu D, Wang W, Xu Q, Guo L, Liu F. Spontaneous brain activity abnormalities in migraine: A meta-analysis of functional neuroimaging. Hum Brain Mapp 2023; 44:571-584. [PMID: 36129066 PMCID: PMC9842892 DOI: 10.1002/hbm.26085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole-brain meta-analysis of relevant resting-state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole-brain voxel-wise meta-analysis using the anisotropic effect size version of seed-based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta-regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta-analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta-regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xuexiang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
- Department of RadiologyTianjin Hongqiao HospitalTianjinChina
| | - Juanwei Ma
- Department of RadiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Dianxun Fu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Wenqin Wang
- School of Mathematical SciencesTiangong UniversityTianjinChina
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
14
|
Messina R, Filippi M. What imaging has revealed about migraine and chronic migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:105-116. [PMID: 38043956 DOI: 10.1016/b978-0-12-823356-6.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/05/2023]
Abstract
Although migraine pathophysiology is not yet entirely understood, it is now established that migraine should be viewed as a complex neurological disease, which involves the interplay of different brain networks and the release of signaling molecules, instead of a pure vascular disorder. The field of migraine research has also progressed significantly due to the advancement of brain imaging techniques. Numerous studies have investigated the relation between migraine pathophysiology and cerebral hemodynamic changes, showing that vascular changes are neither necessary nor sufficient to cause the migraine pain. Abnormal function and structure of key cortical, subcortical, and brainstem regions involved in multisensory, including pain, processing have been shown to occur in migraine patients during both an acute attack and the interictal phase. Whether brain imaging alterations represent a predisposing trait or are the consequence of the recurrence of headache attacks is still a matter of debate. It is highly likely that brain functional and structural alterations observed in migraine patients derive from the interaction between predisposing brain traits and experience-dependent responses. Neuroimaging studies have also enriched our knowledge of the mechanisms responsible for migraine chronification and have shed light on the mechanisms of actions of acute and preventive migraine treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Alterations in metabolic flux in migraine and the translational relevance. J Headache Pain 2022; 23:127. [PMID: 36175833 PMCID: PMC9523955 DOI: 10.1186/s10194-022-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine. MAIN BODY Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibiting hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet unknown. CONCLUSION Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal studies in identifying targets of biomarker or therapeutic development.
Collapse
|
16
|
Evans AG, Horrar AN, Ibrahim MM, Burns BL, Kalmar CL, Assi PE, Brooks-Horrar KN, Kesayan T, Al Kassis S. Outcomes of transcutaneous nerve stimulation for migraine headaches: a systematic review and meta-analysis. J Neurol 2022; 269:4021-4029. [PMID: 35296960 DOI: 10.1007/s00415-022-11059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Implanted and transcutaneous nerve stimulators have shown promise as novel non-pharmacologic treatment for episodic and chronic migraines. The purpose of this study was to summarize the reported efficacy of transcutaneous single nerve stimulators in management of migraine frequency and severity. METHODS A systematic review of five databases identified studies treating migraines with transcutaneous stimulation of a single nerve. Random effects model meta-analyses were conducted to establish the effect of preventive transcutaneous nerve stimulation on headache days per month and 0-10 numeric rating scale pain severity of headaches for both individuals with episodic and chronic migraines. RESULTS Fourteen studies, which treated 995 patients, met inclusion criteria, including 7 randomized controlled trials and 7 uncontrolled clinical trials. Transcutaneous nerve stimulators reduced headache frequency in episodic migraines (2.81 fewer headache days per month, 95% CI 2.18-3.43, I2 = 21%) and chronic migraines (2.97 fewer headache days per month, 95% CI 1.66-4.28, I2 = 0%). Transcutaneous nerve stimulators reduced headache severity in episodic headaches (2.23 fewer pain scale points, 95% CI 1.64-2.81, I2 = 88%). CONCLUSIONS Preventive use of transcutaneous nerve stimulators provided clinically significant reductions in headache frequency in individuals with chronic or episodic migraines. Individuals with episodic migraines also experienced a reduction in headache pain severity following preventive transcutaneous nerve stimulation.
Collapse
Affiliation(s)
- Adam G Evans
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA.
| | - Abigail N Horrar
- Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Maryo M Ibrahim
- School of Medicine, Meharry Medical College, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA
| | - Brady L Burns
- School of Medicine, Meharry Medical College, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA
| | - Christopher L Kalmar
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Patrick E Assi
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Krista N Brooks-Horrar
- Department of Neurology, Nashville Veterans Affairs Medical Center, 1310 24th Avenue South, Nashville, TN, 37212, USA
| | - Tigran Kesayan
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Salam Al Kassis
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| |
Collapse
|
17
|
|
18
|
Devices for Episodic Migraine: Past, Present, and Future. Curr Pain Headache Rep 2022; 26:259-265. [PMID: 35147856 PMCID: PMC8930505 DOI: 10.1007/s11916-022-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Historically, therapies for migraine have generally involved pharmacological treatments using non-selective or selective analgesics and preventive treatments. However, for many patients these treatments are not effective, while others prefer to use non-pharmacological-based therapies. To fill this need, over the last 15 years, neuromodulatory devices have entered the market for migraine treatment. Here, we will review the most recent findings for the use of these devices in the treatment of migraine. RECENT FINDINGS Non-invasive vagus nerve stimulation and spring-pulse transcranial magnetic stimulation are both cleared for the treatment of migraine, supported by preclinical studies that validate efficacy and mechanism of action, and complemented with clinical trial data. Other options also authorized for use include transcutaneous supraorbital nerve stimulation and remote electrical neuromodulation. Various options are available to treat migraine using authorized neuromodulatory devices. These data support their efficacy in the treatment of episodic migraine, although further studies are necessary to elucidate their mechanism of action and to provide rigor to clinical trial data.
Collapse
|
19
|
Coppola G, Magis D, Casillo F, Sebastianelli G, Abagnale C, Cioffi E, Di Lenola D, Di Lorenzo C, Serrao M. Neuromodulation for Chronic Daily Headache. Curr Pain Headache Rep 2022; 26:267-278. [PMID: 35129825 PMCID: PMC8927000 DOI: 10.1007/s11916-022-01025-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
Abstract
Purpose of Review We reviewed the literature that explored the use of central and peripheral neuromodulation techniques for chronic daily headache (CDH) treatment. Recent Findings Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimulation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric stimulations have promising preventive effects against CM and CCH. Summary Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
| | - Delphine Magis
- Headache and Pain Multimodal Treatment Centre (CMTCD), Department of Neurology, Neuromodulation Centre, CHR East Belgium, Verviers, Belgium
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
20
|
Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology 2022; 47:361-372. [PMID: 34272471 PMCID: PMC8617166 DOI: 10.1038/s41386-021-01094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can-unlike pharmacotherapy-directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.
Collapse
Affiliation(s)
- William T. Regenold
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Zhi-De Deng
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Sarah H. Lisanby
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
21
|
Johnson MAL, Kuruvilla DE. External Trigeminal Nerve Stimulation as a Non-pharmacological Option for the Prevention and Acute Treatment of Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Migraine is a common condition affecting approximately 1.04 billion people worldwide. Despite the available pharmaceutical therapies, patients with migraine often prefer, or may require, non-medicinal treatments for their disease. External trigeminal nerve stimulation (e-TNS) is a non-invasive, non-drug device treatment approved by the US Food and Drug Administration for the prevention and acute treatment of migraine. The trigeminovascular system plays a key role in migraine pathophysiology; e-TNS percutaneously stimulates the supraorbital and supratrochlear branches of the ophthalmic division of the trigeminal nerve. This article reviews published studies of e-TNS in the prevention and acute treatment of migraine, highlights the versatility of e-TNS in individualizing migraine treatment and discusses future directions for research and clinical applications of e-TNS therapy.
Collapse
|
22
|
Abstract
Migraine is the second most prevalent disorder in the world; yet, its underlying mechanisms are still poorly understood. Cumulative studies have revealed pivotal roles of cerebral cortex in the initiation, propagation, and termination of migraine attacks as well as the interictal phase. Investigation of basic mechanisms of the cortex in migraine not only brings insight into the underlying pathophysiology but also provides the basis for designing novel treatments. We aim to summarize the current research literatures and give a brief overview of the cortex and its role in migraine, including the basic structure and function; structural, functional, and biochemical neuroimaging; migraine-related genes; and theories related to cortex in migraine pathophysiology. We propose that long-term plasticity of synaptic transmission in the cortex encodes migraine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ran Ao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, ON, Canada
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Cao J, Zhang Y, Li H, Yan Z, Liu X, Hou X, Chen W, Hodges S, Kong J, Liu B. Different modulation effects of 1 Hz and 20 Hz transcutaneous auricular vagus nerve stimulation on the functional connectivity of the periaqueductal gray in patients with migraine. J Transl Med 2021; 19:354. [PMID: 34404427 PMCID: PMC8371886 DOI: 10.1186/s12967-021-03024-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. Methods Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. Results Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. Conclusions Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03024-9.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Chen Z, Xiao L, Liu H, Zhang Q, Wang Q, Lv Y, Zhai Y, Zhang J, Dong S, Wei X, Rong L. Altered thalamo-cortical functional connectivity in patients with vestibular migraine: a resting-state fMRI study. Neuroradiology 2021; 64:119-127. [PMID: 34374821 DOI: 10.1007/s00234-021-02777-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the functional connectivity (FC) between the bilateral thalamus and the other brain regions in patients with vestibular migraine (VM). METHODS Resting-state fMRI and 3D-T1 data were collected from 37 patients with VM during the interictal period and 44 age-, gender-, and years of education-matched healthy controls (HC). The FC of the bilateral thalamus was analyzed using a standard seed-based whole-brain correlation method. Furthermore, the correlations between thalamus FC and clinical characteristics of patients were investigated using Pearson's partial correlation. RESULTS Compared with HC, VM patients showed decreased FC between the left thalamus and the left anterior cingulate cortex (ACC), bilateral insular and right supplementary motor cortex. We also observed decreased FC between the right thalamus and the left insular and ACC in VM patients. Furthermore, patients with VM also exhibited increased FC between the left thalamus and the right precuneus and middle frontal gyrus, between the right thalamus and superior parietal lobule. FC between the right thalamus and the left insular was negatively correlated with disease duration (p = 0.019, r = - 0.399), FC between the left thalamus and the left ACC was negatively correlated with HIT-6 score (p = 0.004, r = - 0.484). CONCLUSION VM patients showed altered FC between thalamus and brain regions involved in pain, vestibular and visual processing, which are associated with specific clinical features. Specifically, VM patients showed reduced thalamo-pain and thallamo-vestibular pathways, while exhibited enhanced thalamo-visual pathway, which provided first insight into the underlying functional brain connectivity in VM patients.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Quan Wang
- Medical Imaging Department, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - You Lv
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Yujia Zhai
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Jun Zhang
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Shanshan Dong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
25
|
Li C, White TG, Shah KA, Chaung W, Powell K, Wang P, Woo HH, Narayan RK. Percutaneous Trigeminal Nerve Stimulation Induces Cerebral Vasodilation in a Dose-Dependent Manner. Neurosurgery 2021; 88:E529-E536. [PMID: 33677599 DOI: 10.1093/neuros/nyab053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The trigeminal nerve directly innervates key vascular structures both centrally and peripherally. Centrally, it is known to innervate the brainstem and cavernous sinus, whereas peripherally the trigemino-cerebrovascular network innervates the majority of the cerebral vasculature. Upon stimulation, it permits direct modulation of cerebral blood flow (CBF), making the trigeminal nerve a promising target for the management of cerebral vasospasm. However, trigeminally mediated cerebral vasodilation has not been applied to the treatment of vasospasm. OBJECTIVE To determine the effect of percutaneous electrical stimulation of the infraorbital branch of the trigeminal nerve (pTNS) on the cerebral vasculature. METHODS In order to determine the stimulus-response function of pTNS on cerebral vasodilation, CBF, arterial blood pressure, cerebrovascular resistance, intracranial pressure, cerebral perfusion pressure, cerebrospinal fluid calcitonin gene-related peptide (CGRP) concentrations, and the diameter of cerebral vessels were measured in healthy and subarachnoid hemorrhage (SAH) rats. RESULTS The present study demonstrates, for the first time, that pTNS increases brain CGRP concentrations in a dose-dependent manner, thereby producing controllable cerebral vasodilation. This vasodilatory response appears to be independent of the pressor response induced by pTNS, as it is maintained even after transection of the spinal cord at the C5-C6 level and shown to be confined to the infraorbital nerve by administration of lidocaine or destroying it. Furthermore, such pTNS-induced vasodilatory response of cerebral vessels is retained after SAH-induced vasospasm. CONCLUSION Our study demonstrates that pTNS is a promising vasodilator and increases CBF, cerebral perfusion, and CGRP concentration both in normal and vasoconstrictive conditions.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Timothy G White
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
26
|
Torres-Ferrus M, Pareto D, Gallardo VJ, Cuberas-Borrós G, Alpuente A, Caronna E, Vila-Balló A, Lorenzo-Bosquet C, Castell-Conesa J, Rovira A, Pozo-Rosich P. Cortical metabolic and structural differences in patients with chronic migraine. An exploratory 18FDG-PET and MRI study. J Headache Pain 2021; 22:75. [PMID: 34273945 PMCID: PMC8285838 DOI: 10.1186/s10194-021-01289-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background To describe interictal brain structural and metabolic differences between patients with episodic migraine (EM), chronic migraine (CM) and healthy controls (HC). Methods This is an exploratory study including right-handed age-matched women with EM, CM and HC. On the same day, a sequential interictal scan was performed with 18FDG-PET and MRI. 3D T1-weighted images were segmented with FreeSurfer, normalized to a reference atlas and the mean values of metabolism, cortical thickness (CTh) and local gyrification index (IGI) were determined. Groups were compared using age-adjusted linear models, corrected for multiple comparisons. 18FDG-PET measurements between groups were also analysed adjusting by patient’s age, CTh and lGI. The variables independently associated with diagnosis were obtained using a logistic regression analysis. Results Fifteen patients (8 EM, 7 CM) and 11 HC were included. Morphometric data showed an increased CTh in 6 frontal areas (L/R-Caudal Middle Frontal, L/R-Rostral Middle Frontal, L-Medial Orbitofrontal and L-Superior Frontal) in CM patients compared to HC without differences for IGI. The structural adjusted analysis in CM showed a statistically significantly hypometabolism in 9 frontal areas (L-Lateral Orbitofrontal, L/R-Medial Orbitofrontal, L-Frontal Superior, R-Frontal pole, R-Parts Triangularis, L/R-Paracentral and R-Precentral) and 7 temporal areas (L/R-Insula, L/R-Inferior temporal, L/R-Temporal pole and R-Banks superior temporal sulcus) compared to HC. EM patients presented intermediate metabolic values between EM and HC (non-significant). Conclusions CM patients showed frontotemporal hypometabolism and increased frontal cortical thickness when compared to HC that may explain some cognitive and behavioural pain-processing and sensory integration alterations in CM patients. Combined information from sequential or simultaneous PET and MRI could optimize the study of complex functional neurological disorders such as migraine. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01289-5.
Collapse
Affiliation(s)
- Marta Torres-Ferrus
- Headache and Craniofacial Pain Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain
| | - Victor J Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Cuberas-Borrós
- Research and Innovation Unit , Althaia Xarxa Assistencial Universitària de Manresa , Manresa, Spain.,Nuclear Medicine Department , Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alicia Alpuente
- Headache and Craniofacial Pain Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edoardo Caronna
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrià Vila-Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joan Castell-Conesa
- Nuclear Medicine Department , Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Craniofacial Pain Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain. .,Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Editorial: Precision Medicine in Neurotherapeutics for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:813-815. [PMID: 33264662 DOI: 10.1016/j.jaac.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/13/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023]
Abstract
Noninvasive brain stimulation is a novel treatment avenue for attention-deficit/hyperactivity disorder (ADHD). The advantages over pharmacological treatment are relatively minimal and transient side-effects, which make it a treatment preferred by patients and parents. Neurostimulation can furthermore target key neurobiological abnormalities established over decades of neuroimaging research. Trigeminal nerve stimulation (TNS) is the only neuromodulation and device-based nonpharmacological treatment recently licensed for children with ADHD by the US Food and Drug Administration. This was based on a double-blind sham-controlled proof-of-concept trial of 4 weeks of TNS in 62 children, who showed a reduction of ADHD symptoms with an effect size of 0.5, similar to the results with second-line nonstimulant pharmacological treatment.1 Precision medicine approaches, such as establishing predictors of treatment response using relatively cost-effective cognitive and electrophysiological measures would be clinically very useful to screen children with ADHD for whom TNS is likely to be effective.
Collapse
|
28
|
Lloyd J, Biloshytska M, Andreou AP, Lambru G. Noninvasive Neuromodulation in Headache: An Update. Neurol India 2021; 69:S183-S193. [PMID: 34003164 DOI: 10.4103/0028-3886.315998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Background Migraine is a common disabling primary headache condition. Although strives have been made in treatment, there remains an unmet need for safe, effective acute, and preventative treatments. The promising concept of neuromodulation of relevant neuronal targets in a noninvasive fashion for the treatment of primary headache disorders has led to the trial of numerous devices over the years. Objective We aimed to review the evidence on current neuromodulation treatments available for the management of primary headache disorders. Methods Randomized controlled trial as well as open-label and real-world studies on central and peripheral cephalic and noncephalic neuromodulation modalities in primary headaches were critically reviewed. Results The current evidence suggests a role of single-pulse transcranial magnetic stimulation, supraorbital nerve stimulation, and remote noncephalic electrical stimulation as migraine abortive treatments, with stronger evidence in episodic rather than in chronic migraine. Single-pulse transcranial magnetic stimulation and supraorbital nerve stimulation also hold promising evidence in episodic migraine prevention and initial positive evidence in chronic migraine prevention. More evidence should clarify the therapeutic role of the external vagus nerve stimulation and transcranial direct current stimulation in migraine. However, external vagus nerve stimulation may be effective in the acute treatment of episodic but not chronic cluster headache, in the prevention of hemicrania continua and paroxysmal hemicrania but not of short-lasting neuralgiform headache attacks. The difficulty in setting up sham-controlled studies has thus far prevented the publication of robust trials. This limitation along with the cost of these therapies has meant that their use is limited in most countries. Conclusion Neuromodulation is a promising nonpharmacological treatment approach for primary headaches. More studies with appropriate blinding strategies and reduction of device cost may allow more widespread approval of these treatments and in turn increase clinician's experience in neuromodulation.
Collapse
Affiliation(s)
- Joseph Lloyd
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Maryna Biloshytska
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anna P Andreou
- Department of Functional Neurosurgery and Neuromodulation, Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Mehra D, Mangwani-Mordani S, Acuna K, C Hwang J, R Felix E, Galor A. Long-Term Trigeminal Nerve Stimulation as a Treatment for Ocular Pain. Neuromodulation 2021; 24:1107-1114. [PMID: 33945660 DOI: 10.1111/ner.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Ocular pain symptoms (e.g., hypersensitivity to light and wind, "burning" sensations) can be debilitating and difficult to treat. Neuromodulatory therapies targeting sensory trigeminal and central pain pathways may help treat chronic ocular pain refractory to traditional therapies. The current study evaluates the long-term effects of a trigeminal neurostimulator (TNS) on ocular pain. MATERIALS AND METHODS Retrospective review of 18 individuals at the Miami Veterans Affairs Eye Clinic with chronic, severe ocular pain who were prescribed and used TNS at home for ≥3 months. The primary outcome measures were 1) ocular symptom intensity over a 24-hour recall period (dryness, pain, light sensitivity, wind sensitivity, burning; rated on 0-10 scales) captured pre-TNS and at monthly follow-up intervals and 2) side effects. The frequency and duration of TNS was a secondary outcome measure. RESULTS The mean age of the population (n = 18) was 57.5 years (range, 34-85 years) with a male majority (67%). Two individuals discontinued use due to lack of efficacy and one due to confounding health issues. Initial mean weekly frequency of TNS use was 3.7 ± 1.9 sessions of 25.8 min at month 1 and 2.7 ± 2.3 sessions of 28.0 min at month 6. At six months, pain intensity (↓ 31.4%), light sensitivity (↓ 36.3%), wind sensitivity (↓ 32.6%), and burning sensation (↓ 53.9%) were all decreased compared to baseline (p < 0.01 for all); greater decreases in ocular pain were noted in individuals with migraine (n = 10) than those without migraine (n = 8). No significant change was noted in mean dryness scores. Fifteen subjects experienced sedation with TNS use, persisting throughout the follow-up visits. No other adverse effects were communicated by any subjects. CONCLUSION Our study suggests TNS is a safe, adjunctive treatment option in individuals with severe, chronic ocular pain. Individuals demonstrated gradual, continual improvement in pain symptoms over time within a multimodal approach.
Collapse
Affiliation(s)
- Divy Mehra
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | - Kelly Acuna
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA
| | - Jodi C Hwang
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elizabeth R Felix
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Physical Medicine and Rehabilitation, University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
30
|
Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ. The Role of Metabolism in Migraine Pathophysiology and Susceptibility. Life (Basel) 2021; 11:415. [PMID: 34062792 PMCID: PMC8147354 DOI: 10.3390/life11050415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic supply and demand that may contribute towards migraine susceptibility. Targeting these deficits with nutraceutical supplementation may provide an additional adjunctive therapy. Neuroimaging techniques have demonstrated a metabolic phenotype in migraine similar to mitochondrial cytopathies, featuring reduced free energy availability and increased metabolic rate. This is reciprocated in vivo when modelling a fundamental mechanism of migraine aura, cortical spreading depression. Trials assessing nutraceuticals successful in the treatment of mitochondrial cytopathies including magnesium, coenzyme q10 and riboflavin have also been conducted in migraine. Although promising results have emerged from nutraceutical trials in patients with levels of minerals or vitamins below a critical threshold, they are confounded by lacking control groups or cohorts that are not large enough to be representative. Energetic imbalance in migraine may be relevant in driving the tissue towards maximum metabolic capacity, leaving the brain lacking in free energy. Personalised medicine considering an individual's deficiencies may provide an approach to ameliorate migraine.
Collapse
Affiliation(s)
- Olivia Grech
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Benjamin R. Wakerley
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - Daniel Fulton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Gareth G. Lavery
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Alexandra J. Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| |
Collapse
|
31
|
Altamura C, Corbelli I, de Tommaso M, Di Lorenzo C, Di Lorenzo G, Di Renzo A, Filippi M, Jannini TB, Messina R, Parisi P, Parisi V, Pierelli F, Rainero I, Raucci U, Rubino E, Sarchielli P, Li L, Vernieri F, Vollono C, Coppola G. Pathophysiological Bases of Comorbidity in Migraine. Front Hum Neurosci 2021; 15:640574. [PMID: 33958992 PMCID: PMC8093831 DOI: 10.3389/fnhum.2021.640574] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite that it is commonly accepted that migraine is a disorder of the nervous system with a prominent genetic basis, it is comorbid with a plethora of medical conditions. Several studies have found bidirectional comorbidity between migraine and different disorders including neurological, psychiatric, cardio- and cerebrovascular, gastrointestinal, metaboloendocrine, and immunological conditions. Each of these has its own genetic load and shares some common characteristics with migraine. The bidirectional mechanisms that are likely to underlie this extensive comorbidity between migraine and other diseases are manifold. Comorbid pathologies can induce and promote thalamocortical network dysexcitability, multi-organ transient or persistent pro-inflammatory state, and disproportionate energetic needs in a variable combination, which in turn may be causative mechanisms of the activation of an ample defensive system with includes the trigeminovascular system in conjunction with the neuroendocrine hypothalamic system. This strategy is designed to maintain brain homeostasis by regulating homeostatic needs, such as normal subcortico-cortical excitability, energy balance, osmoregulation, and emotional response. In this light, the treatment of migraine should always involves a multidisciplinary approach, aimed at identifying and, if necessary, eliminating possible risk and comorbidity factors.
Collapse
Affiliation(s)
- Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Policlinico General Hospital, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso B Jannini
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Messina
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, c/o Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,Headache Clinic, IRCCS-Neuromed, Pozzilli, Italy
| | - Innocenzo Rainero
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Elisa Rubino
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Linxin Li
- Nuffield Department of Clinical Neurosciences, Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Catello Vollono
- Department of Neurology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Catholic University, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The past two decades has seen an influx of noninvasive neuromodulation devices aimed at treatment of various primary headache disorders, including cluster headache and migraine. This narrative review is to summarize the current options in noninvasive neuromodulation in migraine. RECENT FINDINGS A variety of noninvasive neuromodulation devices have been FDA cleared and marketed for use in migraine, including single-pulse transcranial magnetic stimulation (sTMS), noninvasive vagal nerve stimulators (nVNS), and external trigeminal nerve stimulators (eTNS). Newer devices include peripheral electrical stimulation devices (PES), caloric stimulation, and others. Each has varying levels of evidence supporting its use in migraine, tolerability profiles, and access issues. Noninvasive neuromodulation devices can be beneficial when used in patients with migraine, with minimal side effects. As more devices are developed, approved, and marketed in the future, rigorous research on efficacy and safety remain a top priority.
Collapse
|
33
|
Urits I, Schwartz R, Smoots D, Koop L, Veeravelli S, Orhurhu V, Cornett EM, Manchikanti L, Kaye AD, Imani F, Varrassi G, Viswanath O. Peripheral Neuromodulation for the Management of Headache. Anesth Pain Med 2020; 10:e110515. [PMID: 34150578 PMCID: PMC8207880 DOI: 10.5812/aapm.110515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Context Neuromodulation is an expanding field of study for headache treatment to reduce pain by targeting structures within the nervous system that are commonly involved in headache pathophysiology, such as the vagus nerve (VNS), occipital nerves, or sphenopalatine ganglion (SPG) for stimulation. Pharmaceutical medical therapies for abortive and prophylactic treatment, such as triptans, NSAIDs, beta-blockers, TCAs, and antiepileptics, are effective for some individuals, but the role that technology plays in investigating other therapeutic modalities is essential. Peripheral neuromodulation has gained popularity and FDA approval for use in treating certain headaches and migraine headache conditions, particularly in those who are refractory to treatment. Early trials found FDA approved neurostimulatory implant devices, including Cephaly and SpringTMS, improved patient-oriented outcomes with reductions in headaches per month (frequency) and severity. Evidence Acquisition This was a narrative review. The sources for this review are as follows: Searching on PubMed, Google Scholar, Medline, and ScienceDirect from 1990 - 2019 using keywords: Peripheral Neuromodulation, Headache, vagus nerve, occipital nerves, sphenopalatine ganglion. Results The first noninvasive neurostimulator device approved for migraine treatment was the Cefaly device, an external trigeminal nerve stimulation device (e-TNS) that transcutaneously excites the supratrochlear and supraorbital branches of the ophthalmic nerve. The second noninvasive neurostimulation device receiving FDA approval was the single-pulse transcranial magnetic stimulator, SpringTMS, positioned at the occiput to treat migraine with aura. GammaCore is a handheld transcutaneous vagal nerve stimulator applied directly to the neck at home by the patient for treatment of cluster headache (CH) and migraine. Several other devices are in development for the treatment of headaches and target headache evolution at different levels and inputs. The Scion device is a caloric vestibular stimulator (CVS) which interfaces with the user through a set of small cones resting in the ear canal on either side and held in place by modified over-ear headphones. The pulsante SPG Microstimulator is a patient-controlled device implanted in the patient’s upper jaw via an hour-long oral procedure to target the sphenopalatine ganglion. The occipital nerve stimulator (ONS) is an invasive neuromodulation device for headache treatment that consists of an implanted pulse generator on the chest wall connected to a subcutaneous lead with 4 - 8 electrodes that is tunneled the occiput. Conclusions The aim of this review is to provide a comprehensive overview of the efficacy, preliminary outcomes, and limitations of neurostimulatory implants available for use in the US and those pending further development.
Collapse
Affiliation(s)
- Ivan Urits
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Ruben Schwartz
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Daniel Smoots
- Department of Anesthesiology, Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Lindsey Koop
- Department of Anesthesiology, Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Suhitha Veeravelli
- Department of Anesthesia, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Vwaire Orhurhu
- University of Pittsburgh Medical Center, Williamsport, PA, USA
| | - Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
- Corresponding Author: Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Postal Code: 33932, Shreveport, LA, USA.
| | | | - Alan D. Kaye
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Omar Viswanath
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
- Department of Anesthesiology, Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
- Department of Anesthesia, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Valley Anesthesiology and Pain Consultants – Envision Physician Services, Phoenix, AZ, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review and synthesize current literature in which neurochemical and structural brain imaging were used to investigate chronic migraine (CM) pathophysiology and to further discuss the clinical implications. RECENT FINDINGS Spectroscopic and structural MRI studies have shown the presence of both impaired metabolism and structural alterations in the brain of CM patients. Metabolic changes in key brain regions support the notion of altered energetics and homeostasis as part of CM pathophysiology. Furthermore, CM, like other chronic pain disorders, may undergo structural reorganization in pain-related brain regions following near persistent endogenous painful input. Finally, both imaging techniques may provide potential biomarkers of disease state and progression and may help guide novel therapeutic interventions or strategies. Spectroscopic and structural MRI have revealed novel aspects of CM pathophysiology. Findings from the former support the metabolic theory of migraine pathogenesis.
Collapse
Affiliation(s)
- Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
35
|
Stanak M, Wolf S, Jagoš H, Zebenholzer K. The impact of external trigeminal nerve stimulator (e-TNS) on prevention and acute treatment of episodic and chronic migraine: A systematic review. J Neurol Sci 2020; 412:116725. [PMID: 32087428 DOI: 10.1016/j.jns.2020.116725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this systematic review was to analyze the effectiveness and safety of the external trigeminal nerve stimulator (eTNS) for the prevention and acute treatment of migraine attacks in episodic and chronic migraine patients. METHODS We have conducted a systematic literature search in four databases that yielded 433 citations and additional seven citations were found via hand-search. Two randomised placebo-controlled trials and five prospective case series were included in the analysis. RESULTS Concerning prevention, statistically significant differences were found with respect to reduction of migraine attacks (0.67 less migraine attacks per month), migraine days (1.74 less migraine days per month), headache days (2.28 less headache days per month), and acute antimigraine drug intake (4.24 less instances of acute drug intake per month). Concerning acute treatment, statistically significant differences were found with respect to pain reduction on a visual analogue scale at 1/2/24 h post-acute treatment (1.68/1.02/1.08 improvement, respectively). No serious adverse events occurred in any of the studies. CONCLUSIONS While e-TNS has the potential to improve migraine symptoms, for its establishment in the standard practice, high quality comparative data, studies with larger sample sizes, and studies with standard and relevant primary outcome parameters are needed.
Collapse
|
36
|
Xu G, Cheng S, Qu Y, Cheng Y, Zhou J, Li Z, Liang F. The functional alterations in primary migraine: A systematic review and meta-analysis protocol. Medicine (Baltimore) 2020; 99:e19019. [PMID: 32150049 PMCID: PMC7478569 DOI: 10.1097/md.0000000000019019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Accumulating neuroimaging studies have found abnormal cerebral activity in migraine patients. However, the findings of studies exist many differences. Hence, this protocol aims to investigate concurrence across the neuroimaging studies to verify the functional cerebral alterations based on the latest evidence. METHODS AND ANALYSIS Functional neuroimaging studies comparing migraineur with healthy subjects will be searched in the 4 online databases (EMBASE, the Cochrane Library, PubMed, and Web of Science) up to June 2019. The selection of studies, quality assessment, and data extraction will be conducted by 2 independent researchers. The Anisotropic effect size version of signed differential mapping (AES-SDM) methods will be used to conduct a coordinate-based meta-analysis. The bias of publication will be confirmed via the P value of Egger test. The quality of studies will be evaluated by the Newcastle-Ottawa Scale (NOS). This study is registered with PROSPERO, number CRD42019129043. RESULTS This study will deepen the understanding of functional cerebral alterations of migraine. CONCLUSION The study will provide clear conclusion of the functional cerebral alterations based on the latest evidence.
Collapse
Affiliation(s)
- Guixing Xu
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Shirui Cheng
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Yuzhu Qu
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
- The First Affiliated Hospital of Chengdu University of Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Cheng
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Jun Zhou
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Zhengjie Li
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Fanrong Liang
- The Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
37
|
Ordás CM, Cuadrado ML, Pareja JA, de-Las-Casas-Cámara G, Gómez-Vicente L, Torres-Gaona G, Venegas-Pérez B, Álvarez-Mariño B, Diez Barrio A, Pardo-Moreno J. Transcutaneous Supraorbital Stimulation as a Preventive Treatment for Chronic Migraine: A Prospective, Open-Label Study. PAIN MEDICINE 2020; 21:415-422. [PMID: 31131857 DOI: 10.1093/pm/pnz119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Successful preventive treatment in chronic migraine (CM) remains an unmet need in some cases, and new therapeutic strategies are emerging. We aimed to test the effect of noninvasive, transcutaneous supraorbital nerve stimulation (tSNS) in a group of patients with CM. PATIENTS AND METHODS This was an open label, quasi-experimental design. Twenty-five CM patients were recruited from two hospital headache clinics. After a one-month baseline period, monthly visits were scheduled during three months. Headache occurrence, its intensity, and symptomatic medication intake were recorded through a diary kept by each patient. Both a per-protocol analysis and an intention-to-treat analysis were performed for the main outcome measures. RESULTS Twenty-one and 24 patients were included in the per-protocol and the intention-to-treat analyses, respectively. In the per-protocol analysis, a significant four-day decrease in the mean monthly days with moderate or severe headache was observed from baseline to the end of the study (t test, P = 0.0163), and there was a nonsignificant reduction of 2.95 in the mean monthly total headache days. In the intention-to-treat analysis, a nonsignificant 3.37 reduction in the mean monthly days with moderate or severe headache was observed for the same period, and there was a significant 2.75 reduction in the mean monthly days with any headache (t test, P = 0.016). CONCLUSIONS tSNS could hold preventive properties in the treatment of CM, but the effect may be either mild or controversial. Double blind, sham-controlled studies are essential to confirm these findings and to outline their clinical relevance in the CM therapeutic scenario.
Collapse
Affiliation(s)
- Carlos M Ordás
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| | - María L Cuadrado
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Juan A Pareja
- Department of Neurology, Hospital Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Gonzalo de-Las-Casas-Cámara
- Department of Preventive Medicine, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Lidia Gómez-Vicente
- Department of Neurology, Hospital Quirón, Universidad Europea, Pozuelo de Alarcón, Madrid, Spain
| | - Gustavo Torres-Gaona
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| | - Begoña Venegas-Pérez
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| | - Beatriz Álvarez-Mariño
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| | - Ana Diez Barrio
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| | - Javier Pardo-Moreno
- Department of Neurology, Hospital Rey Juan Carlos, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.,Department of Neurology, Hospital Infanta Elena, Valdemoro, Madrid, Spain
| |
Collapse
|
38
|
Hou AY, Chen AY, Yuan H, Silberstein SD. Peripheral neuromodulation for the treatment of migraine and headache: recent advances. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Noninvasive neuromodulation is a rapidly developing field that offers an attractive nonpharmacologic treatment option for headache patients. Devices that stimulate peripheral nerves (e.g., vagus nerve, trigeminal sensory nerve, somatic sensory nerve) or brain parenchyma (e.g., occipital cortex) have been developed for this purpose, with promising results in clinical trials. There are currently four US FDA-cleared devices for the treatment of migraine and/or cluster headache: Cefaly®, a trigeminal nerve stimulator; gammaCore™, a vagus nerve stimulator; sTMS mini™, a transcranial magnetic stimulator and Nerivio™, a remote electrical neurostimulator. This narrative review will provide an overview of FDA-cleared neuromodulatory devices, including their proposed mechanisms of action as well as device safety and efficacy as demonstrated in clinical trials.
Collapse
Affiliation(s)
- Angela Y Hou
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anna Y Chen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hsiangkuo Yuan
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
39
|
Abstract
The current literature on peripheral cranial nerve stimulation for the purpose of achieving therapeutic effects via altering brain activity is reviewed. Vagus nerve stimulation, which is approved for use in refractory epilepsy, is the most extensively studied cranial nerve stimulator that has direct impact on the central nervous system. Despite the recognized central effects of peripheral cranial nerve stimulation, the mechanism of action for all indications remains incompletely understood. Further research on both mechanisms and indications of central effects of cranial nerve stimulation has the potential to alleviate burden of disease in a large array of conditions.
Collapse
Affiliation(s)
- Gavriel D Kohlberg
- Division of Otology and Neurotology, Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356161, Seattle, WA 98195 - 6161, USA
| | - Ravi N Samy
- Division of Otology/Neurotology, Neurotology Fellowship, Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Neurosensory Disorders Center at University of Cincinnati Gardner Neuroscience Institute, Cincinnati Children's Hospital Medical Center, 213 Albert Sabin, Way, MSB 6009C, Cincinnati, OH 45267-0528, USA.
| |
Collapse
|
40
|
Beh SC. External trigeminal nerve stimulation: Potential rescue treatment for acute vestibular migraine. J Neurol Sci 2019; 408:116550. [PMID: 31677559 DOI: 10.1016/j.jns.2019.116550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Vestibular migraine (VM) is the most common neurologic cause of vertigo among adults. However, there are no specifically studied or approved rescue therapies for acute VM attacks. This study describes how external trigeminal nerve stimulation (eTNS) using the Cefaly® (CEFALY Technology, Seraing, Belgium) device relieves acute VM episodes. METHODS Single-center, retrospective review of 19 patients with acute VM attacks (seen between May 2018 and June 2019) treated with 20-min eTNS. Prior to treatment, patients graded the severity of their vertigo/headache using a 10-point visual analog scale (VAS) with 0 representing no vertigo/headache, and 10 representing the worst imaginable vertigo/headache. After eTNS, patients graded their vertigo/headache using the same VAS 15 min. In addition, bedside neuro-otologic examination was performed before and after treatment. RESULTS 19/19 patients reported improvement in vertigo severity. Mean vertigo severity was 6.6 (±2.1; median 7) before eTNS, and 2.7 (±2.6; median 3) following treatment; mean improvement in vertigo was 61.3% (±32.6; median 50.0%). During VM episodes, 14/19 experienced headache. Mean headache severity was 4.8 (±2.4; median 4.5) before eTNS, and was 1.4 (±2.4; median 0) following treatment; mean improvement in headache was 77.2% (±32.7; median 100.0%). Neuro-otologic examination was normal during VM attacks in all except Patient 7 who had spontaneous upbeat nystagmus which resolved after eTNS. Other improvements include improvement of eye pressure, head pressure, and chronic facial pain. No intolerable side effects were reported. CONCLUSION This study provides preliminary evidence that eTNS is a novel, non-invasive, safe and effective treatment for acute VM attacks.
Collapse
Affiliation(s)
- Shin C Beh
- Department of Neurology, UT Southwestern Medical Center, United States of America.
| |
Collapse
|
41
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
42
|
Abstract
Episodic migraine is a debilitating condition. Preventive therapy is used to reduce frequency, duration, or severity of attacks. This review discusses principles of preventive treatment with a focus on preventive treatment options for people with episodic migraine. Specifically discussed is evidence and use of new migraine-specific treatment options for episodic migraine, such as calcitonin gene-related peptide monoclonal antibodies, a noninvasive transcutaneous electrical nerve stimulation device, and a single-pulse transcranial magnetic stimulator device. Also discussed are evidence-based updates from the 2012 American Academy of Neurology and the American Headache Society guidelines regarding major medication classes recommended for preventive episodic migraine treatment.
Collapse
Affiliation(s)
- Simy K Parikh
- Jefferson Headache Center, Thomas Jefferson University Hospital, Thomas Jefferson University, 900 Walnut Street, Suite #200, Philadelphia, PA 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University Hospital, Thomas Jefferson University, 900 Walnut Street, Suite #200, Philadelphia, PA 19107, USA.
| |
Collapse
|
43
|
The safety and preventive effects of a supraorbital transcutaneous stimulator in Japanese migraine patients. Sci Rep 2019; 9:9900. [PMID: 31289281 PMCID: PMC6617446 DOI: 10.1038/s41598-019-46044-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cefaly (Cefaly Technology, Seraing, Belgium) is a device that stimulates the bilateral supraorbital nerve transcutaneously. A previous study in Europe proved that Cefaly was an effective and safe device as a preventive therapy for migraine. However, there have been no studies on this device in Asia. We examined the safety and preventive effect of Cefaly for migraine. One-hundred patients were prospectively collected from four headache units in Japan. The inclusion criteria were as follows: 18–75 years of age, migraine with and without aura, and at least 2 attacks per month. A 4-week baseline period was followed by 12-week treatment period. The primary end point was the change from baseline in the number of migraine days at 12 weeks. The secondary end points include the changes of the number of migraine attacks, all headache days, acute medicine consumption days and headache severity. After treatment, a questionnaire survey on the satisfaction of the treatment was administered to the patients. The Friedmann test was used to assess the changes between baseline period and after treatment, and Mann-Whitney U test was used for the comparison of efficacy between chronic migraine and episodic migraine, with and without prophylactic treatment or medication overuse. After 12 weeks of treatment, Cefaly use significantly decreased the number of migraine days (8.16 vs. 6.84; p = 0.0036). Only three subjects (3.0%) dropped out due to the adverse effects; however, no serious adverse events were observed. The compliance of this study was very high at 90.0%. Furthermore, a significant decrease was observed in the number of migraine attacks (5.33 vs. 3.94; p = 0.0002) and the intake of acute antimigraine drugs (8.75 vs. 7.83; p = 0.0166). Cefaly is considered to be a safe and highly tolerable effective device for Japanese patients. Trial registration: This study was retrospectively registered to UMIN-CTR(UMIN000033333) on 10 July 2018.
Collapse
|
44
|
Abstract
Purpose of review To review 5 new areas in primary headache disorders, especially migraine and cluster headache. Recent findings Calcitonin gene-related peptide (CGRP) receptor antagonists (gepants-rimegepant and ubrogepant) and serotonin 5-HT1F receptor agonists (ditans-lasmiditan) have completed phase 3 clinical trials and will soon offer novel, effective, well-tolerated nonvasoconstrictor options to treat acute migraine. CGRP preventive treatment is being revolutionized after the licensing of 3 monoclonal antibodies (MABs), erenumab, fremanezumab, and galcanezumab, with eptinezumab to follow, especially designed for migraine; they are effective and well tolerated. For patients seeking a nondrug therapy, neuromodulation approaches, single-pulse transcranial magnetic stimulation, noninvasive vagus nerve stimulation (nVNS), and external trigeminal nerve stimulation, represent licensed, well-tolerated approaches to migraine treatment. For the acute treatment of episodic cluster headache, nVNS is effective, well tolerated, and licensed; nVNS is effective and well tolerated in preventive treatment of cluster headache. The CGRP MAB galcanezumab was effective and well tolerated in a placebo-controlled trial in the preventive treatment of episodic cluster headache. Sphenopalatine ganglion stimulation has been shown to be effective and well tolerated in 2 randomized sham-controlled studies on chronic cluster headache. Understanding the premonitory (prodromal) phase of migraine during which patients experience symptoms such as yawning, tiredness, cognitive dysfunction, and food cravings may help explain apparent migraine triggers in some patients, thus offering better self-management. Summary Headache medicine has made remarkable strides, particularly in understanding migraine and cluster headache in the past 5 years. For the most common reason to visit a neurologist, therapeutic advances offer patients reduced disability and neurologists a rewarding, key role in improving the lives of those with migraine and cluster headache.
Collapse
Affiliation(s)
- Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College London, UK; and Department of Neurology, University of California, San Francisco
| |
Collapse
|
45
|
Tajti J, Szok D, Nyári A, Vécsei L. Therapeutic strategies that act on the peripheral nervous system in primary headache disorders. Expert Rev Neurother 2019; 19:509-533. [DOI: 10.1080/14737175.2019.1615447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
46
|
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Viganò A, Toscano M, Puledda F, Di Piero V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front Pharmacol 2019; 10:32. [PMID: 30804782 PMCID: PMC6370938 DOI: 10.3389/fphar.2019.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic migraine (CM) is the most disabling form of migraine, because pharmacological treatments have low efficacy and cumbersome side effects. New evidence has shown that migraine is primarily a disorder of brain plasticity and migraine chronification depends on a maladaptive process favoring the development of a brain state of hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option in migraine field. On one side, NIBS techniques induce changes of neural plasticity that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic migraine treatment, concurrently they allow targeting neurophysiological abnormalities that contribute to the transition from episodic to CM. The action may thus influence not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not burdened by serious medication side effects and drug–drug interactions. Although the majority of the studies reported somewhat beneficial effects in migraine patients, no standard intervention has been defined. This may be due to methodological differences regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial direct current stimulation), the brain regions chosen as targets, and the stimulation types (e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales), and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion on the real effect of neuromodulation in migraine. In this article, we first will review the definition and mechanisms of brain plasticity, some neurophysiological hallmarks of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review available results from therapeutic and physiological studies using neuromodulation in CM. Lastly we will discuss the results obtained in these preventive trials in the light of a possible effect on brain plasticity.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College Hospital, King's College London, London, United Kingdom
| | - Vittorio Di Piero
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,University Consortium for Adaptive Disorders and Head Pain - UCADH, Pavia, Italy
| |
Collapse
|
48
|
Zaproudina N, Rissanen APE, Lipponen JA, Vierola A, Rissanen SM, Karjalainen PA, Soinila S, Närhi M. Tooth Clenching Induces Abnormal Cerebrovascular Responses in Migraineurs. Front Neurol 2018; 9:1112. [PMID: 30622506 PMCID: PMC6309104 DOI: 10.3389/fneur.2018.01112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023] Open
Abstract
Prevalence of masticatory parafunctions, such as tooth clenching and grinding, is higher among migraineurs than non-migraineurs, and masticatory dysfunctions may aggravate migraine. Migraine predisposes to cerebrovascular disturbances, possibly due to impaired autonomic vasoregulation, and sensitization of the trigeminovascular system. The relationships between clenching, migraine, and cerebral circulation are poorly understood. We used Near-Infrared Spectroscopy to investigate bilateral relative oxy- (%Δ[O2Hb]), deoxy- (%Δ[HHb]), and total (%Δ[tHb]) hemoglobin concentration changes in prefrontal cortex induced by maximal tooth clenching in twelve headache-free migraineurs and fourteen control subjects. From the start of the test, migraineurs showed a greater relative increase in right-side %Δ[HHb] than controls, who showed varying reactions, and right-side increase in %Δ[tHb] was also greater in migraineurs (p < 0.001 and p < 0.05, respectively, time-group interactions, Linear mixed models). With multivariate regression model, migraine predicted the magnitude of maximal blood pressure increases, associated in migraineurs with mood scores and an intensity of both headache and painful signs of temporomandibular disorders (pTMD). Although changes in circulatory parameters predicted maximal NIRS responses, the between-group differences in the right-side NIRS findings remained significant after adjusting them for systolic blood pressure and heart rate. A family history of migraine, reported by all migraineurs and four controls, also predicted maximal increases in both %Δ[HHb] and %Δ[tHb]. Presence of pTMD, revealed in clinical oral examination in eight migraineurs and eight controls, was related to maximal %Δ[HHb] increase only in controls. To conclude, the greater prefrontal right-side increases in cerebral %Δ[HHb] and %Δ[tHb] may reflect disturbance of the tooth clenching-related cerebral (de)oxygenation based on impaired reactivity and abnormal microcirculation processes in migraineurs. This finding may have an impact in migraine pathophysiology and help to explain the deleterious effect of masticatory dysfunctions in migraine patients. However, the role of tooth clenching as a migraine trigger calls for further studies.
Collapse
Affiliation(s)
- Nina Zaproudina
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti-Pekka E Rissanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Jukka A Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Anu Vierola
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Saara M Rissanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, General Neurology, Turku University Hospital and Department of Neurology, Turku University Hospital, Turku, Finland
| | - Matti Närhi
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
49
|
Chou DE, Shnayderman Yugrakh M, Winegarner D, Rowe V, Kuruvilla D, Schoenen J. Acute migraine therapy with external trigeminal neurostimulation (ACME): A randomized controlled trial. Cephalalgia 2018; 39:3-14. [PMID: 30449151 PMCID: PMC6348457 DOI: 10.1177/0333102418811573] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess the safety and efficacy of external trigeminal nerve stimulation for acute pain relief during migraine attacks with or without aura via a sham-controlled trial. METHODS This was a double-blind, randomized, sham-controlled study conducted across three headache centers in the United States. Adult patients who were experiencing an acute migraine attack with or without aura were recruited on site and randomly assigned 1:1 to receive either verum or sham external trigeminal nerve stimulation treatment (CEFALY Technology) for 1 hour. Pain intensity was scored using a visual analogue scale (0 = no pain to 10 = maximum pain). The primary outcome measure was the mean change in pain intensity at 1 hour compared to baseline. RESULTS A total of 109 participants were screened between February 1, 2016 and March 31, 2017. Of these, 106 patients were randomized and included in the intention-to-treat analysis (verum: n = 52; sham: n = 54). The primary outcome measure was significantly more reduced in the verum group than in the sham group: -3.46 ± 2.32 versus -1.78 ± 1.89 ( p < 0.0001), or -59% versus -30% ( p < 0.0001). With regards to migraine subgroups, there was a significant difference in pain reduction between verum and sham for 'migraine without aura' attacks: mean visual analogue scale reduction at 1 hour was -3.3 ± 2.4 for the verum group versus -1.7 ± 1.9 for the sham group ( p = 0.0006). For 'migraine with aura' attacks, pain reduction was numerically greater for verum versus sham, but did not reach significance: mean visual analogue scale reduction at 1 hour was -4.3 ± 1.8 for the verum group versus -2.6 ± 1.9 for the sham group ( p = 0.060). No serious adverse events were reported and five minor adverse events occurred in the verum group. CONCLUSION One-hour treatment with external trigeminal nerve stimulation resulted in significant headache pain relief compared to sham stimulation and was well tolerated, suggesting it may be a safe and effective acute treatment for migraine attacks. STUDY PROTOCOL ClinicalTrials.gov Identifier: NCT02590939.
Collapse
Affiliation(s)
- Denise E Chou
- 1 Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Deena Kuruvilla
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jean Schoenen
- 4 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| |
Collapse
|
50
|
|