1
|
Jao CW, Wu YT, Chen WH, Yeh JH, Tsai YF, Hsiao CY, Walsh V, Lau CI. Brain structural network modular and connectivity alterations in subtypes of patients with migraine and medication overuse headache. PROGRESS IN BRAIN RESEARCH 2024; 290:23-61. [PMID: 39448113 DOI: 10.1016/bs.pbr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/26/2024]
Abstract
Migraine, one of the most prevalent and debilitating neurological disorders, can be classified based on attack frequency into episodic migraine (EM) and chronic migraine (CM). Medication overuse headache (MOH), a type of chronic headache, arises when painkillers are overused by individuals with untreated or inadequately treated headaches. This study compares regional cortical morphological alterations and brain structural network changes among these headache subgroups. Sixty participants, including 20 in each of the following patient groups (EM, CM, MOH), and healthy controls (HC) completed the study. Our results show that the EM group exhibited cortical thickness (CTs) thinning predominantly in the left limbic, whereas CM patients exhibited CTs thinning across both left and right hemispheres. The MOH group demonstrated the most widespread CTs thinning. Both CM and MOH exhibited comparable patterns of CTs thinning within lobes, leading to reduced intra-lobe connectivity. While there were no significant differences in total inter-lobe connectivity between migraine groups and HC, both CM and MOH groups exhibited significantly decreased inter-limbic connectivity compared to HC and EM groups. In addition, they showed increased inter-frontal and inter-parietal connectivity, suggesting possible compensatory mechanisms to offset the loss of inter-lobe connectivity between the limbic and other lobes. Both CM and MOH groups exhibited a significant loss of global efficiency and a decrease in betweenness centrality in their brain networks, with MOH showing the most pronounced decrease and CM showing the second largest decrease. Our results suggest that aberrant structural brain networks in CM and MOH are less efficient, less centralization, and abnormally segregated.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hung Chen
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jiann-Hong Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Feng Tsai
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan; Department of Diagnostic Radiology, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan; Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Liang Y, Zhao Q, Neubert JK, Ding M. Causal interactions in brain networks predict pain levels in trigeminal neuralgia. Brain Res Bull 2024; 211:110947. [PMID: 38614409 DOI: 10.1016/j.brainresbull.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Trigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls. Whereas studies have also examined aberrations in brain networks in TN, no studies have to date investigated causal interactions in these brain networks and related these causal interactions to the levels of TN pain. We recorded fMRI data from 39 TN patients who either rested comfortably in the scanner during the resting state session or tracked their pain levels during the pain tracking session. Applying Granger causality to analyze the data and requiring consistent findings across the two scanning sessions, we found 5 causal interactions, including: (1) Thalamus → dACC, (2) Caudate → Inferior temporal gyrus, (3) Precentral gyrus → Inferior temporal gyrus, (4) Supramarginal gyrus → Inferior temporal gyrus, and (5) Bankssts → Inferior temporal gyrus, that were consistently associated with the levels of pain experienced by the patients. Utilizing these 5 causal interactions as predictor variables and the pain score as the predicted variable in a linear multiple regression model, we found that in both pain tracking and resting state sessions, the model was able to explain ∼36 % of the variance in pain levels, and importantly, the model trained on the 5 causal interaction values from one session was able to predict pain levels using the 5 causal interaction values from the other session, thereby cross-validating the models. These results, obtained by applying novel analytical methods to neuroimaging data, provide important insights into the pathophysiology of TN and could inform future studies aimed at developing innovative therapies for treating TN.
Collapse
Affiliation(s)
- Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Qing Zhao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Lim M, Kim DJ, Nascimento TD, DaSilva AF. High-definition tDCS over primary motor cortex modulates brain signal variability and functional connectivity in episodic migraine. Clin Neurophysiol 2024; 161:101-111. [PMID: 38460220 DOI: 10.1016/j.clinph.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE This study investigated how high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) affects brain signal variability and functional connectivity in the trigeminal pain pathway, and their association with changes in migraine attacks. METHODS Twenty-five episodic migraine patients were randomized for ten daily sessions of active or sham M1 HD-tDCS. Resting-state blood-oxygenation-level-dependent (BOLD) signal variability and seed-based functional connectivity were assessed pre- and post-treatment. A mediation analysis was performed to test whether BOLD signal variability mediates the relationship between treatment group and moderate-to-severe headache days. RESULTS The active M1 HD-tDCS group showed reduced BOLD variability in the spinal trigeminal nucleus (SpV) and thalamus, but increased variability in the rostral anterior cingulate cortex (rACC) compared to the sham group. Connectivity decreased between medial pulvinar-temporal pole, medial dorsal-precuneus, and the ventral posterior medial nucleus-SpV, but increased between the rACC-amygdala, and the periaqueductal gray-parahippocampal gyrus. Changes in medial pulvinar variability mediated the reduction in moderate-to-severe headache days at one-month post-treatment. CONCLUSIONS M1 HD-tDCS alters BOLD signal variability and connectivity in the trigeminal somatosensory and modulatory pain system, potentially alleviating migraine headache attacks. SIGNIFICANCE M1 HD-tDCS realigns brain signal variability and connectivity in migraineurs closer to healthy control levels.
Collapse
Affiliation(s)
- Manyoel Lim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Potential of focal cortical dysplasia in migraine pathogenesis. Cereb Cortex 2024; 34:bhae158. [PMID: 38615241 DOI: 10.1093/cercor/bhae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
Focal cortical dysplasias are abnormalities of the cerebral cortex associated with an elevated risk of neurological disturbances. Cortical spreading depolarization/depression is a correlate of migraine aura/headache and a trigger of migraine pain mechanisms. However, cortical spreading depolarization/depression is associated with cortical structural changes, which can be classified as transient focal cortical dysplasias. Migraine is reported to be associated with changes in various brain structures, including malformations and lesions in the cortex. Such malformations may be related to focal cortical dysplasias, which may play a role in migraine pathogenesis. Results obtained so far suggest that focal cortical dysplasias may belong to the causes and consequences of migraine. Certain focal cortical dysplasias may lower the threshold of cortical excitability and facilitate the action of migraine triggers. Migraine prevalence in epileptic patients is higher than in the general population, and focal cortical dysplasias are an established element of epilepsy pathogenesis. In this narrative/hypothesis review, we present mainly information on cortical structural changes in migraine, but studies on structural alterations in deep white matter and other brain regions are also presented. We develop the hypothesis that focal cortical dysplasias may be causally associated with migraine and link pathogeneses of migraine and epilepsy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Ezbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plac Generała Dabrowskiego 2, 09-420 Plock, Mazowieckie, Poland
| |
Collapse
|
6
|
Chen WT, Hsiao FJ, Coppola G, Wang SJ. Decoding pain through facial expressions: a study of patients with migraine. J Headache Pain 2024; 25:33. [PMID: 38462615 PMCID: PMC10926654 DOI: 10.1186/s10194-024-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The present study used the Facial Action Coding System (FACS) to analyse changes in facial activities in individuals with migraine during resting conditions to determine the potential of facial expressions to convey information about pain during headache episodes. METHODS Facial activity was recorded in calm and resting conditions by using a camera for both healthy controls (HC) and patients with episodic migraine (EM) and chronic migraine (CM). The FACS was employed to analyse the collected facial images, and intensity scores for each of the 20 action units (AUs) representing expressions were generated. The groups and headache pain conditions were then examined for each AU. RESULTS The study involved 304 participants, that is, 46 HCs, 174 patients with EM, and 84 patients with CM. Elevated headache pain levels were associated with increased lid tightener activity and reduced mouth stretch. In the CM group, moderate to severe headache attacks exhibited decreased activation in the mouth stretch, alongside increased activation in the lid tightener, nose wrinkle, and cheek raiser, compared to mild headache attacks (all corrected p < 0.05). Notably, lid tightener activation was positively correlated with the Numeric Rating Scale (NRS) level of headache (p = 0.012). Moreover, the lip corner depressor was identified to be indicative of emotional depression severity (p < 0.001). CONCLUSION Facial expressions, particularly lid tightener actions, served as inherent indicators of headache intensity in individuals with migraine, even during resting conditions. This indicates that the proposed approach holds promise for providing a subjective evaluation of headaches, offering the benefits of real-time assessment and convenience for patients with migraine.
Collapse
Affiliation(s)
- Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, 155, Linong Street Sec 2, Taipei, 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, 155, Linong Street Sec 2, Taipei, 112, Taiwan.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, 155, Linong Street Sec 2, Taipei, 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Ruiz-Tagle A, Figueiredo P, Pinto J, Vilela P, Martins IP, Gil-Gouveia R. Working memory during spontaneous migraine attacks: an fMRI study. Neurol Sci 2024; 45:1201-1208. [PMID: 37847419 PMCID: PMC10858146 DOI: 10.1007/s10072-023-07120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE To investigate the neural correlates of working memory during a spontaneous migraine attack compared to the interictal phase, using functional magnetic resonance imaging (fMRI). BACKGROUND Cognitive disturbances are commonly observed during migraine attacks, particularly in the headache phase. However, the neural basis of these changes remains unknown. METHODS In a fMRI within-subject test-retest design study, eleven women (32 years of age, average) with episodic migraine were evaluated twice, first during a spontaneous migraine attack, and again in a pain-free period. Each session consisted in a cognitive assessment and fMRI while performing a working memory task (N-back). RESULTS Cognitive test scores were lower during the ictal session than in the pain-free session. Regions typically associated with working memory were activated during the N-back task in both sessions. A voxel wise between session comparison showed significantly greater activation in the left frontal pole and orbitofrontal cortex during the attack relative to the interictal phase. CONCLUSION Migraine patients exhibited greater activation of the left frontal pole and orbitofrontal cortex while executing a verbal working memory task during a spontaneous migraine attack when compared to the interictal state. Given the association of these regions with pain processing and inhibitory control, these findings suggest that patients recruit inhibitory areas to accomplish the cognitive task during migraine attacks, a neural signature of their cognitive difficulties.
Collapse
Affiliation(s)
- Amparo Ruiz-Tagle
- Instituto Superior Técnico, Universidade de Lisboa, ISR-Lisboa/LARSyS and Department of Bioengineering, Lisbon, Portugal.
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, and Hospital de Santa Maria, CHULN, Lisbon, Portugal.
| | - Patrícia Figueiredo
- Instituto Superior Técnico, Universidade de Lisboa, ISR-Lisboa/LARSyS and Department of Bioengineering, Lisbon, Portugal
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Pedro Vilela
- Serviço de Neurradiologia, Hospital da Luz, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, and Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Headache Center, Serviço de Neurologia, Hospital da Luz, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
| |
Collapse
|
8
|
Sedley W, Kumar S, Jones S, Levy A, Friston K, Griffiths T, Goldsmith P. Migraine as an allostatic reset triggered by unresolved interoceptive prediction errors. Neurosci Biobehav Rev 2024; 157:105536. [PMID: 38185265 DOI: 10.1016/j.neubiorev.2024.105536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Until now, a satisfying account of the cause and purpose of migraine has remained elusive. We explain migraine within the frameworks of allostasis (the situationally-flexible, forward-looking equivalent of homeostasis) and active inference (interacting with the environment via internally-generated predictions). Due to its multimodality, and long timescales between cause and effect, allostasis is inherently prone to catastrophic error, which might be impossible to correct once fully manifest, an early indicator which is elevated prediction error (discrepancy between prediction and sensory input) associated with internal sensations (interoception). Errors can usually be resolved in a targeted manner by action (correcting the physiological state) or perception (updating predictions in light of sensory input); persistent errors are amplified broadly and multimodally, to prioritise their resolution (the migraine premonitory phase); finally, if still unresolved, progressive amplification renders further changes to internal or external sensory inputs intolerably intense, enforcing physiological stability, and facilitating accurate allostatic prediction updating. As such, migraine is an effective 'failsafe' for allostasis, however it has potential to become excessively triggered, therefore maladaptive.
Collapse
Affiliation(s)
- William Sedley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Siobhan Jones
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew Levy
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Tim Griffiths
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom; Department of Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Paul Goldsmith
- Department of Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom; Institute of Global Health Innovation, Imperial College, London, United Kingdom
| |
Collapse
|
9
|
Yang YC, Wei XY, Zhang YY, Xu CY, Cheng JM, Gong ZG, Chen H, Huang YW, Yuan J, Xu HH, Wang H, Zhan SH, Tan WL. Modulation of temporal and occipital cortex by acupuncture in non-menstrual MWoA patients: a rest BOLD fMRI study. BMC Complement Med Ther 2024; 24:43. [PMID: 38245739 PMCID: PMC10799457 DOI: 10.1186/s12906-024-04349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE To investigate the changes in amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) values before and after acupuncture in young women with non-menstrual migraine without aura (MWoA) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Patients with non-menstrual MWoA (Group 1, n = 50) and healthy controls (Group 2, n = 50) were recruited. fMRI was performed in Group 1 at 2 time points: before acupuncture (time point 1, TP1); and after the end of all acupuncture sessions (time point 2, TP2), and performed in Group 2 as a one-time scan. Patients in Group 1 were assessed with the Migraine Disability Assessment Questionnaire (MIDAS) and the Short-Form McGill Pain Questionnaire (SF-MPQ) at TP1 and TP2 after fMRI was performed. The ALFF and DC values were compared within Group 1 at two time points and between Group 1 and Group2. The correlation between ALFF and DC values with the statistical differences and the clinical scales scores were analyzed. RESULTS Brain activities increased in the left fusiform gyrus and right angular gyrus, left middle occipital gyrus, and bilateral prefrontal cortex and decreased in left inferior parietal lobule in Group 1, which had different ALFF values compared with Group 2 at TP1. The bilateral fusiform gyrus, bilateral inferior temporal gyrus and right middle temporal gyrus increased and right angular gyrus, right superior marginal gyrus, right inferior parietal lobule, right middle occipital gyrus, right superior frontal gyrus, right middle frontal gyrus, right anterior central gyrus, and right supplementary motor area decreased in activity in Group 1 had different DC values compared with Group 2 at TP1. ALFF and DC values of right inferior temporal gyrus, right fusiform gyrus and right middle temporal gyrus were decreased in Group1 at TP1 compared with TP2. ALFF values in the left middle occipital area were positively correlated with the pain degree at TP1 in Group1 (correlation coefficient r, r = 0.827, r = 0.343; P < 0.01, P = 0.015). The DC values of the right inferior temporal area were positively correlated with the pain degree at TP1 in Group 1 (r = 0.371; P = 0.008). CONCLUSION Spontaneous brain activity and network changes in young women with non-menstrual MwoA were altered by acupuncture. The right temporal area may be an important target for acupuncture modulated brain function in young women with non-menstrual MwoA.
Collapse
Affiliation(s)
- Yu-Chan Yang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiang-Yu Wei
- Institute of Acupuncture and Anesthesia, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying-Ying Zhang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Yang Xu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Ming Cheng
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Gang Gong
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Chen
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Wen Huang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Yuan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Hui Xu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Song-Hua Zhan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wen-Li Tan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Araújo RP, Figueiredo P, Pinto J, Vilela P, Martins IP, Gil-Gouveia R. Altered functional connectivity in a sensorimotor-insular network during spontaneous migraine attacks: A resting-state FMRI study. Brain Res 2023; 1818:148513. [PMID: 37499729 DOI: 10.1016/j.brainres.2023.148513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging studies have identified brain-connectivity alterations across multiple regions in people with migraine when compared to healthy controls. Few studies have focused on such changes throughout the different phases of the migraine cycle. We aimed to investigate functional connectivity during spontaneous occurring episodic migraine attacks, in comparison to interictal periods. METHODS Eleven women with episodic migraine without aura underwent two sessions of resting-state fMRI, during and outside of a spontaneous migraine attack. Functional connectivity changes were assessed across canonical resting-state networks, identified by independent component analysis. Significantly altered connectivity was correlated with migraine attack symptoms. RESULTS Decreased functional connectivity between subregions of the sensorimotor network (specifically, the primary somatosensory and motor cortices) and the posterior insula, bilaterally, was found during attacks. In both sessions, the functional connectivity between these regions was lower in patients who usually suffered longer attacks. DISCUSSION The sensorimotor and insular regions are involved in nociceptive, autonomic, and somatosensory processing so the finding of reduced connectivity between these structures within a migraine attack is likely associated to the perception of pain and the heighten sensitivity to stimuli experienced in this disorder.
Collapse
Affiliation(s)
- Raquel Pestana Araújo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Pinto
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
| | - Pedro Vilela
- Neuroradiology Department, Hospital da Luz, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz, Department of Clinical Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Headache Center, Neurology Department, Hospital da Luz, Lisboa, Portugal; Universidade Católica Portuguesa, Institute of Health Sciences, Center for Interdisciplinary Research in Health, Lisbon, Portugal.
| |
Collapse
|
11
|
Hsiao FJ, Chen WT, Wu YT, Pan LLH, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Characteristic oscillatory brain networks for predicting patients with chronic migraine. J Headache Pain 2023; 24:139. [PMID: 37848845 PMCID: PMC10583316 DOI: 10.1186/s10194-023-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
To determine specific resting-state network patterns underlying alterations in chronic migraine, we employed oscillatory connectivity and machine learning techniques to distinguish patients with chronic migraine from healthy controls and patients with other pain disorders. This cross-sectional study included 350 participants (70 healthy controls, 100 patients with chronic migraine, 40 patients with chronic migraine with comorbid fibromyalgia, 35 patients with fibromyalgia, 30 patients with chronic tension-type headache, and 75 patients with episodic migraine). We collected resting-state magnetoencephalographic data for analysis. Source-based oscillatory connectivity within each network, including the pain-related network, default mode network, sensorimotor network, visual network, and insula to default mode network, was examined to determine intrinsic connectivity across a frequency range of 1-40 Hz. Features were extracted to establish and validate classification models constructed using machine learning algorithms. The findings indicated that oscillatory connectivity revealed brain network abnormalities in patients with chronic migraine compared with healthy controls, and that oscillatory connectivity exhibited distinct patterns between various pain disorders. After the incorporation of network features, the best classification model demonstrated excellent performance in distinguishing patients with chronic migraine from healthy controls, achieving high accuracy on both training and testing datasets (accuracy > 92.6% and area under the curve > 0.93). Moreover, in validation tests, classification models exhibited high accuracy in discriminating patients with chronic migraine from all other groups of patients (accuracy > 75.7% and area under the curve > 0.8). In conclusion, oscillatory synchrony within the pain-related network and default mode network corresponded to altered neurophysiological processes in patients with chronic migraine. Thus, these networks can serve as pivotal signatures in the model for identifying patients with chronic migraine, providing reliable and generalisable results. This approach may facilitate the objective and individualised diagnosis of migraine.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
- Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan.
| |
Collapse
|
12
|
Li ML, Zhang F, Chen YY, Luo HY, Quan ZW, Wang YF, Huang LT, Wang JH. A state-of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci 2023; 17:1256415. [PMID: 37746052 PMCID: PMC10513061 DOI: 10.3389/fnhum.2023.1256415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Primary headache is a very common and burdensome functional headache worldwide, which can be classified as migraine, tension-type headache (TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches. Managing and treating these different categories require distinct approaches, and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI) has become a research hotspot to explore primary headache. By examining the interrelationships between activated brain regions and improving temporal and spatial resolution, fMRI can distinguish between primary headaches and their subtypes. Currently the most commonly used is the cortical brain mapping technique, which is based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). This review sheds light on the state-of-the-art advancements in data analysis based on fMRI technology for primary headaches along with their subtypes. It encompasses not only the conventional analysis methodologies employed to unravel pathophysiological mechanisms, but also deep-learning approaches that integrate these techniques with advanced statistical modeling and machine learning. The aim is to highlight cutting-edge fMRI technologies and provide new insights into the diagnosis of primary headaches.
Collapse
Affiliation(s)
- Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Yang Chen
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Family Medicine, Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zi-Wei Quan
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Fei Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Goto M, Shibata Y, Ishiyama S, Matsumaru Y, Ishikawa E. Brain Microstructure and Brain Function Changes in Space Headache by Head-Down-Tilted Bed Rest. Aerosp Med Hum Perform 2023; 94:678-685. [PMID: 37587626 DOI: 10.3357/amhp.6177.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
INTRODUCTION: Several astronauts have experienced severe headaches during spaceflight, but no studies have examined the associated brain microstructure and functional changes. Head-down-tilted bed rest (HDBR) is a well-established method for studying the physical effects of microgravity on the ground. In this study, we analyzed the changes in brain microstructure and function during headache caused by HDBR using diffusion tensor imaging (DTI) and resting state functional magnetic resonance imaging (R-fMRI).METHODS: We imaged 28 healthy subjects with DTI and R-fMRI in the horizontal supine position and HDBR. Using Tract-Based Spatial Statistics, fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity were compared between the headache and non-headache groups. Additionally, an analysis of functional connectivity (FC) was performed, followed by a correlation analysis between FC and numerical rating scale.RESULTS: HDBR caused headaches in 21 of 28 subjects. DTI analysis showed no significant change in fractional anisotropy after HDBR, whereas axial diffusivity, radial diffusivity, and mean diffusivity increased significantly. R-fMRI analysis showed a significant decrease in FC in several areas after HDBR. The headache group showed significantly higher FC before HDBR, and both groups showed higher FC after HDBR. Correlation analysis showed a positive correlation between FC and numerical rating scale before HDBR but negative after HDBR.DISCUSSION: We demonstrated the image change in the acute phase of space headache by HDBR using DTI and R-fMRI. Changes in brain microstructure and function specific to patients developing headaches may be evaluated by imaging.Goto M, Shibata Y, Ishiyama S, Matsumaru Y, Ishikawa E. Brain microstructure and brain function changes in space headache by head-down-tilted bed rest. Aerosp Med Hum Perform. 2023; 94(9):678-685.
Collapse
|
14
|
Messina R, Rocca MA, Goadsby PJ, Filippi M. Insights into migraine attacks from neuroimaging. Lancet Neurol 2023; 22:834-846. [PMID: 37478888 DOI: 10.1016/s1474-4422(23)00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 07/23/2023]
Abstract
Migraine is one of the most common neurological diseases and it has a huge social and personal impact. Although head pain is the core symptom, individuals with migraine can have a plethora of non-headache symptoms that precede, accompany, or follow the pain. Neuroimaging studies have shown that the involvement of specific brain areas can explain many of the symptoms reported during the different phases of migraine. Recruitment of the hypothalamus, pons, spinal trigeminal nucleus, thalamus, and visual and pain-processing cortical areas starts during the premonitory phase and persists through the headache phase, contributing to the onset of pain and associated symptoms. Once the pain stops, the involvement of most brain areas ends, although the pons, hypothalamus, and visual cortex remain active after acute treatment intake and resolution of migraine symptoms. A better understanding of the correlations between imaging findings and migraine symptomatology can provide new insight into migraine pathophysiology and the mechanisms of novel migraine-specific treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Gou C, Yang S, Hou Q, Rudder P, Tanglay O, Young I, Peng T, He W, Yang L, Osipowicz K, Doyen S, Mansouri N, Sughrue ME, Wang X. Functional connectivity of the language area in migraine: a preliminary classification model. BMC Neurol 2023; 23:142. [PMID: 37016325 PMCID: PMC10071619 DOI: 10.1186/s12883-023-03183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/25/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Migraine is a complex disorder characterized by debilitating headaches. Despite its prevalence, its pathophysiology remains unknown, with subsequent gaps in diagnosis and treatment. We combined machine learning with connectivity analysis and applied a whole-brain network approach to identify potential targets for migraine diagnosis and treatment. METHODS Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI(rfMRI), and diffusion weighted scans were obtained from 31 patients with migraine, and 17 controls. A recently developed machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into diagnostic groups based on functional connectivity (FC) and derive networks and parcels contributing to the model. PageRank centrality analysis was also performed on the structural connectome to identify changes in hubness. RESULTS Our model attained an area under the receiver operating characteristic curve (AUC-ROC) of 0.68, which rose to 0.86 following hyperparameter tuning. FC of the language network was most predictive of the model's classification, though patients with migraine also demonstrated differences in the accessory language, visual and medial temporal regions. Several analogous regions in the right hemisphere demonstrated changes in PageRank centrality, suggesting possible compensation. CONCLUSIONS Although our small sample size demands caution, our preliminary findings demonstrate the utility of our method in providing a network-based perspective to diagnosis and treatment of migraine.
Collapse
Affiliation(s)
- Chen Gou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuangfeng Yang
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qianmei Hou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Peter Rudder
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Isabella Young
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Tingting Peng
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Weiwei He
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Liuyi Yang
- Shenzhen Xijia Medical Technology Company, Shenzhen, Guangdong Province, 518052, China
| | | | - Stephane Doyen
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Negar Mansouri
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | | | - Xiaoming Wang
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China.
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
16
|
Zhou Y, Gong L, Yang Y, Tan L, Ruan L, Chen X, Luo H, Ruan J. Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability. J Headache Pain 2023; 24:13. [PMID: 36800935 PMCID: PMC9940435 DOI: 10.1186/s10194-023-01551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/21/2023] Open
Abstract
OBJECTIVE The changes in resting-state functional networks and their correlations with clinical traits remain to be clarified in migraine. Here we aim to investigate the brain spatio-temporal dynamics of resting-state networks and their possible correlations with the clinical traits in migraine. METHODS Twenty Four migraine patients without aura and 26 healthy controls (HC) were enrolled. Each included subject underwent a resting-state EEG and echo planar imaging examination. The disability of migraine patients was evaluated by Migraine Disability Assessment (MIDAS). After data acquisition, EEG microstates (Ms) combining functional connectivity (FC) analysis based on Schafer 400-seven network atlas were performed. Then, the correlation between obtained parameters and clinical traits was investigated. RESULTS Compared with HC group, the brain temporal dynamics depicted by microstates showed significantly increased activity in functional networks involving MsB and decreased activity in functional networks involving MsD; The spatial dynamics were featured by decreased intra-network FC within the executive control network( ECN) and inter-network FC between dorsal attention network (DAN) and ECN (P < 0.05); Moreover, correlation analysis showed that the MIDAS score was positively correlated with the coverage and duration of MsC, and negatively correlated with the occurrence of MsA; The FC within default mode network (DMN), and the inter-FC of ECN- visual network (VN), ECN- limbic network, VN-limbic network was negatively correlated with MIDAS. However, the FC of DMN-ECN was positively correlated with MIDAS; Furthermore, significant interactions between the temporal and spatial dynamics were also obtained. CONCLUSIONS Our study confirmed the notion that altered spatio-temporal dynamics exist in migraine patients during resting-state. And the temporal dynamics, the spatial changes and the clinical traits such as migraine disability interact with each other. The spatio-temporal dynamics obtained from EEG microstate and fMRI FC analyses may be potential biomarkers for migraine and with a huge potential to change future clinical practice in migraine.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Liusheng Gong
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
17
|
Schramm S, Börner C, Reichert M, Baum T, Zimmer C, Heinen F, Bonfert MV, Sollmann N. Functional magnetic resonance imaging in migraine: A systematic review. Cephalalgia 2023; 43:3331024221128278. [PMID: 36751858 DOI: 10.1177/03331024221128278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
18
|
Wang Q, Gao Y, Zhang Y, Wang X, Li X, Lin H, Xiong L, Huang C. Decreased degree centrality values as a potential neuroimaging biomarker for migraine: A resting-state functional magnetic resonance imaging study and support vector machine analysis. Front Neurol 2023; 13:1105592. [PMID: 36793799 PMCID: PMC9922777 DOI: 10.3389/fneur.2022.1105592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Objective Misdiagnosis and missed diagnosis of migraine are common in clinical practice. Currently, the pathophysiological mechanism of migraine is not completely known, and its imaging pathological mechanism has rarely been reported. In this study, functional magnetic resonance imaging (fMRI) technology combined with a support vector machine (SVM) was employed to study the imaging pathological mechanism of migraine to improve the diagnostic accuracy of migraine. Methods We randomly recruited 28 migraine patients from Taihe Hospital. In addition, 27 healthy controls were randomly recruited through advertisements. All patients had undergone the Migraine Disability Assessment (MIDAS), Headache Impact Test - 6 (HIT-6), and 15 min magnetic resonance scanning. We ran DPABI (RRID: SCR_010501) on MATLAB (RRID: SCR_001622) to preprocess the data and used REST (RRID: SCR_009641) to calculate the degree centrality (DC) value of the brain region and SVM (RRID: SCR_010243) to classify the data. Results Compared with the healthy controls (HCs), the DC value of bilateral inferior temporal gyrus (ITG) in patients with migraine was significantly lower and that of left ITG showed a positive linear correlation with MIDAS scores. The SVM results showed that the DC value of left ITG has the potential to be a diagnostic biomarker for imaging, with the highest diagnostic accuracy, sensitivity, and specificity for patients with migraine of 81.82, 85.71, and 77.78%, respectively. Conclusion Our findings demonstrate abnormal DC values in the bilateral ITG among patients with migraine, and the present results provide insights into the neural mechanism of migraines. The abnormal DC values can be used as a potential neuroimaging biomarker for the diagnosis of migraine.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuandong Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Xuying Li
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Hang Lin
- Clinical College of Wuhan University of Science and Technology, Wuhan, China
| | - Ling Xiong
- Department of Anesthesia, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Anesthesia, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Department of Anesthesia, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Messina R, Filippi M. What imaging has revealed about migraine and chronic migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:105-116. [PMID: 38043956 DOI: 10.1016/b978-0-12-823356-6.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although migraine pathophysiology is not yet entirely understood, it is now established that migraine should be viewed as a complex neurological disease, which involves the interplay of different brain networks and the release of signaling molecules, instead of a pure vascular disorder. The field of migraine research has also progressed significantly due to the advancement of brain imaging techniques. Numerous studies have investigated the relation between migraine pathophysiology and cerebral hemodynamic changes, showing that vascular changes are neither necessary nor sufficient to cause the migraine pain. Abnormal function and structure of key cortical, subcortical, and brainstem regions involved in multisensory, including pain, processing have been shown to occur in migraine patients during both an acute attack and the interictal phase. Whether brain imaging alterations represent a predisposing trait or are the consequence of the recurrence of headache attacks is still a matter of debate. It is highly likely that brain functional and structural alterations observed in migraine patients derive from the interaction between predisposing brain traits and experience-dependent responses. Neuroimaging studies have also enriched our knowledge of the mechanisms responsible for migraine chronification and have shed light on the mechanisms of actions of acute and preventive migraine treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
20
|
Karsan N, Silva E, Goadsby PJ. Evaluating migraine with typical aura with neuroimaging. Front Hum Neurosci 2023; 17:1112790. [PMID: 37025972 PMCID: PMC10070832 DOI: 10.3389/fnhum.2023.1112790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To provide an up-to-date narrative literature review of imaging in migraine with typical aura, as a means to understand better migraine subtypes and aura biology. Background Characterizing subtypes of migraine with typical aura and appreciating possible biological differences between migraine with and without aura, are important to understanding the neurobiology of aura and trying to advance personalized therapeutics in this area through imaging biomarkers. One means of doing this over recent years has been the use of increasingly advanced neuroimaging techniques. Methods We conducted a literature review of neuroimaging studies in migraine with aura, using a PubMed search for terms 'imaging migraine', 'aura imaging', 'migraine with aura imaging', 'migraine functional imaging' and 'migraine structural imaging'. We collated the findings of the main studies, excluding small case reports and series with n < 6, and have summarized these and their implications for better understanding of aura mechanisms. Results Aura is likely mediated by widespread brain dysfunction in areas involving, but not limited to, visual cortex, somatosensory and insular cortex, and thalamus. Higher brain excitability in response to sensory stimulation and altered resting-state functional connectivity in migraine sufferers with aura could have a genetic component. Pure visual aura compared to visual aura with other sensory or speech symptoms as well, may involve different functional reorganization of brain networks and additional mitochondrial dysfunction mediating more aura symptoms. Conclusion There is a suggestion of at least some distinct neurobiological differences between migraine with and without aura, despite the shared phenotypic similarity in headache and other migraine-associated symptoms. It is clear from the vast majority of aura phenotypes being visual that there is a particular predisposition of the occipital cortex to aura mechanisms. Why this is the case, along with the relationships between cortical spreading depression and headache, and the reasons why aura does not consistently present in affected individuals, are all important research questions for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- *Correspondence: Nazia Karsan,
| | - Elisa Silva
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Schwedt TJ, Nikolova S, Dumkrieger G, Li J, Wu T, Chong CD. Longitudinal changes in functional connectivity and pain-induced brain activations in patients with migraine: a functional MRI study pre- and post- treatment with Erenumab. J Headache Pain 2022; 23:159. [PMCID: PMC9748909 DOI: 10.1186/s10194-022-01526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract Background Migraine involves central and peripheral nervous system mechanisms. Erenumab, an anti-calcitonin gene-related peptide (CGRP) receptor monoclonal antibody with little central nervous system penetrance, is effective for migraine prevention. The objective of this study was to determine if response to erenumab is associated with alterations in brain functional connectivity and pain-induced brain activations. Methods Adults with 6–25 migraine days per month during a 4-week headache diary run-in phase underwent pre-treatment brain functional MRI (fMRI) that included resting-state functional connectivity and BOLD measurements in response to moderately painful heat stimulation to the forearm. This was followed by two treatments with 140 mg erenumab, at baseline and 4 weeks later. Post-treatment fMRI was performed 2 weeks and 8 weeks following the first erenumab treatment. A longitudinal Sandwich estimator analysis was used to identify pre- to post-treatment changes in resting-state functional connectivity and brain activations in response to thermal pain. fMRI findings were compared between erenumab treatment-responders vs. erenumab non-responders. Results Pre- and post-treatment longitudinal imaging data were available from 32 participants. Average age was 40.3 (+/− 13) years and 29 were female. Pre-treatment average migraine day frequency was 13.8 (+/− 4.7) / 28 days and average headache day frequency was 15.8 (+/− 4.4) / 28 days. Eighteen of 32 (56%) were erenumab responders. Compared to erenumab non-responders, erenumab responders had post-treatment differences in 1) network functional connectivity amongst pain-processing regions, including higher global efficiency, clustering coefficient, node degree, regional efficiency, and modularity, 2) region-to-region functional connectivity between several regions including temporal pole, supramarginal gyrus, and hypothalamus, and 3) pain-induced activations in the middle cingulate, posterior cingulate, and periaqueductal gray matter. Conclusions Reductions in migraine day frequency accompanying erenumab treatment are associated with changes in resting state functional connectivity and central processing of extracranial painful stimuli that differ from erenumab non-responders. Trial registration
clinicaltrials.gov
(NCT03773562).
Collapse
Affiliation(s)
- Todd J. Schwedt
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Simona Nikolova
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Gina Dumkrieger
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Jing Li
- grid.213917.f0000 0001 2097 4943School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA USA
| | - Teresa Wu
- grid.215654.10000 0001 2151 2636School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ USA
| | - Catherine D. Chong
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| |
Collapse
|
22
|
Messina R, Cetta I, Colombo B, Filippi M. Tracking the evolution of non-headache symptoms through the migraine attack. J Headache Pain 2022; 23:149. [PMID: 36418943 PMCID: PMC9686019 DOI: 10.1186/s10194-022-01525-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background The migraine attack is classically divided into the prodromal, aura, headache and postdromal phase. Previous studies have highlighted non-headache symptoms associated with migraine occurring during the prodromal or postdromal phase. This study aimed to track the evolution of non-headache symptoms throughout all phases of the migraine attack. We also wished to delineate the phenotype of patients with more symptomatic migraine episodes and explore the association between non-painful symptoms and migraine disease activity and patients’ disability. Methods Two-hundred and twenty-five migraine patients were enrolled and were asked to recall retrospectively whether non-headache symptoms occurred during the prodromal, headache and postdromal phase of their attacks. The occurrence of symptoms during the different migraine phases was tested using the Cochran’s Q tests, Cohen’s and Fleiss’ kappa. Differences between groups according to the presence of non-headache symptoms through the entire migraine attack and correlations between the frequency of non-headache symptoms experienced during all phases and patients’ disease activity and disability were also assessed. Results Ninety-nine percent of patients reported having at least one non-headache symptom in one phase of the migraine attack and 54% of patients had at least one non-headache symptom occurring during all phases of migraine. The occurrence of non-headache symptoms was different throughout the three phases of migraine, being higher during the headache phase than during the prodromal and postdromal phases. Symptoms with the highest co-occurrence throughout all migraine phases were neck stiffness, thirst and abdominal pain. Patients who experienced non-headache symptoms during all three phases of migraine were more frequently females, had a higher disability, were suffering from chronic migraine and had more frequently medication overuse headache. Conclusion Migraine is a complex neurological disorder with a wide constellation of non-headache symptoms that can affect the burden of the disease. A better characterization of the evolution of non-headache symptoms through the different phases of migraine can enrich our knowledge on migraine pathophysiology and improve the management of the disease.
Collapse
|
23
|
Porcaro C, Di Renzo A, Tinelli E, Parisi V, Di Lorenzo C, Caramia F, Fiorelli M, Giuliani G, Cioffi E, Seri S, Di Piero V, Pierelli F, Di Lorenzo G, Coppola G. A Hypothalamic Mechanism Regulates the Duration of a Migraine Attack: Insights from Microstructural and Temporal Complexity of Cortical Functional Networks Analysis. Int J Mol Sci 2022; 23:13238. [PMID: 36362026 PMCID: PMC9658908 DOI: 10.3390/ijms232113238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 07/23/2023] Open
Abstract
The role of the hypothalamus and the limbic system at the onset of a migraine attack has recently received significant interest. We analyzed diffusion tensor imaging (DTI) parameters of the entire hypothalamus and its subregions in 15 patients during a spontaneous migraine attack and in 20 control subjects. We also estimated the non-linear measure resting-state functional MRI BOLD signal's complexity using Higuchi fractal dimension (FD) and correlated DTI/fMRI findings with patients' clinical characteristics. In comparison with healthy controls, patients had significantly altered diffusivity metrics within the hypothalamus, mainly in posterior ROIs, and higher FD values in the salience network (SN). We observed a positive correlation of the hypothalamic axial diffusivity with migraine severity and FD of SN. DTI metrics of bilateral anterior hypothalamus positively correlated with the mean attack duration. Our results show plastic structural changes in the hypothalamus related to the attacks severity and the functional connectivity of the SN involved in the multidimensional neurocognitive processing of pain. Plastic changes to the hypothalamus may play a role in modulating the duration of the attack.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISTC)—National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | | | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Stefano Seri
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Department of Clinical Neurophysiology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS—Fondazione Santa Lucia, 00179 Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| |
Collapse
|
24
|
Wei HL, Yang WJ, Zhou GP, Chen YC, Yu YS, Yin X, Li J, Zhang H. Altered static functional network connectivity predicts the efficacy of non-steroidal anti-inflammatory drugs in migraineurs without aura. Front Mol Neurosci 2022; 15:956797. [PMID: 36176962 PMCID: PMC9513180 DOI: 10.3389/fnmol.2022.956797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Brain networks have significant implications for the understanding of migraine pathophysiology and prognosis. This study aimed to investigate whether large-scale network dysfunction in patients with migraine without aura (MwoA) could predict the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs). Seventy patients with episodic MwoA and 33 healthy controls (HCs) were recruited. Patients were divided into MwoA with effective NSAIDs (M-eNSAIDs) and with ineffective NSAIDs (M-ieNSAIDs). Group-level independent component analysis and functional network connectivity (FNC) analysis were used to extract intrinsic networks and detect dysfunction among these networks. The clinical characteristics and FNC abnormalities were considered as features, and a support vector machine (SVM) model with fivefold cross-validation was applied to distinguish the subjects at an individual level. Dysfunctional connections within seven networks were observed, including default mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), dorsal attention network (DAN), visual network (VN), and auditory network (AN). Compared with M-ieNSAIDs and HCs, patients with M-eNSAIDs displayed reduced DMN-VN and SMN-VN, and enhanced VN-AN connections. Moreover, patients with M-eNSAIDs showed increased FNC patterns within ECN, DAN, and SN, relative to HCs. Higher ECN-SN connections than HCs were revealed in patients with M-ieNSAIDs. The SVM model demonstrated that the area under the curve, sensitivity, and specificity were 0.93, 0.88, and 0.89, respectively. The widespread FNC impairment existing in the modulation of medical treatment suggested FNC disruption as a biomarker for advancing the understanding of neurophysiological mechanisms and improving the decision-making of therapeutic strategy.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Wen-Juan Yang
- Department of Neurology, Nanjing Jiangning Hospital, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, Nanjing Jiangning Hospital, Nanjing, China
| | - Hong Zhang
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| |
Collapse
|
25
|
Gollion C, Lerebours F, Nemmi F, Arribarat G, Bonneville F, Larrue V, Péran P. Insular functional connectivity in migraine with aura. J Headache Pain 2022; 23:106. [PMID: 35982396 PMCID: PMC9389744 DOI: 10.1186/s10194-022-01473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Insula plays an integrating role in sensory, affective, emotional, cognitive and autonomic functions in migraine, especially in migraine with aura (MA). Insula is functionally divided into 3 subregions, the dorsoanterior, the ventroanterior and the posterior insula respectively related to cognition, emotion, and somatosensory functions. This study aimed at investigating functional connectivity of insula subregions in MA. Methods Twenty-one interictal patients with MA were compared to 18 healthy controls (HC) and 12 interictal patients with migraine without aura (MO) and were scanned with functional MRI during the resting state. Functional coupling of the insula was comprehensively tested with 12 seeds located in the right and left, dorsal, middle, ventral, anterior and posterior insula, by using a seed-to-voxel analysis. Results Seed-to-voxel analysis revealed, in MA, a strong functional coupling of the right and left antero-dorsal insula with clusters located in the upper cerebellum. The overlap of these cerebellar clusters corresponded to the vermis VI. These functional couplings were not correlated to duration of MA, frequency of MA attacks nor time since last MA attack, and were not found in MO. Discussion The anterior insula and superior cerebellum, including vermis VI, are components of the central Autonomic Nervous System (ANS) network. As these regions are involved in the control of cardiovascular parasympathetic tone, we hypothesize that this connectivity may reflect the cardiovascular features of MA. Conclusion The anterior dorsal insula is connected with vermis VI in MA patients in the resting state. This connectivity may reflect the cardiovascular features of MA. Trial registration NCT02708797.
Collapse
Affiliation(s)
- Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, 31059 cedex 9, Toulouse, France. .,Toulouse NeuroImaging Center, ToNIC, University of Toulouse III, Inserm, Toulouse, France.
| | - Fleur Lerebours
- Department of Neurology, University Hospital of Toulouse, 31059 cedex 9, Toulouse, France
| | - Federico Nemmi
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse III, Inserm, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse III, Inserm, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse III, Inserm, Toulouse, France.,Department of Neuroradiology, University Hospital of Toulouse, Toulouse, France
| | - Vincent Larrue
- Department of Neurology, University Hospital of Toulouse, 31059 cedex 9, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse III, Inserm, Toulouse, France
| |
Collapse
|
26
|
Fu C, Zhang Y, Ye Y, Hou X, Wen Z, Yan Z, Luo W, Feng M, Liu B. Predicting response to tVNS in patients with migraine using functional MRI: A voxels-based machine learning analysis. Front Neurosci 2022; 16:937453. [PMID: 35992927 PMCID: PMC9388938 DOI: 10.3389/fnins.2022.937453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMigraine is a common disorder, affecting many patients. However, for one thing, lacking objective biomarkers, misdiagnosis, and missed diagnosis happen occasionally. For another, though transcutaneous vagus nerve stimulation (tVNS) could alleviate migraine symptoms, the individual difference of tVNS efficacy in migraineurs hamper the clinical application of tVNS. Therefore, it is necessary to identify biomarkers to discriminate migraineurs as well as select patients suitable for tVNS treatment.MethodsA total of 70 patients diagnosed with migraine without aura (MWoA) and 70 matched healthy controls were recruited to complete fMRI scanning. In study 1, the fractional amplitude of low-frequency fluctuation (fALFF) of each voxel was calculated, and the differences between healthy controls and MWoA were compared. Meaningful voxels were extracted as features for discriminating model construction by a support vector machine. The performance of the discriminating model was assessed by accuracy, sensitivity, and specificity. In addition, a mask of these significant brain regions was generated for further analysis. Then, in study 2, 33 of the 70 patients with MWoA in study 1 receiving real tVNS were included to construct the predicting model in the generated mask. Discriminative features of the discriminating model in study 1 were used to predict the reduction of attack frequency after a 4-week tVNS treatment by support vector regression. A correlation coefficient between predicted value and actual value of the reduction of migraine attack frequency was conducted in 33 patients to assess the performance of predicting model after tVNS treatment. We vislized the distribution of the predictive voxels as well as investigated the association between fALFF change (post-per treatment) of predict weight brain regions and clinical outcomes (frequency of migraine attack) in the real group.ResultsA biomarker containing 3,650 features was identified with an accuracy of 79.3%, sensitivity of 78.6%, and specificity of 80.0% (p < 0.002). The discriminative features were found in the trigeminal cervical complex/rostral ventromedial medulla (TCC/RVM), thalamus, medial prefrontal cortex (mPFC), and temporal gyrus. Then, 70 of 3,650 discriminative features were identified to predict the reduction of attack frequency after tVNS treatment with a correlation coefficient of 0.36 (p = 0.03). The 70 predictive features were involved in TCC/RVM, mPFC, temporal gyrus, middle cingulate cortex (MCC), and insula. The reduction of migraine attack frequency had a positive correlation with right TCC/RVM (r = 0.433, p = 0.021), left MCC (r = 0.451, p = 0.016), and bilateral mPFC (r = 0.416, p = 0.028), and negative with left insula (r = −0.473, p = 0.011) and right superior temporal gyrus/middle temporal gyrus (r = −0.684, p < 0.001), respectively.ConclusionsBy machine learning, the study proposed two potential biomarkers that could discriminate patients with MWoA and predict the efficacy of tVNS in reducing migraine attack frequency. The pivotal features were mainly located in the TCC/RVM, thalamus, mPFC, and temporal gyrus.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeying Wen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Menghan Feng
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Bo Liu
| |
Collapse
|
27
|
Hui M, Beier KT. Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain. Front Mol Neurosci 2022; 15:971349. [PMID: 35935333 PMCID: PMC9354837 DOI: 10.3389/fnmol.2022.971349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Dysfunction in dopamine (DA) signaling contributes to neurological disorders ranging from drug addiction and schizophrenia to depression and Parkinson’s Disease. How might impairment of one neurotransmitter come to effect these seemingly disparate diseases? One potential explanation is that unique populations of DA-releasing cells project to separate brain regions that contribute to different sets of behaviors. Though dopaminergic cells themselves are spatially restricted to the midbrain and constitute a relatively small proportion of all neurons, their projections influence many brain regions. DA is particularly critical for the activity and function of medial prefrontal cortical (mPFC) ensembles. The midbrain and mPFC exhibit reciprocal connectivity – the former innervates the mPFC, and in turn, the mPFC projects back to the midbrain. Viral mapping studies have helped elucidate the connectivity within and between these regions, which likely have broad implications for DA-dependent behaviors. In this review, we discuss advancements in our understanding of the connectivity between the mPFC and midbrain DA system, focusing primarily on rodent models.
Collapse
Affiliation(s)
- May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- UCI Mind, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Kevin T. Beier,
| |
Collapse
|
28
|
Legarda SB, Michas-Martin PA, McDermott D. Remediating Intractable Headache: An Effective Nonpharmacological Approach Employing Infralow Frequency Neuromodulation. Front Hum Neurosci 2022; 16:894856. [PMID: 35874149 PMCID: PMC9304546 DOI: 10.3389/fnhum.2022.894856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
|
29
|
Liebert A, Pang V, Bicknell B, McLachlan C, Mitrofanis J, Kiat H. A Perspective on the Potential of Opsins as an Integral Mechanism of Photobiomodulation: It's Not Just the Eyes. Photobiomodul Photomed Laser Surg 2022; 40:123-135. [PMID: 34935507 DOI: 10.1089/photob.2021.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: To investigate the potential relationship between opsins and photobiomodulation. Background: Opsins and other photoreceptors occur in all phyla and are important in light-activated signaling and organism homeostasis. In addition to the visual opsin systems of the retina (OPN1 and OPN2), there are several non-visual opsins found throughout the body tissues, including encephalopsin/panopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5), as well as other structures that have light-sensitive properties, such as enzymes, ion channels, particularly those located in cell membranes, lysosomes, and neuronal structures such as the nodes of Ranvier. The influence of these structures on exposure to light, including self-generated light within the body (autofluorescence), on circadian oscillators, and circadian and ultradian rhythms have become increasingly reported. The visual and non-visual phototransduction cascade originating from opsins and other structures has potential significant mechanistic effects on tissues and health. Methods: A PubMed and Google Scholar search was made using the search terms "photobiomodulation", "light", "neuron", "opsins", "neuropsin", "melanopsin", "encephalopsin", "rhodopsin", and "chromophore". Results: This review was examined the influence of neuropsin (also known as kallikrein 8), encephalopsin, and melanopsin specifically on ion channel function, and more broadly on the central and peripheral nervous systems. The relationship between opsins 3, 4, and 5 and photobiomodulation mechanisms was evaluated, along with a proposed role of photobiomodulation through opsins and light-sensitive organelles as potential alleviators of symptoms and accelerators of beneficial regenerative processes. The potential clinical implications of this in musculoskeletal conditions, wounds, and in the symptomatic management of neurodegenerative disease was also examined. Conclusions: Systematic research into the pleotropic therapeutic role of photobiomodulation, mediated through its action on opsins and other light-sensitive organelles may assist in the future execution of safe, low-risk precision medicine for a variety of chronic and complex disease conditions, and for health maintenance in aging.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health Sciences, University of Sydney, Sydney, Australia.,Office of Governance and Research, San Hospital, Sydney, Australia
| | | | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, North Sydney, Australia
| | | | - John Mitrofanis
- Clinatec, Fonds de Dotation-CEA, Universitè Grenoble Alpes, Grenoble, France
| | - Hosen Kiat
- Department of Clinical Medicine, Macquarie University, Sydney, Australia.,Cardiac Health Institute, Sydney, Australia
| |
Collapse
|
30
|
Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain 2022; 163:1987-1998. [PMID: 35082250 DOI: 10.1097/j.pain.0000000000002594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Chronic pain diseases are characterised by an ongoing and fluctuating endogenous pain, yet it remains to be elucidated how this is reflected by the dynamics of ongoing functional cortical connections.Here, we investigated the cortical encoding of 20 chronic back pain patients and 20 chronic migraineurs in four repeated fMRI sessions. A brain parcellation approach subdivided the whole brain into 408 regions. Linear mixed effects models were fitted for each pair of brain regions to explore the relationship between the dynamic cortical connectivity and the observed trajectory of the patients' ratings of fluctuating endogenous pain.Overall, we found that periods of high and increasing pain were predominantly related to low cortical connectivity. The change of pain intensity in chronic back pain was subserved by connections in left parietal opercular regions, right insular regions, as well as large parts of the parietal, cingular and motor cortices. The change of pain intensity direction in chronic migraine was reflected by decreasing connectivity between the anterior insular cortex and orbitofrontal areas, as well as between the PCC and frontal and ACC regions.Interestingly, the group results were not mirrored by the individual patterns of pain-related connectivity, which is suggested to deny the idea of a common neuronal core problem for chronic pain diseases. The diversity of the individual cortical signatures of chronic pain encoding results adds to the understanding of chronic pain as a complex and multifaceted disease. The present findings support recent developments for more personalised medicine.
Collapse
|
31
|
Ren J, Yao Q, Tian M, Li F, Chen Y, Chen Q, Xiang J, Shi J. Altered effective connectivity in migraine patients during emotional stimuli: a multi-frequency magnetoencephalography study. J Headache Pain 2022; 23:6. [PMID: 35032999 PMCID: PMC8903691 DOI: 10.1186/s10194-021-01379-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. METHODS A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. RESULTS The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30-90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1-4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1-4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. CONCLUSIONS The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qun Yao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yueqiu Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45220, USA
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
32
|
Stankewitz A, Schulz E. Intrinsic network connectivity reflects the cyclic trajectory of migraine attacks. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100085. [PMID: 35243179 PMCID: PMC8861450 DOI: 10.1016/j.ynpai.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Episodic migraine is considered to be cyclic in nature, triggered by the hypothalamus. To assess the natural trajectory of intrinsic networks over an entire migraine cycle, we designed a longitudinal intra-individual study using functional magnetic resonance imaging (fMRI). METHODS Intrinsic network connectivity was assessed for 12 migraineurs in 82 sessions including spontaneous, untriggered headache attacks and follow-up recordings towards the next attack. RESULTS We found cyclic changes in the visual, auditory, and somatosensory networks, in limbic networks (e.g. thalamo-insular, parahippocampal), and in the salience network (anterior insula and dorsal anterior cingulate cortex). Connectivity changes also extended to further cortical networks, such as the central executive network, the default mode network, as well as subcortical networks. Almost all of these network connectivity changes followed the trajectory of a linear increase over the pain-free interval that peaked immediately prior to the headache, and "dropped" to the baseline level during the headache. These network alterations are associated with a number of cortical functions that may explain the variety of ictal and pre-ictal physiological and psychological migraine symptoms. CONCLUSION Our results suggest that migraine disease is associated with widespread cyclic alterations of intrinsic networks that develop before the headache is initiated, i.e. during the interictal and premonitory phase. The increasing magnitude of connectivity within these networks towards the next attack may reflect an increasing effort to maintain network integrity.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
33
|
Chang TY, Wu HH, Li YJ, Liu HL, Yeh CH, Jian HS, Huang KL, Lee TH, Tian YC, Wu CW. Changes of Brain Functional Connectivity in End-Stage Renal Disease Patients Receiving Peritoneal Dialysis Without Cognitive Decline. Front Med (Lausanne) 2021; 8:734410. [PMID: 34901056 PMCID: PMC8652044 DOI: 10.3389/fmed.2021.734410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Functional connectivity detected by resting-state functional MRI (R-fMRI) helps to discover the subtle changes in brain activities. Patients with end-stage renal disease (ESRD) on hemodialysis (HD) have impaired brain networks. However, the functional changes of brain networks in patients with ESRD undergoing peritoneal dialysis (PD) have not been fully delineated, especially among those with preserved cognitive function. Therefore, it is worth knowing about the brain functional connectivity in patients with PD by using R-fMRI. Methods: This case-control study prospectively enrolled 19 patients with ESRD receiving PD and 24 age- and sex- matched controls. All participants without a history of cognitive decline received mini-mental status examination (MMSE) and brain 3-T R-fMRI. Comprehensive R-fMRI analyses included graph analysis for connectivity and seed-based correlation networks. Independent t-tests were used for comparing the graph parameters and connectivity networks between patients with PD and controls. Results: All subjects were cognitively intact (MMSE > 24). Whole-brain connectivity by graph analysis revealed significant differences between the two groups with decreased global efficiency (Eglob, p < 0.05), increased betweenness centrality (BC) (p < 0.01), and increased characteristic path length (L, p < 0.01) in patients with PD. The functional connections of the default-mode network (DMN), sensorimotor network (SMN), salience network (SN), and hippocampal network (HN) were impaired in patients with PD. Meanwhile, in DMN and SN, elevated connectivity was observed in certain brain regions of patients with PD. Conclusion: Patients with ESRD receiving PD had specific disruptions in functional connectivity. In graph analysis, Eglob, BC, and L showed significant connectivity changes compared to the controls. DMN and SN had the most prominent alterations among the observed networks, with both decreased and increased connectivity regions. Our study confirmed that significant changes in cerebral connections existed in cognitively intact patients with PD.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsu Wu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jung Li
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chih-Hua Yeh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hui-Shan Jian
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, Shuang-Ho Hospital-Taipei Medical University, New Taipei, Taiwan
| |
Collapse
|
34
|
Resende EDPF, Hornberger M, Guimarães HC, Gambogi LB, Mariano LI, Teixeira AL, Caramelli P, de Souza LC. Different patterns of gray matter atrophy in behavioral variant frontotemporal dementia with and without episodic memory impairment. Int J Geriatr Psychiatry 2021; 36:1848-1857. [PMID: 33527441 DOI: 10.1002/gps.5503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Differentiating patients with behavioral variant frontotemporal dementia (bvFTD) from Alzheimer's disease (AD) is important as these two conditions have distinct treatment and prognosis. Using episodic impairment and medial temporal lobe atrophy as a tool to make this distinction has been debatable in the recent literature, as some patients with bvFTD can also have episodic memory impairment and medial temporal lobe atrophy early in the disease. OBJECTIVES To compare brain atrophy patterns of patients with bvFTD with and without episodic memory impairment to that of patients with AD. METHODS We analyzed 19 patients with bvFTD, 21 with AD and 21 controls, matched by age, sex, and years of education. They underwent brain MRI and the memory test from the Brief Cognitive Battery (BCB) to assess episodic memory. We then categorized the bvFTD group into amnestic (BCB delayed recall score <7) and non-amnestic. RESULTS The amnestic bvFTD group (n = 8) had significant gray matter atrophy in the left parahippocampal gyrus, right cingulate and precuneus regions compared with the nonamnestic group. Compared with AD, amnestic bvFTD had more atrophy in the left fusiform cortex, left insula, left inferior temporal gyrus and right temporal pole, whereas patients with AD had more atrophy in the left hippocampus, left frontal pole and left angular gyrus. CONCLUSIONS There is a group of amnestic bvFTD patients with episodic memory dysfunction and significant atrophy in medial temporal structures, which poses a challenge in considering only these features when differentiating bvFTD from AD clinically.
Collapse
Affiliation(s)
- Elisa de Paula França Resende
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Henrique Cerqueira Guimarães
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Boson Gambogi
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Inácio Mariano
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Paulo Caramelli
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Dai W, Liu RH, Qiu E, Liu Y, Chen Z, Chen X, Ao R, Zhuo M, Yu S. Cortical mechanisms in migraine. Mol Pain 2021; 17:17448069211050246. [PMID: 34806494 PMCID: PMC8606910 DOI: 10.1177/17448069211050246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Migraine is the second most prevalent disorder in the world; yet, its underlying mechanisms are still poorly understood. Cumulative studies have revealed pivotal roles of cerebral cortex in the initiation, propagation, and termination of migraine attacks as well as the interictal phase. Investigation of basic mechanisms of the cortex in migraine not only brings insight into the underlying pathophysiology but also provides the basis for designing novel treatments. We aim to summarize the current research literatures and give a brief overview of the cortex and its role in migraine, including the basic structure and function; structural, functional, and biochemical neuroimaging; migraine-related genes; and theories related to cortex in migraine pathophysiology. We propose that long-term plasticity of synaptic transmission in the cortex encodes migraine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ran Ao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, ON, Canada
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Neural correlates of visuospatial processing in migraine: does the pain network help? Mol Psychiatry 2021; 26:6599-6608. [PMID: 33837270 DOI: 10.1038/s41380-021-01085-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Migraine patients frequently report cognitive symptoms during the different phases of migraine. The most affected cognitive domains are visuospatial abilities, processing speed, attention and executive functions. We explored migraine patients' performance during a visuospatial task and investigated the activity of brain areas involved in visuospatial processing. A functional magnetic resonance imaging (MRI) visuospatial task, including an angle and a colour discrimination paradigm, was administrated to 17 headache-free migraine patients and 16 controls. Correlations between functional MRI abnormalities and subjects' performance, clinical and neuropsychological variables were also investigated. Deficits at visuospatial cognitive tests were present in around 20% of patients. Migraine patients maintained a preserved behavioural performance (reaction time and number of correct responses) during the angle discrimination task, while they performed less correctly in the colour task compared to controls (p = 0.05).The comparison of angle vs. colour task revealed an increased activity of the right insula, bilateral orbitofrontal cortex and medial frontal gyrus, and decreased activity of the bilateral posterior cingulate cortex in migraine patients compared to controls. In migraine patients, a better performance in the angle task was associated with higher activation of the right insula and orbitofrontal cortex, as well as with decreased activation of the right posterior cingulate cortex. Our results suggest an adaptive functional plasticity that might help migraine patients to overcome impaired visuospatial skills and preserve an adequate performance during a visuospatial task. These compensatory mechanisms seem to take advantage of recruiting brain areas that are commonly involved also in nociception.
Collapse
|
37
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
38
|
Cao J, Zhang Y, Li H, Yan Z, Liu X, Hou X, Chen W, Hodges S, Kong J, Liu B. Different modulation effects of 1 Hz and 20 Hz transcutaneous auricular vagus nerve stimulation on the functional connectivity of the periaqueductal gray in patients with migraine. J Transl Med 2021; 19:354. [PMID: 34404427 PMCID: PMC8371886 DOI: 10.1186/s12967-021-03024-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. Methods Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. Results Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. Conclusions Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03024-9.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Stankewitz A, Keidel L, Rehm M, Irving S, Kaczmarz S, Preibisch C, Witkovsky V, Zimmer C, Schulz E, Toelle TR. Migraine attacks as a result of hypothalamic loss of control. NEUROIMAGE-CLINICAL 2021; 32:102784. [PMID: 34425551 PMCID: PMC8379646 DOI: 10.1016/j.nicl.2021.102784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022]
Abstract
Hypothalamo-limbic connectivity reflects the cyclic nature of migraine. Hypothalamo-limbic connectivity is largest just before the attack. Hypothalamo-limbic connectivity is collapsing during the attack. Limbic perfusion is increasing and has a maximum during the attack. The disrupted connectivity allows high limbic perfusion, resulting in migraine attack.
Migraine is a complex neurological disorder affecting approximately 12% of the population. The pathophysiology is not yet fully understood, however the clinical features of the disease, such as the cyclic behaviour of attacks and vegetative symptoms, suggest a prominent role of the hypothalamus. Previous research has observed neuronal alterations at different time points during the migraine interval, specifically just before the headache is initiated. We therefore aimed to assess the trajectory of migraineurs’ brain activity over an entire migraine cycle. Using functional magnetic resonance imaging (fMRI) with pseudo-continuous arterial spin labelling (ASL), we designed a longitudinal intra-individual study to detect the rhythmicity of (1) the cerebral perfusion and (2) the hypothalamic connectivity over an entire migraine cycle. Twelve episodic migraine patients were examined in 82 sessions during spontaneous headache attacks with follow-up recordings towards the next attack. We detected cyclic changes of brain perfusion in the limbic circuit (insula and nucleus accumbens), with the highest perfusion during the headache attack. In addition, we found an increase of hypothalamic connectivity to the limbic system over the interictal interval towards the attack, then collapsing during the headache phase. The present data provide strong evidence for the predominant role of the hypothalamus in generating migraine attacks. Due to a genetically-determined cortical hyperexcitability, migraineurs are most likely characterised by an increased susceptibility of limbic neurons to the known migraine trigger. The hypothalamus as a metronome of internal processes is suggested to control these limbic circuits: migraine attacks may occur as a result of the hypothalamus losing control over the limbic system. Repetitive psychosocial stress, one of the leading trigger factors reported by patients, might make the limbic system even more vulnerable and lead to a premature triggering of a migraine attack. Potential therapeutic interventions are therefore suggested to strengthen limbic circuits with dedicated medication or psychological approaches.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Leonie Keidel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Rehm
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Thomas R Toelle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
40
|
Chen Z, Xiao L, Liu H, Zhang Q, Wang Q, Lv Y, Zhai Y, Zhang J, Dong S, Wei X, Rong L. Altered thalamo-cortical functional connectivity in patients with vestibular migraine: a resting-state fMRI study. Neuroradiology 2021; 64:119-127. [PMID: 34374821 DOI: 10.1007/s00234-021-02777-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the functional connectivity (FC) between the bilateral thalamus and the other brain regions in patients with vestibular migraine (VM). METHODS Resting-state fMRI and 3D-T1 data were collected from 37 patients with VM during the interictal period and 44 age-, gender-, and years of education-matched healthy controls (HC). The FC of the bilateral thalamus was analyzed using a standard seed-based whole-brain correlation method. Furthermore, the correlations between thalamus FC and clinical characteristics of patients were investigated using Pearson's partial correlation. RESULTS Compared with HC, VM patients showed decreased FC between the left thalamus and the left anterior cingulate cortex (ACC), bilateral insular and right supplementary motor cortex. We also observed decreased FC between the right thalamus and the left insular and ACC in VM patients. Furthermore, patients with VM also exhibited increased FC between the left thalamus and the right precuneus and middle frontal gyrus, between the right thalamus and superior parietal lobule. FC between the right thalamus and the left insular was negatively correlated with disease duration (p = 0.019, r = - 0.399), FC between the left thalamus and the left ACC was negatively correlated with HIT-6 score (p = 0.004, r = - 0.484). CONCLUSION VM patients showed altered FC between thalamus and brain regions involved in pain, vestibular and visual processing, which are associated with specific clinical features. Specifically, VM patients showed reduced thalamo-pain and thallamo-vestibular pathways, while exhibited enhanced thalamo-visual pathway, which provided first insight into the underlying functional brain connectivity in VM patients.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Quan Wang
- Medical Imaging Department, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - You Lv
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Yujia Zhai
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Jun Zhang
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Shanshan Dong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
41
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Peng ZY, Liu YX, Li B, Ge QM, Liang RB, Li QY, Shi WQ, Yu YJ, Shao Y. Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: A functional magnetic resonance imaging study. Brain Behav 2021; 11:e02018. [PMID: 33386699 PMCID: PMC7994689 DOI: 10.1002/brb3.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/14/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neovascular glaucoma (NVG) can cause irreversible visual impairment and abnormal spontaneous changes in brain's visual system and other systems. There is little research on this aspect at present. However, amplitude of low-frequency fluctuations (ALFFs) can be used as an rs-fMRI analysis technique for testing changes in spontaneous brain activity patterns. PURPOSE The aim of this study was to probe the local characteristics of spontaneous brain activity in NVG patients and analyze their correlation with clinical behaviors. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) scans were obtained from eighteen patients with NVG (8 males, 10 females) and eighteen healthy controls (HCs; 8 males and 10 females) who were matched in age, gender, and education level. We evaluated spontaneous brain activity with the ALFF method. A receiver operating characteristic (ROC) curve was used to compare the average ALFF values for altered brain regions of NVG patients with those of HCs. RESULTS Compared with HCs, NVG patients had lower ALFF values in the right cuneus, right middle occipital gyrus, left cingulate gyrus, right precuneus, and left medial frontal gyrus (p < 0.001). Higher ALFF values were observed in the right superior frontal gyrus and left middle frontal gyrus (p < 0.001). Analysis of the ROC curves of the brain regions showed that the specificity and accuracy of ALFF values between NVG and HCs in the area under the curve were acceptable (p < 0.001). CONCLUSION The patients with NVG exhibited anomalous spontaneous activity in different brain regions; these finding should establish the foundation for a more comprehensive understanding of the pathological mechanisms of NVG. Furthermore, these abnormal variations in specific brain regions can be considered possible clinical indices of NVG.
Collapse
Affiliation(s)
- Zhi-You Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Yu-Xin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Ya-Jie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| |
Collapse
|
43
|
Jia Z, Yu S, Tang W, Zhao D. Altered functional connectivity of the insula in a rat model of recurrent headache. Mol Pain 2021; 16:1744806920922115. [PMID: 32338132 PMCID: PMC7227144 DOI: 10.1177/1744806920922115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Migraine is a pain disorder accompanied by various symptoms. The insula, a “cortical hub,” is involved in many functions. Few studies have focused on the insula in migraine. We explored the resting-state functional connectivity between the insula and other brain areas in rats subjected to repeated meningeal nociception which was commonly used as animal model of migraine. Inflammatory soup was infused through supradural catheters in conscious rats. The rats were subdivided based on the frequency of the inflammatory soup infusions. Magnetic resonance imaging data were acquired on rats 21 days after inflammatory soup infusion and functional connectivity seeded on the insula was analyzed. In the low-frequency inflammatory soup group, magnetic resonance imaging was performed again 1 h after the glyceryl trinitrate injection following baseline scanning. The cerebellum showed increased functional connectivity with the insula in the inflammatory soup groups. The insula showed increased functional connectivity with the medulla and thalamus in the ictal period in the low-frequency inflammatory soup rats. In the high-frequency inflammatory soup group, several areas showed increased functional connectivity with the insula, including the pons, midbrain, thalamus, temporal association cortex, and retrosplenial, visual, and sensory cortices. Our findings support the hypothesis that the headache phase of migraine depends on the activation and sensitization of the trigeminovascular system, and that the chronification of migraine may be related to higher brain centers and limbic cortices. The insula may be a new target for treatment of migraine.
Collapse
Affiliation(s)
- Zhihua Jia
- Department of Neurology, The First Medical Center, Chinese PLA (People' Liberation Army) General Hospital, Beijing, P. R. China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA (People' Liberation Army) General Hospital, Beijing, P. R. China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center, Chinese PLA (People' Liberation Army) General Hospital, Beijing, P. R. China
| | - Dengfa Zhao
- Department of Neurology, The First Medical Center, Chinese PLA (People' Liberation Army) General Hospital, Beijing, P. R. China
| |
Collapse
|
44
|
Abstract
Migraine is a prevalent primary headache disorder and is usually considered as benign. However, structural and functional changes in the brain of individuals with migraine have been reported. High frequency of white matter abnormalities, silent infarct-like lesions, and volumetric changes in both gray and white matter in individuals with migraine compared to controls have been demonstrated. Functional magnetic resonance imaging (MRI) studies found altered connectivity in both the interictal and ictal phase of migraine. MR spectroscopy and positron emission tomography studies suggest abnormal energy metabolism and mitochondrial dysfunction, as well as other metabolic changes in individuals with migraine. In this review, we provide a brief overview of neuroimaging studies that have helped us to characterize some of these changes and discuss their limitations, including small sample sizes and poorly defined control groups. A better understanding of alterations in the brains of patients with migraine could help not only in the diagnosis but may potentially lead to the optimization of a targeted anti-migraine therapy.
Collapse
|
45
|
Martinelli D, Castellazzi G, De Icco R, Bacila A, Allena M, Faggioli A, Sances G, Pichiecchio A, Borsook D, Gandini Wheeler-Kingshott CAM, Tassorelli C. Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study. Brain Sci 2021; 11:165. [PMID: 33514029 PMCID: PMC7911420 DOI: 10.3390/brainsci11020165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
In this study we used nitroglycerin (NTG)-induced migraine attacks as a translational human disease model. Static and dynamic functional connectivity (FC) analyses were applied to study the associated functional brain changes. A spontaneous migraine-like attack was induced in five episodic migraine (EM) patients using a NTG challenge. Four task-free functional magnetic resonance imaging (fMRI) scans were acquired over the study: baseline, prodromal, full-blown, and recovery. Seed-based correlation analysis (SCA) was applied to fMRI data to assess static FC changes between the thalamus and the rest of the brain. Wavelet coherence analysis (WCA) was applied to test time-varying phase-coherence changes between the thalamus and salience networks (SNs). SCA results showed significantly FC changes between the right thalamus and areas involved in the pain circuits (insula, pons, cerebellum) during the prodromal phase, reaching its maximal alteration during the full-blown phase. WCA showed instead a loss of synchronisation between thalami and SN, mainly occurring during the prodrome and full-blown phases. These findings further support the idea that a temporal change in thalamic function occurs over the experimentally induced phases of NTG-induced headache in migraine patients. Correlation of FC changes with true clinical phases in spontaneous migraine would validate the utility of this model.
Collapse
Affiliation(s)
- Daniele Martinelli
- Headache Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (R.D.I.); (M.A.); (G.S.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (C.A.M.G.W.-K.)
| | - Gloria Castellazzi
- NMR Research Unit Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, London WC1N3BG, UK;
- Department of Electrical Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Roberto De Icco
- Headache Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (R.D.I.); (M.A.); (G.S.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (C.A.M.G.W.-K.)
| | - Ana Bacila
- Center of Advance Imaging and Radiomics, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.B.); (A.F.)
| | - Marta Allena
- Headache Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (R.D.I.); (M.A.); (G.S.); (C.T.)
| | - Arianna Faggioli
- Center of Advance Imaging and Radiomics, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.B.); (A.F.)
| | - Grazia Sances
- Headache Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (R.D.I.); (M.A.); (G.S.); (C.T.)
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (C.A.M.G.W.-K.)
- Center of Advance Imaging and Radiomics, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.B.); (A.F.)
| | - David Borsook
- Centre for Pain and The Brain Boston Children’s Hospital and Massachussetts General Hospital (MGH) Harvard Medical School, Boston, MA 02115, USA;
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (C.A.M.G.W.-K.)
- NMR Research Unit Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, London WC1N3BG, UK;
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (R.D.I.); (M.A.); (G.S.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (C.A.M.G.W.-K.)
| |
Collapse
|
46
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
47
|
Abstract
Migraine is a debilitating condition; however, the pharmacological effects on central nervous system networks after successful therapy are poorly understood. Defining this neurocircuitry is critical to our understanding of the disorder and for the development of antimigraine drugs. Using an established inflammatory soup model of migraine-like pathophysiology (N = 12) compared with sham synthetic interstitial fluid migraine induction (N = 12), our aim was to evaluate changes in network-level functional connectivity after sumatriptan-naproxen infusion in awake, conscious rodents (Sprague-Dawley rats). Sumatriptan-naproxen infusion functional magnetic resonance imaging data were analyzed using an independent component analysis approach. Whole-brain analysis yielded significant between-group (inflammatory soup vs synthetic interstitial fluid) alterations in functional connectivity across the cerebellar, default mode, basal ganglia, autonomic, and salience networks. These results demonstrate the large-scale antimigraine effects of sumatriptan-naproxen co-administration after dural sensitization.
Collapse
|
48
|
Burke MJ, Joutsa J, Cohen AL, Soussand L, Cooke D, Burstein R, Fox MD. Mapping migraine to a common brain network. Brain 2020; 143:541-553. [PMID: 31919494 DOI: 10.1093/brain/awz405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/14/2022] Open
Abstract
Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer's disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ≥ ±7, P < 10-6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ≥90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.
Collapse
Affiliation(s)
- Matthew J Burke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Juho Joutsa
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Turku Brain and Mind Center, Department of Neurology, University of Turku, Turku, Finland.,Division of Clinical Neurosciences and Turku PET Center, Turku University Hospital, Turku, Finland
| | - Alexander L Cohen
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louis Soussand
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Danielle Cooke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
49
|
Martinelli D, Arceri S, Tronconi L, Tassorelli C. Chronic migraine and Botulinum Toxin Type A: Where do paths cross? Toxicon 2020; 178:69-76. [PMID: 32250749 DOI: 10.1016/j.toxicon.2020.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Migraine is a highly prevalent and disabling disorder accounted among the primary headaches. It is the expression of a complex, and not yet fully understood, pathophysiology involving the sensitization of peripheral and central nociceptive pathways. In this review we succinctly illustrate the molecular, anatomical, and functional abnormalities underlying the migraine attack that are relevant for understanding in more depth the neurobiology behind the therapeutic effect of Botulinum Toxin Type A (BoNT-A). BoNT-A has proved effective in several neurological conditions and, more recently, also in chronic migraine. Its antimigraine mechanism of action was initially thought to be limited to the periphery and interpreted as an inhibitory activity on the processes associated to the local release of neuropeptides, with subsequent induction of peripheral sensitization. Increasing experimental evidence has become available to suggest that additional mechanisms are possibly involved, including the direct/indirect inhibition of sensitization processes in central nociceptive pathways.
Collapse
Affiliation(s)
- Daniele Martinelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Sebastiano Arceri
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Tronconi
- Mondino Foundation IRCCS, Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Cristina Tassorelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
50
|
Bao J, Ma M, Dong S, Gao L, Li C, Cui C, Chen N, Zhang Y, He L. Early Age of Migraine Onset is Independently Related to Cognitive Decline and Symptoms of Depression Affect Quality of Life. Curr Neurovasc Res 2020; 17:177-187. [PMID: 32031072 PMCID: PMC7536790 DOI: 10.2174/1567202617666200207130659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 02/08/2023]
Abstract
Background People with migraine experience cognitive decline more often than healthy controls, resulting in a significant functional impact. Early identifying influencing factors that contribute to cognitive decline in migraineurs is crucial for timely intervention. Although migraine may onset early in childhood and early onset migraine is related to significant disability, there is no research investigating the association between the age of migraine onset and migraineurs’ cognitive decline. Therefore we aim to explore possible factors that correlate to the cognitive function of migraineurs, especially focus on age of migraine onset. Methods 531 patients with migraine were included. Data on demographics and headache-related characteristics were collected and evaluated using face-to-face interviews and questionnaires. We used the Montreal Cognitive Assessment scale to assess cognitive function. In addition, we analyzed independent correlations between cognitive decline and the age of migraine onset in patients with migraine. And all patients completed the Headache Impact Test-6 to evaluate their quality of life. Results Migraineurs with cognitive decline showed significant differences from those without in age (OR=1.26, P<0.0001), years of education (OR=0.89, P=0.0182), the intensity of headache (OR=1.03, P=0.0217), age of onset (OR=0.92, P<0.0001) and anxiety scores (OR=1.09, P=0.0235). Furthermore, there was no interaction in the age of onset between subgroups. Multivariate linear regression analyses of HIT-6 scores showed that the intensity of headache (β=0.18, P<0.0001) and depression scores (β=0.26, P=0.0009) had independent effects on decreased quality of life. Conclusion Our findings suggest that younger age of migraine onset is independently related to migraineurs’ cognitive decline, and migraine accompanying anxiety symptoms significantly related to decreased quality of life in migraineurs.
Collapse
Affiliation(s)
- Jiajia Bao
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Shuju Dong
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Lijie Gao
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Changling Li
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Chaohua Cui
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Ning Chen
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Yang Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Wainan Guoxue Xiang, Chengdu 610041, Sichuan, China
| |
Collapse
|