1
|
Mohammed AA, Li S, Sang T, Jones JR, Pinna A. Nanocomposite Hydrogels with Polymer Grafted Silica Nanoparticles, Using Glucose Oxidase. Gels 2023; 9:486. [PMID: 37367156 PMCID: PMC10298067 DOI: 10.3390/gels9060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Nanocomposite hydrogels offer remarkable potential for applications in bone tissue engineering. They are synthesized through the chemical or physical crosslinking of polymers and nanomaterials, allowing for the enhancement of their behaviour by modifying the properties and compositions of the nanomaterials involved. However, their mechanical properties require further enhancement to meet the demands of bone tissue engineering. Here, we present an approach to improve the mechanical properties of nanocomposite hydrogels by incorporating polymer grafted silica nanoparticles into a double network inspired hydrogel (gSNP Gels). The gSNP Gels were synthesised via a graft polymerization process using a redox initiator. gSNP Gels were formed by grafting 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as the first network gel followed by a sequential second network acrylamide (AAm) onto amine functionalized silica nanoparticles (ASNPs). We utilized glucose oxidase (GOx) to create an oxygen-free atmosphere during polymerization, resulting in higher polymer conversion compared to argon degassing. The gSNP Gels showed excellent compressive strengths of 13.9 ± 5.5 MPa, a strain of 69.6 ± 6.4%, and a water content of 63.4% ± 1.8. The synthesis technique demonstrates a promising approach to enhance the mechanical properties of hydrogels, which can have significant implications for bone tissue engineering and other soft tissue applications.
Collapse
Affiliation(s)
- Ali A. Mohammed
- Dyson School of Design Engineering, Imperial College London, London SW7 9EG, UK;
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (S.L.); (T.S.); (J.R.J.)
| | - Siwei Li
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (S.L.); (T.S.); (J.R.J.)
| | - Tian Sang
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (S.L.); (T.S.); (J.R.J.)
| | - Julian R. Jones
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (S.L.); (T.S.); (J.R.J.)
| | - Alessandra Pinna
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (S.L.); (T.S.); (J.R.J.)
- The Francis Crick Institute, London NW1 1AT, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, London GU2 7XH, UK
| |
Collapse
|
2
|
Zhu S, Wang Y, Wang Z, Chen L, Zhu F, Ye Y, Zheng Y, Yu W, Zheng Q. Metal-Coordinated Dynamics and Viscoelastic Properties of Double-Network Hydrogels. Gels 2023; 9:gels9020145. [PMID: 36826315 PMCID: PMC9956398 DOI: 10.3390/gels9020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Biological soft tissues are intrinsically viscoelastic materials which play a significant role in affecting the activity of cells. As potential artificial alternatives, double-network (DN) gels, however, are pure elastic and mechanically time independent. The viscoelasticization of DN gels is an urgent challenge in enabling DN gels to be used for advanced development of biomaterial applications. Herein, we demonstrate a simple approach to regulate the viscoelasticity of tough double-network (DN) hydrogels by forming sulfonate-metal coordination. Owing to the dynamic nature of the coordination bonds, the resultant hydrogels possess highly viscoelastic, mechanical time-dependent, and self-recovery properties. Rheological measurements are performed to investigate the linear dynamic mechanical behavior at small strains. The tensile tests and cyclic tensile tests are also systematically performed to evaluate the rate-dependent large deformation mechanical behaviors and energy dissipation behaviors of various ion-loaded DN hydrogels. It has been revealed based on the systematic analysis that robust strong sulfonate-Zr4+ coordination interactions not only serve as dynamic crosslinks imparting viscoelastic rate-dependent mechanical performances, but also strongly affect the relative strength of the first PAMPS network, thereby increasing the yielding stress σy and the fracture stress at break σb and reducing the stretch ratio at break λb. It is envisioned that the viscoelasticization of DN gels enables versatile applications in the biomedical and engineering fields.
Collapse
Affiliation(s)
- Shilei Zhu
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhe Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Chen
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
- Correspondence: (Y.Y.); (Y.Z.)
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Correspondence: (Y.Y.); (Y.Z.)
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Qiang Zheng
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Abstract
Soft and wet hydrogels have many similarities to biological tissues, though their mechanical fragility had been one of the biggest obstacles in biomedical applications. Studies and developments in double network (DN) hydrogels have elucidated how to create tough gels universally based on sacrificial bond principles and opened a path for biomedical application of hydrogels in regenerative medicine and artificial soft connective tissues, such as cartilage, tendon, and ligament, which endure high tension and compression. This review explores a universal toughening mechanism for and biomedical studies of DN hydrogels. Moreover, because the term sacrificial bonds has been mentioned often in studies of bone tissues, consisting of biomacromolecules and biominerals, recent studies of gel–biomineral composites to understand early-stage osteogenesis and to simulate bony sacrificial bonds are also summarized.
Collapse
Affiliation(s)
- Takayuki Nonoyama
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Kita-ku, Sapporo 001-0021, Japan;,
| | - Jian Ping Gong
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Kita-ku, Sapporo 001-0021, Japan;,
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Semba S, Kitamura N, Tsuda M, Goto K, Kurono S, Ohmiya Y, Kurokawa T, Gong JP, Yasuda K, Tanaka S. Synthetic poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces chondrogenic differentiation of ATDC5 cells via a novel protein reservoir function. J Biomed Mater Res A 2020; 109:354-364. [PMID: 32496623 DOI: 10.1002/jbm.a.37028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that a synthetic negatively charged poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) gel induced chondrogenic differentiation of ATDC5 cells. In this study, we clarified the underlying molecular mechanism, in particular, focusing on the events that occurred at the interface between the gel and the cells. Gene expression profiling revealed that the expression of extracellular components was enhanced in the ATDC5 cells that were cultured on the PAMPS gel, suggesting that extracellular proteins secreted from the ATDC5 cells might be adsorbed in the PAMPS gel, thereby contributing to the induction of chondrogenic differentiation. Therefore, we created "Treated-PAMPS gel," which adsorbed various proteins secreted from the cultured ATDC5 cells during 7 days. Proteomic analysis identified 27 proteins, including extracellular matrix proteins such as Types I, III, and V collagens and thrombospondin (THBS) in the Treated-PAMPS gel. The Treated-PAMPS gel preferentially induced expression of chondrogenic markers, namely, aggrecan and Type II collagen, in the ATDC5 cells compared with the untreated PAMPS gel. Addition of recombinant THBS1 to the ATDC5 cells significantly enhanced the PAMPS-induced chondrogenic differentiation, whereas knockdown of THBS1 completely abolished this response. In conclusion, we demonstrated that the PAMPS gel has the potential to induce chondrogenic differentiation through novel reservoir functions, and the adsorbed THBS plays a significant role in the induction.
Collapse
Affiliation(s)
- Shingo Semba
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuto Kitamura
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Keiko Goto
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sadamu Kurono
- Laboratory of Molecular Signature Analysis, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Takayuki Kurokawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Liu B, Zhao Y, Zhu T, Gao S, Ye K, Zhou F, Qiu D, Wang X, Tian Y, Qu X. Biphasic Double-Network Hydrogel With Compartmentalized Loading of Bioactive Glass for Osteochondral Defect Repair. Front Bioeng Biotechnol 2020; 8:752. [PMID: 32714919 PMCID: PMC7346869 DOI: 10.3389/fbioe.2020.00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 12/04/2022] Open
Abstract
Periarticular injury usually causes the defects of superficial cartilage and the underlying subchondral bone. Although some efficacious outcomes have been achieved by the existing therapeutic methods both in clinics and research, like symptomatic treatment, microfracture surgery, and tissue engineering technology, they still present specific disadvantages and complications. To improve this situation, we designed a biphasic (bi-) scaffold aiming to repair the structure of cartilage and subchondral bone synchronously. The scaffold consisted of a superior double-network (DN) hydrogel layer and a lower bioactive glass (BG) reinforced hydrogel layer, and the DN hydrogel included glycol chitosan (GC) and dibenzaldhyde functionalized poly(ethylene oxide) network, and sodium alginate (Alg) and calcium chloride (CaCl2) network. To investigate its effectiveness, we applied this biphasic scaffold to repair osteochondral full-thickness defects in rabbit models. We set up six observation groups in total, including Untreated group, Microfracture group, BG only group, DN gel group, bi-DN gel group, and bi-DN/TGF-β gel group. With a follow-up period of 24 weeks, we evaluated the treatment effects by gross observation, micro-CT scan and histological staining. Besides, we further fulfilled the quantitative analysis of the data from ICRS score, O’Driscoll score and micro-CT parameters. The results revealed that neat GC/Alg DN hydrogel scaffold was only conductive to promoting cartilage regeneration and neat BG scaffold merely showed the excellent ability to reconstruct subchondral bone. While the biphasic scaffold performed better in repairing osteochondral defect synchronously, exhibiting more well-integrated cartilage-like tissue with positive staining of toluidine blue and col II immunohistochemistry, and more dense trabecular bone connecting closely with the surrounding host bone. Therefore, this method possessed the clinical application potential in treating articular injury, osteochondral degeneration, osteochondral necrosis, and sclerosis.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yanran Zhao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tengjiao Zhu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Shan Gao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Kaifeng Ye
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Mohammed AA, Pinna A, Li S, Sang T, Jones JR. Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels. J Mater Chem B 2020; 8:2834-2844. [DOI: 10.1039/c9tb02729g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel auto-catalytic reaction that utilizes both the redox properties of nanoceria and oxidoreductase properties of glucose oxidase to graft polymers on the surface of nanoceria in an open vessel to form double network hydrogel nanocomposites.
Collapse
Affiliation(s)
| | | | - Siwei Li
- Department of Materials
- Imperial College London
- London
- UK
| | - Tian Sang
- Department of Materials
- Imperial College London
- London
- UK
| | | |
Collapse
|
7
|
Cipollaro L, Ciardulli MC, Della Porta G, Peretti GM, Maffulli N. Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro and in vivo approaches. Br Med Bull 2019; 132:53-80. [PMID: 31854445 DOI: 10.1093/bmb/ldz034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Given the limited regenerative capacity of injured articular cartilage, the absence of suitable therapeutic options has encouraged tissue-engineering approaches for its regeneration or replacement. SOURCES OF DATA Published articles in any language identified in PubMed and Scopus electronic databases up to August 2019 about the in vitro and in vivo properties of cartilage engineered constructs. A total of 64 articles were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. AREAS OF AGREEMENT Regenerated cartilage lacks the biomechanical and biological properties of native articular cartilage. AREAS OF CONTROVERSY There are many different approaches about the development of the architecture and the composition of the scaffolds. GROWING POINTS Novel tissue engineering strategies focus on the development of cartilaginous biomimetic materials able to repair cartilage lesions in association to cell, trophic factors and gene therapies. AREAS TIMELY FOR DEVELOPING RESEARCH A multi-layer design and a zonal organization of the constructs may lead to achieve cartilage regeneration.
Collapse
Affiliation(s)
- Lucio Cipollaro
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giuseppe M Peretti
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, via Mangiagalli 31, 20133, Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, Queen Mary University of London, London, UK
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
| |
Collapse
|
8
|
Higa K, Kitamura N, Goto K, Kurokawa T, Gong JP, Kanaya F, Yasuda K. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 2017; 18:210. [PMID: 28532476 PMCID: PMC5440932 DOI: 10.1186/s12891-017-1578-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Background There has been increased interest in one-step cell-free procedures to avoid the problems related to cell manipulation and its inherent disadvantages. We have studied the chondrogenic induction ability of a PAMPS/PDMAAm double-network (DN) gel and found it to induce chondrogenesis in animal osteochondral defect models. The purpose of this study was to investigate whether the healing process and the degree of cartilage regeneration induced by the cell-free method using DN gel are influenced by the size of osteochondral defects. Methods A total of 63 mature female Japanese white rabbits were used in this study, randomly divided into 3 groups of 21 rabbits each. A 2.5-mm diameter osteochondral defect was created in the femoral trochlea of the patellofemoral joint of bilateral knees in Group I, a 4.3-mm osteochondral defect in Group II, and a 5.8-mm osteochondral defect in Group III. In the right knee of each animal, a DN gel plug was implanted so that a vacant space of 2-mm depth was left above the plug. In the left knee, we did not conduct any treatment to obtain control data. Animals were sacrificed at 2, 4, and 12 weeks after surgery, and gross and histological evaluations were made. Results The present study demonstrated that all sizes of the DN gel implanted defects as well as the 2.5mm untreated defects showed cartilage regeneration at 4 and 12 weeks. The 4.3-mm and 5.8-mm untreated defects did not show cartilage regeneration during the 12-week period. The quantitative score reported by O’Driscoll et al. was significantly higher in the 4.3-mm and 5.8-mm DN gel-implanted defects than the untreated defects at 4 and 12 weeks (p < 0.05). The 2.5-mm and 4.3-mm DN gel implanted defects maintained relatively high macroscopic and histological scores for the 12-week implantation period, while the histological score of the 5.8-mm DN gel implanted defect had decreased somewhat but statistically significantly at 12 weeks (p = 0.0057). Conclusions The DN gel induced cartilage regeneration in defects between 2.5 and 5.8 mm, offering a promising device to establish a cell-free cartilage regeneration therapy and applicable to various sizes of osteochondral defects.
Collapse
Affiliation(s)
- Kotaro Higa
- Department of Sports Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nobuto Kitamura
- Department of Sports Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Keiko Goto
- Department of Sports Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazunori Yasuda
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Taylor DL, In Het Panhuis M. Self-Healing Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9060-9093. [PMID: 27488822 DOI: 10.1002/adma.201601613] [Citation(s) in RCA: 682] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/03/2016] [Indexed: 05/21/2023]
Abstract
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self-healing and self-recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self-healing hydrogels generally either possess mechanically robust or rapid self-healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self-healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self-healing hydrogels are reviewed. Specifically, methods to test self-healing efficiencies and recoveries, mechanisms of autonomous self-healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self-heal better also achieve self-healing faster, as compared to gels that only partially self-heal. Recommendations to guide future development of self-healing hydrogels are offered and the potential relevance of self-healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.
Collapse
Affiliation(s)
- Danielle Lynne Taylor
- Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Marc In Het Panhuis
- Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia.
- ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
10
|
Higa K, Kitamura N, Kurokawa T, Goto K, Wada S, Nonoyama T, Kanaya F, Sugahara K, Gong JP, Yasuda K. Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method. Acta Biomater 2016; 43:38-49. [PMID: 27427226 DOI: 10.1016/j.actbio.2016.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED The purpose of this study was to clarify fundamental mechanical properties and biological responses of the sodium hyaluronate-containing double network (HA-DN) gel and chondroitin sulfate-containing double network (CS-DN) gel, which were newly developed using the molecular stent method. This study discovered the following facts. First, these hydrogels had high mechanical performance comparable to the native cartilage tissue, and the mechanical properties were not affected by immersion in the saline solution for 12weeks. Secondly, the mechanical properties of the CS-DN gel were not significantly reduced at 12weeks in vivo, while the mechanical properties of the HA-DN gel were significantly deteriorated at 6weeks. Thirdly, the degree of inflammation around the HA-DN gel was the same as that around the negative control. The CS-DN gel showed a mild but significant foreign body reaction, which was significantly greater than the negative control and less than the positive control at 1week, while the inflammation was reduced to the same level as the negative control at 4 and 6weeks. Fourthly, these gels induced differentiation of the ATDC5 cells into chondrocytes in the culture with the insulin-free maintenance medium. These findings suggest that these tough hydrogels are potential biomaterials for future application to therapeutic implants such as artificial cartilage. STATEMENT OF SIGNIFICANCE The present study reported fundamental biomaterial properties of the sodium hyaluronate-containing double network (HA-DN) gel and chondroitin sulfate-containing double network (CS-DN) gel, which were newly developed using the molecular stent method. Both the HA- and CS-DN gels had high mechanical properties comparable to the cartilage tissue and showed the ability to induce chondrogenic differentiation of ATDC5 cells in vitro. They are potential biomaterials that may meet the requirements of artificial cartilage concerning the material properties. Further, these DN gels can be also applied to the implantable inducer for cell-free cartilage regeneration therapy.
Collapse
|
11
|
Kitamura N, Yokota M, Kurokawa T, Gong JP, Yasuda K. In vivo cartilage regeneration induced by a double-network hydrogel: Evaluation of a novel therapeutic strategy for femoral articular cartilage defects in a sheep model. J Biomed Mater Res A 2016; 104:2159-65. [PMID: 27087198 DOI: 10.1002/jbm.a.35745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to establish the efficacy of a therapeutic strategy for an articular cartilage defect using a poly-(2-acrylamido-2-methylpropanesulfonic acid)/poly-(N,N'-dimethyl acrylamide) DN gel in a sheep model. Seventeen mature sheep were used in this study. We created a 6.0-mm osteochondral defect in the femoral trochlea of the patellofemoral (PF) joint and the medial condyle of the tibiofemoral (TF) joint. A cylindrical DN gel plug was implanted into the defect of the right knee so that a vacant space of the planned depths of 2.0 mm in group I, 3.0 mm in group II, and 4.0 mm in group III were left. In the left knee, we created a defect with the same depth as the right knee. The regenerated tissues were evaluated with the O'Driscoll score and real-time PCR analysis of the cartilage marker genes at 12 weeks. The DN gel implanted defect of group II in the PF and TF joints was completely filled with a sufficient volume of the proteoglycan-rich tissue stained with Safranin-O. The score showed that group II was significantly greater than groups I and III when treated with DN gel in the PF joint (p = 0.0441, p = 0.0174, respectively) and in the TF joint (p = 0.0019, p = 0.0006, respectively). This study has clarified the short-term efficacy of the cartilage regeneration strategy using the DN gel in a sheep model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2159-2165, 2016.
Collapse
Affiliation(s)
- Nobuto Kitamura
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Yokota
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Goto K, Kimura T, Kitamura N, Semba S, Ohmiya Y, Aburatani S, Matsukura S, Tsuda M, Kurokawa T, Ping Gong J, Tanaka S, Yasuda K. Synthetic PAMPS gel activates BMP/Smad signaling pathway in ATDC5 cells, which plays a significant role in the gel-induced chondrogenic differentiation. J Biomed Mater Res A 2015; 104:734-746. [DOI: 10.1002/jbm.a.35615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Keiko Goto
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Taichi Kimura
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Nobuto Kitamura
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Shingo Semba
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Sachiyo Aburatani
- Computational Biology Research Center; National Institute of Advanced Industrial Science and Technology; Tokyo Japan
| | - Satoko Matsukura
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Masumi Tsuda
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter; Department of Advanced Transdisciplinary Sciences; Hokkaido University Faculty of Advanced Life Science; Sapporo Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter; Department of Advanced Transdisciplinary Sciences; Hokkaido University Faculty of Advanced Life Science; Sapporo Japan
| | - Shinya Tanaka
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kazunori Yasuda
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| |
Collapse
|
13
|
Nonoyama T, Gong JP. Double-network hydrogel and its potential biomedical application: A review. Proc Inst Mech Eng H 2015; 229:853-63. [DOI: 10.1177/0954411915606935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Double-network hydrogels are one of the most promising candidates as artificial soft supporting tissues owing to their excellent mechanical performance, water storage capability, and biocompatibility. A double-network hydrogel consists of two contrasting polymer networks: rigid and brittle first network and soft and ductile second network. To satisfy this double-network requirement, polyelectrolyte and neutral polymer are suitable as the first and the second networks, respectively. Combination of these two networks gives rise to extraordinarily tough double-network hydrogel as a result of substantial internal fracture of the brittle first network at large deformation, which contributes to the energy dissipation. Therefore, the first network serves as the sacrificial bonds to toughen the material. The double-network principle is universal and many kinds of double-network hydrogels composed of various chemical species have been developed. Moreover, a molecular stent technology has been developed to synthesize the double-network hydrogels using neutral polymer network as the brittle first network. The sulfonic double-network hydrogel was found to induce spontaneous hyaline cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-Mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015; 1:726-739. [DOI: 10.1021/acsbiomaterials.5b00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C. A. Vilela
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Orthopaedic
Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - C. Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. Espregueira-Mendes
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Clínica
do Dragão, Espregueira-Mendes Sports Centre, Porto, Portugal
| | - R. L. Reis
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| |
Collapse
|
15
|
Inagaki Y, Kitamura N, Kurokawa T, Tanaka Y, Gong JP, Yasuda K, Tohyama H. Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study. BMC Musculoskelet Disord 2014; 15:320. [PMID: 25262146 PMCID: PMC4190488 DOI: 10.1186/1471-2474-15-320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Recently, several animal studies have found that spontaneous hyaline cartilage regeneration can be induced in vivo within a large osteochondral defect by implanting a synthetic double-network (DN) hydrogel, which is composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and poly-(N,N’-dimethyl acrylamide) (PDMAAm), at the bottom of the defect. However, the effect of hydrogel on hyaline cartilage regeneration remains unexplained. The purpose of this study was to investigate the chondrogenic differentiation of C3H10T1/2 cells on PAMPS/PDMAAm DN gel. Methods C3H10T1/2 cells of 1.0 × 105 were cultured on PAMPS/PDMAAm DN gel in polystyrene tissue culture dishes or directly on polystyrene tissue culture dishes. We compared cultured cells on PAMPS/PDMAAm DN gel with those on polystyrene dishes by morphology using phase-contrast microscopy, mRNA expression of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin using real-time RT-PCR, and local expression of type II collagen using immunocytochemistry. Results C3H10T1/2 cells cultured on the PAMPS/PDMAAm DN gels formed focal adhesions, aggregated rapidly and developed into large nodules within 7 days, while the cells cultured on the polystyrene surface did not. The mRNA levels of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin were significantly greater in cells cultured on the PAMPS/PDMAAm DN gel than in those cultured on polystyrene dishes. In addition, C3H10T1/2 cells cultured on PAMPS/PDMAAm DN gel expressed more type II collagen at the protein level when compared with cells cultured on polystyrene dishes. Conclusions The present study showed that PAMPS/PDMAAm DN gel enhanced chondrogenesis of C3H10T1/2 cells, which are functionally similar to mesenchymal stem cells. This suggests that mesenchymal stem cells from the bone marrow contribute to spontaneous hyaline cartilage regeneration in vivo in large osteochondral defects after implantation of PAMPS/PDMAAm DN gels. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-320) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Harukazu Tohyama
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan.
| |
Collapse
|
16
|
Kitamura N, Kurokawa T, Fukui T, Gong JP, Yasuda K. Hyaluronic acid enhances the effect of the PAMPS/PDMAAm double-network hydrogel on chondrogenic differentiation of ATDC5 cells. BMC Musculoskelet Disord 2014; 15:222. [PMID: 24997593 PMCID: PMC4107725 DOI: 10.1186/1471-2474-15-222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Abstract
Background A double-network (DN) gel, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N,N’-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated whether DN gel induced chondrogenic differentiation of ATDC5 cells in a maintenance medium without insulin, and whether supplementation of hyaluronic acid enhanced the chondrogenic differentiation effect of DN gel. Methods ATDC5 cells were cultured on the DN gel and the polystyrene (PS) dish in maintenance media without insulin for 21 days. Hyaluronic acid having a molecular weight of approximately 800 kDa was supplemented into the medium so that the concentration became 0.01, 0.1, or 1.0 mg/mL. The cultured cells were evaluated using immunocytochemistry for type-2 collagen and real time PCR for gene expression of type-2 collagen, aggrecan, and Sox9 at 7 and 21 days of culture. Results The cells cultured on the DN gel formed nodules and were stained with an anti-type-2 collagen antibody, and expression of type-2 collagen and aggrecan mRNA was significantly greater on the DN gel than on the PS dish surface (p < 0.05) in the hyaluronic acid-free maintenance medium. Hyaluronic acid supplementation of a high concentration (1.0 mg/mL) significantly enhanced expression of type-2 collagen and aggrecan mRNA in comparison with culture without hyaluronic acid at 21 days (p < 0.05). Conclusions The DN gel induced chondrogenic differentiation of ATDC5 cells without insulin. This effect was significantly affected by hyaluronic acid, depending on the level of concentration. There is a high possibility that hyaluronic acid plays an important role in the in vivo hyaline cartilage regeneration phenomenon induced by the DN gel.
Collapse
Affiliation(s)
- Nobuto Kitamura
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | |
Collapse
|
17
|
Fukui T, Kitamura N, Kurokawa T, Yokota M, Kondo E, Gong JP, Yasuda K. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1173-1182. [PMID: 24394983 DOI: 10.1007/s10856-013-5139-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel.
Collapse
Affiliation(s)
- Takaaki Fukui
- Department of Sports Medicine and Joint Surgery, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Dai L, He Z, Zhang X, Hu X, Yuan L, Qiang M, Zhu J, Shao Z, Zhou C, Ao Y. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med 2014; 42:583-91. [PMID: 24496505 DOI: 10.1177/0363546513518415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. HYPOTHESIS A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. STUDY DESIGN Controlled laboratory study. METHODS For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. RESULTS The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. CONCLUSION The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. CLINICAL RELEVANCE Microfracture combined with a DCCBM scaffold is a promising method that can be performed and adopted into clinical treatment for articular cartilage injuries.
Collapse
Affiliation(s)
- Linghui Dai
- Yingfang Ao, Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing 100191, PR China. , and Chunyan Zhou, Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, 38 Xueyuan Rd, Haidian District, Beijing 100191, PR China (e-mail: )
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kwon HJ, Yasuda K, Gong JP, Ohmiya Y. Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromol Res 2014. [DOI: 10.1007/s13233-014-2045-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Bell AD, Lascau-Coman V, Sun J, Chen G, Lowerison MW, Hurtig MB, Hoemann CD. Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant: 1-Day, 3-Week, and 3-Month Repair. Cartilage 2013; 4:131-43. [PMID: 26069656 PMCID: PMC4297102 DOI: 10.1177/1947603512463227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. DESIGN In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with presolidified chitosan-blood implant with fluorescent chitosan tracer (10 kDa, 40 kDa, or 150k Da chitosan, left knee) or left to bleed (untreated, right knee). Implant residency and osteochondral repair were assessed at 1 day (N = 1), 3 weeks (N = 2), or 3 months (N = 2) postoperative using fluorescence microscopy, histomorphometry, stereology, and micro-computed tomography. RESULTS Chitosan implants were retained in 89% of treated Jamshidi holes up to 3 weeks postoperative. At 3 weeks, biopsy sites were variably covered by cartilage flow, and most bone holes contained cartilage flow fragments and heterogeneous granulation tissues with sparse leukocytes, stromal cells, and occasional adipocytes (volume density 1% to 3%). After 3 months of repair, most Jamshidi bone holes were deeper, remodeling at the edges, filled with angiogenic granulation tissue, and lined with variably sized chondrogenic foci fused to bone trabeculae or actively repairing bone plate. The 150-kDa chitosan implant elicited more subchondral cartilage formation compared with 40-kDa chitosan-treated and control defects (P < 0.05, N = 4). Treated defects contained more mineralized repair tissue than control defects at 3 months (P < 0.05, N = 12). CONCLUSION Bone plate-induced chondroinduction is an articular cartilage repair mechanism. Jamshidi biopsy repair takes longer than 3 months and can be influenced by subchondral chitosan-blood implant.
Collapse
Affiliation(s)
- Angela D. Bell
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Viorica Lascau-Coman
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - Jun Sun
- BioSyntech/Piramal Healthcare Canada, Montreal, Quebec, Canada
| | - Gaoping Chen
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - Mark W. Lowerison
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Mark B. Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Caroline D. Hoemann
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada,Institute of Biomedical Engineering, École Polytechnique, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Yoshikawa K, Kitamura N, Kurokawa T, Gong JP, Nohara Y, Yasuda K. Hyaluronic acid affects the in vitro induction effects of synthetic PAMPS and PDMAAm hydrogels on chondrogenic differentiation of ATDC5 cells, depending on the level of concentration. BMC Musculoskelet Disord 2013; 14:56. [PMID: 23379610 PMCID: PMC3598980 DOI: 10.1186/1471-2474-14-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been a common belief that articular cartilage tissue cannot regenerate in vivo. Recently, however, we have found that spontaneous hyaline cartilage regeneration can be induced in vivo by implanting a synthetic double-network (DN) hydrogel, which is composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and poly-(N,N'-dimethyl acrylamide) (PDMAAm). However, the mechanism of this phenomenon has not been clarified. Recently, we have found that single-network PAMPS and PDMAAm gels can induce chondrogenic differentiation of ATDC5 cells in vitro even in a maintenance medium. In the in vivo condition, there is a strong possibility that the induction effect of the gel itself is enhanced by some molecules which exist in the joint. We have noticed that the joint fluid naturally contains hyaluronic acid (HA). The purpose of this study is to clarify in vitro effects of supplementation of HA on the differentiation effect of the PAMPS and PDMAAm gels. METHODS We cultured the ATDC5 cells on the PAMPS gel, the PDMAAm gel, and the polystyrene (PS) dish surface with the maintenance medium without insulin for 7 days. HA having a molecular weight of approximately 800 kDa was supplemented into the medium so that the concentration became 0.00, 0.01, 0.10, or 1.00 mg/mL. We evaluated the cultured cells with phase-contrast microscopy and PCR analyses. RESULTS On the PAMPS gel, supplementation with HA of 0.01 and 0.10 mg/mL significantly increased expression of type-2 collagen mRNA (p = 0.0008 and p = 0.0413) and aggrecan mRNA (p = 0.0073 and p = 0.0196) than that without HA. On the PDMAAm gel, supplementation with HA of 1.00 mg/mL significantly reduced expression of these genes in comparison with the culture without HA (p = 0.0426 and p = 0.0218). CONCLUSIONS The in vitro induction effects of the PAMPS and PDMAAm gels on chondrogenic differentiation of ATDC5 cells are significantly affected by HA, depending on the level of concentration. These results suggested that there is a high possibility that HA plays an important role in the in vivo spontaneous hyaline cartilage regeneration phenomenon induced by the PAMPS/PDMAAm DN gel.
Collapse
Affiliation(s)
- Katsuhisa Yoshikawa
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Matsuda H, Kitamura N, Kurokawa T, Arakaki K, Gong JP, Kanaya F, Yasuda K. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results. BMC Musculoskelet Disord 2013; 14:50. [PMID: 23369101 PMCID: PMC3564809 DOI: 10.1186/1471-2474-14-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. METHODS Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. RESULTS According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p<0.05), although there were no significant differences between Groups I and IV at a 3.0-mm deep vacant space. The expression levels of type-2 collagen in Groups II and III were significantly higher (p<0.05) than that in Group IV. CONCLUSIONS The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.
Collapse
Affiliation(s)
- Hidetoshi Matsuda
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Moran CJ, Barry FP, Maher SA, Shannon FJ, Rodeo SA. Advancing regenerative surgery in orthopaedic sports medicine: the critical role of the surgeon. Am J Sports Med 2012; 40:934-44. [PMID: 22085730 DOI: 10.1177/0363546511426677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The constant desire to improve outcomes in orthopaedic sports medicine requires us to continuously consider the challenges faced in the surgical repair or reconstruction of soft tissue and cartilaginous injury. In many cases, surgical efforts targeted at restoring normal anatomy and functional status are ultimately impaired by the biological aspect of the natural history of these injuries, which acts as an obstacle to a satisfactory repair process after surgery. The clinical management of sports injuries and the delivery of appropriate surgical intervention are continuously evolving, and it is likely that the principles of regenerative medicine will have an increasing effect in this specialized field of orthopaedic practice going forward. Ongoing advances in arthroscopy and related surgical techniques should facilitate this process. In contrast to the concept of engineered replacement of entire tissues, it is probable that the earliest effect of regenerative strategies seen in clinical practice will involve biological augmentation of current operative techniques via a synergistic process that might be best considered "regenerative surgery." This article provides an overview of the principles of regenerative surgery in cartilage repair and related areas of orthopaedic surgery sports medicine. The possibilities and challenges of a gradual yet potential paradigm shift in treatment through the increased use of biological augmentation are considered. The translational process and critical role to be played by the specialist surgeon are also addressed. We conclude that increased understanding of the potential and challenges of regenerative surgery should allow those specializing in orthopaedic surgery sports medicine to lead the way in advancing the frontiers of biological strategies to enhance modern clinical care in an evidence-based manner.
Collapse
Affiliation(s)
- Cathal J Moran
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
24
|
|
25
|
The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 2012; 33:3153-63. [PMID: 22264523 DOI: 10.1016/j.biomaterials.2011.12.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/31/2011] [Indexed: 11/21/2022]
Abstract
We investigated the active role of clinical rehabilitation in osteochondral regeneration using continuous passive motion (CPM) treatment together with acellular PLGA implants. CPM treatment was performed and compared with immobilization (Imm) treatment and intermittent active motion (IAM) treatment upon full-thickness osteochondral defects either with or without an PLGA implant in the PI (PLGA-implanted) and ED (empty defect) models. The PI and ED tests were performed in 38 rabbits for 4 and 12 weeks. At the end of testing, the PI-CPM group had the best regeneration with nearly normal articular surfaces and no joint contracture or inflammatory reaction. In contrast, degenerated joints, abrasion cartilage surfaces and synovitis were observed in the Imm and IAM groups. The achieved bone volume/tissue volume (BV/TV) ratio, which was measured using micro-CT, was significantly higher in the CPM group compared with the Imm and IAM groups; in particular, the performance of the PI-CPM group exceeds that of the ED-CPM group. The thickness of the trabecular (subchondral) bone was visibly increased in all of the groups from 4 through 12 weeks of testing. However, a histological analysis revealed differences in cartilage regeneration. At week 4, compared with the ED samples, all of the PI groups exhibited better collagen alignment and higher GAG content in the core of their repaired tissues, particularly in the PI-CPM group. At week 12, sound osteochondral repair and hyaline cartilaginous regeneration was observed in the PI-CPM group, and this was marked by type II collagen expression, osteocyte maturation, and trabecular boney deposition. In contrast, the PI-Imm and PI-IAM groups exhibited fibrocartilaginous tissues that had modest GAG content. In summary, this study demonstrates that early CPM treatment together with acellular PLGA implantation has significant positive effects on osteochondral regeneration in rabbit knee joint models.
Collapse
|
26
|
Imabuchi R, Ohmiya Y, Kwon HJ, Onodera S, Kitamura N, Kurokawa T, Gong JP, Yasuda K. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord 2011; 12:213. [PMID: 21955995 PMCID: PMC3192715 DOI: 10.1186/1471-2474-12-213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022] Open
Abstract
Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.
Collapse
Affiliation(s)
- Ryusei Imabuchi
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|