1
|
Luo J, Zou Z, Zou Q, Luo S, He J, Ye C. Effects of different microfracture drilling parameters on bone quality: a finite element analysis. Front Bioeng Biotechnol 2025; 12:1515136. [PMID: 39845370 PMCID: PMC11751024 DOI: 10.3389/fbioe.2024.1515136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect. The purpose of this study is to use the finite element method to analyze the effects of drilling diameter, hole spacing, and drilling depth during microfracture surgery on the stability of the bone structure at the cartilage defect site. Methods In this study, a normal knee joint model was selected for solid modeling, and a model of a femoral medial condyle cartilage defect was constructed. Microfracture holes with different diameters (1.0 mm, 2.0 mm, 3.0 mm), depths (10 mm, 30 mm), and spacings (1.0 mm, 2.0 mm, 3.0 mm) were created in the femoral medial condyle cartilage defect model. Using Ansys software, the knee joint's loading conditions in the standing position were simulated, and the structural stability of the model was analyzed. The holes in areas of stress concentration were selected for more detailed mechanical analysis. Results The Von Mises stresses for all the drilling parameters did not exceed the yield strength of the bone. Changes in the drilling parameters did not affect the bone structure around the holes. When smaller diameter drilling tools with closer spacing were used, the average maximum Von Mises stress and the average Von Mises stress on the holes were the lowest. Conclusion Although the optimal combination of drilling parameters was not determined, this study provides a mechanical reference for the effects of drilling parameters on bone quality. It demonstrates that using smaller diameter drilling tools with closer spacing in areas of the same defect size results in a greater number of holes, with a lesser impact on bone stability. This study provides a mechanical reference for microfracture drilling.
Collapse
Affiliation(s)
- Jiayi Luo
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Zihao Zou
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Qiang Zou
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Siwei Luo
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Jialin He
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Reinhard J, Oláh T, Laschke MW, Goebel LKH, Schmitt G, Speicher-Mentges S, Menger MD, Cucchiarini M, Pape D, Madry H. Modulation of early osteoarthritis by tibiofemoral re-alignment in sheep. Osteoarthritis Cartilage 2024; 32:690-701. [PMID: 38442768 DOI: 10.1016/j.joca.2024.02.892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.
Collapse
Affiliation(s)
- Jan Reinhard
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Lars K H Goebel
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | | | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Dietrich Pape
- Cartilage Net of the Greater Region, 66421 Homburg, Germany; Clinique d'Eich, Centre Hospitalier de Luxembourg, Eich, 1460 Luxembourg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| |
Collapse
|
3
|
Peifer C, Oláh T, Venkatesan JK, Goebel L, Orth P, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Locally Directed Recombinant Adeno- Associated Virus-Mediated IGF-1 Gene Therapy Enhances Osteochondral Repair and Counteracts Early Osteoarthritis In Vivo. Am J Sports Med 2024; 52:1336-1349. [PMID: 38482805 DOI: 10.1177/03635465241235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.
Collapse
Affiliation(s)
- Carolin Peifer
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | | | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
4
|
Gao L, Beninatto R, Oláh T, Goebel L, Tao K, Roels R, Schrenker S, Glomm J, Venkatesan JK, Schmitt G, Sahin E, Dahhan O, Pavan M, Barbera C, Lucia AD, Menger MD, Laschke MW, Cucchiarini M, Galesso D, Madry H. A Photopolymerizable Biocompatible Hyaluronic Acid Hydrogel Promotes Early Articular Cartilage Repair in a Minipig Model In Vivo. Adv Healthc Mater 2023; 12:e2300931. [PMID: 37567219 PMCID: PMC11468502 DOI: 10.1002/adhm.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Tamás Oláh
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ke Tao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Rebecca Roels
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Steffen Schrenker
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Julianne Glomm
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ebrar Sahin
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ola Dahhan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Mauro Pavan
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Alba Di Lucia
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Devis Galesso
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| |
Collapse
|
5
|
Wang H, Guo Y, Zhao Y, Chen Q, Gong Y, Jeon IH, Sun Y. Microfracture Lateral to the Greater Tuberosity of the Humerus Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Model. Am J Sports Med 2023; 51:2842-2849. [PMID: 37551676 DOI: 10.1177/03635465231188117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Microfracture at the rotator cuff insertion is an established surgical marrow-stimulation technique for enhancing rotator cuff healing. However, the effect of lateralized or medialized microfracture on the insertion is unknown. PURPOSE To compare the biomechanical and histologic effects of microfracture at 3 different regions for rotator cuff repair in a rat model. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 Sprague-Dawley rats with bilateral supraspinatus tendon insertion detachment were allocated into 4 groups with 4 different interventions: no microfracture at the humeral head as a control group (Con), traditional microfracture at the footprint area (MFA), and medialized microfracture to the footprint area (MMFA) on the articular surface of the humerus or lateralized microfracture to the footprint area at the greater tuberosity (LMFA). All underwent immediate repair. Tendon-to-bone healing was assessed by biomechanical and histologic tests 4 and 8 weeks postoperation. RESULTS At 4 weeks, the LMFA group showed a significantly superior failure load compared with the other groups (all P < .05). The LMFA and MFA groups showed significantly superior stiffness compared with the Con and MMFA groups (all P < .01). At 8 weeks, superior failure load and stiffness were observed in the LMFA group compared with the control group (all P < .05). Histologic examination revealed that the LMFA group had superior collagen composition and tendon-to-bone maturation at the interface at 4 and 8 weeks compared with the Con group (all P < .05). CONCLUSION Lateralized microfracture at the greater tuberosity improved the histologic quality of repair tissue and biomechanical strength at the tendon-to-bone insertion after rotator cuff repair in a rat model. CLINICAL RELEVANCE Microfracture lateral to the footprint area might be a better way to enhance rotator cuff healing clinically.
Collapse
Affiliation(s)
- Haoliang Wang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yawen Guo
- Department of Rehabilitation, Taizhou People's Hospital, Taizhou, China
| | - Yurou Zhao
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Qingzhong Chen
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| |
Collapse
|
6
|
Song JS, Hong KT, Kim NM, Hwangbo BH, Yang BS, Victoroff BN, Choi NH. Clinical and Magnetic Resonance Imaging Outcomes After Human Cord Blood-Derived Mesenchymal Stem Cell Implantation for Chondral Defects of the Knee. Orthop J Sports Med 2023; 11:23259671231158391. [PMID: 37123990 PMCID: PMC10134134 DOI: 10.1177/23259671231158391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 05/02/2023] Open
Abstract
Background There is a paucity of literature reporting clinical and magnetic resonance imaging (MRI) outcomes after allogeneic umbilical cord blood-derived mesenchymal stem cell (UCB-MSC) implantation for chondral defects of the knee. Purpose To report clinical and MRI outcomes after UCB-MSC implantation for chondral lesions of the knee. Study Design Case series; Level of evidence, 4. Methods Inclusion criteria were patients aged between 40 and 70 years with focal chondral lesions of grade 3 or 4 on the medial femoral condyle, defect sizes >4 cm2, and intact ligaments. Exclusion criteria were patients who required realignment osteotomy or who had a meniscal deficiency, ligamentous instability, or a concomitant full-thickness chondral defect in the lateral or patellofemoral compartment. A mixture of human UCB-MSCs and sodium hyaluronate was implanted into the chondral defect through mini-arthrotomy. MRI at 1-year follow-up was performed to evaluate repaired cartilage hypertrophy. Repaired cartilage thickness was measured, and hypertrophy was classified as grade 1 (<125%), grade 2 (<150%), or grade 3 (<200%). Patient-reported outcomes (PROs; International Knee Documentation Committee, visual analog scale for pain, and Western Ontario and McMaster Universities Osteoarthritis Index) were evaluated preoperatively and at 1, 2, and 3 years postoperatively. Repaired cartilage hypertrophy was evaluated for a correlation with PRO scores. Results Enrolled were 85 patients with a mean age of 56.8 ± 6.1 years and a mean chondral defect size of 6.7 ± 2.0 cm2. At follow-up, a significant improvement in all PRO scores was seen compared with preoperatively (P < .001 for all). MRI at 1-year follow-up demonstrated that 28 patients had grade 1 repaired cartilage hypertrophy, 41 patients had grade 2, and 16 patients had grade 3. MRI performed in 11 patients at 2 years after surgery indicated no difference in repaired cartilage hypertrophy between the 1- and 2-year time points. The grade of repaired cartilage hypertrophy did not correlate with PRO scores. Conclusion Clinical outcomes improved significantly at short-term follow-up after UCB-MSC implantation. Although all patients showed repaired cartilage hypertrophy, it did not correlate with clinical outcomes.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Byung-Hun Hwangbo
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Bong-Seok Yang
- Department of Orthopedic Surgery, Shihwa Medical Center, Siheung, Republic of Korea
| | - Brian N. Victoroff
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nam-Hong Choi
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
- Nam-Hong Choi, MD, Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, 280-1, Hagye-1-dong, Nowon-gu, Seoul, 139-711, Republic of Korea ()
| |
Collapse
|
7
|
Browe DC, Burdis R, Díaz-Payno PJ, Freeman FE, Nulty JM, Buckley CT, Brama PA, Kelly DJ. Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Mater Today Bio 2022; 16:100343. [PMID: 35865410 PMCID: PMC9294195 DOI: 10.1016/j.mtbio.2022.100343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. In vitro these ECM scaffolds were found to be inherently chondro-inductive, while in vivo they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-β3. In vivo such TGF-β3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model.
Collapse
Affiliation(s)
- David C. Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pedro J. Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Fiona E. Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge, MA, 02142, USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, MA, 02115, USA
| | - Jessica M. Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pieter A.J. Brama
- Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Stachel N, Madry H, Orth P. Aktuelle Empfehlungen zur knochenmarkstimulierenden Technik auf Basis präklinischer Erkenntnisse. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Augmented Marrow Stimulation: Drilling Techniques and Scaffold Options. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Stachel N, Orth P, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Subchondral Drilling Independent of Drill Hole Number Improves Articular Cartilage Repair and Reduces Subchondral Bone Alterations Compared With Debridement in Adult Sheep. Am J Sports Med 2022; 50:2669-2679. [PMID: 35834876 DOI: 10.1177/03635465221104775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Subchondral drilling is an established marrow stimulation technique for small cartilage defects, but whether drilling is required at all and if the drill hole density affects repair remains unclear. HYPOTHESES Osteochondral repair is improved when the subchondral bone is perforated by a higher number of drill holes per unit area, and drilling is superior to defect debridement alone. STUDY DESIGN Controlled laboratory study. METHODS Rectangular full-thickness chondral defects (4 × 8 mm) were created in the trochlea of adult sheep (N = 16), debrided down to the subchondral bone plate without further treatment as controls (no treatment; n = 7) or treated with either 2 or 6 (n = 7 each) subchondral drill holes (diameter, 1.0 mm; depth, 10.0 mm). Osteochondral repair was assessed at 6 months postoperatively by standardized (semi-)quantitative macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. RESULTS Compared with defect debridement alone, histological overall cartilaginous repair tissue quality (P = .025) and the macroscopic aspect of the adjacent cartilage (P≤ .032) were improved after both drilling densities. Only drilling with 6 holes increased type 2 collagen content in the repair tissue compared with controls (P = .038). After debridement, bone mineral density was significantly decreased in the subchondral bone plate (P≤ .015) and the subarticular spongiosa (P≤ .041) compared with both drilling groups. Debridement also significantly increased intralesional osteophyte sectional area compared with drilling (P≤ .034). No other differences in osteochondral repair existed between subchondral drilling with 6 or 2 drill holes. CONCLUSION Subchondral drilling independent of drill hole density significantly improves structural cartilage repair compared with sole defect debridement of full-thickness cartilage defects in sheep after 6 months. Subchondral drilling also leads to a better reconstitution of the subchondral bone compartment below the defects. Simultaneously, drilling reduced the formation of intralesional osteophytes caused by osseous overgrowth compared with debridement. CLINICAL RELEVANCE These results have important clinical implications, as they support subchondral drilling independent of drill hole number but discourage debridement alone for the treatment of small cartilage defects. Clinical studies are warranted to further quantify the effects of subchondral drilling in similar settings.
Collapse
Affiliation(s)
- Niklas Stachel
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
11
|
Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep. Acta Biomater 2022; 150:181-198. [PMID: 35896136 DOI: 10.1016/j.actbio.2022.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
Clinically, microfracture is the most commonly applied surgical technique for cartilage defects. However, an increasing number of studies have shown that the clinical improvement remains questionable, and the reason remains unclear. Notably, recent discoveries revealed that signals from regenerated niches play a critical role in determining mesenchymal stem cell fate specification and differentiation. We speculate that a microenvironmentally optimized scaffold that directs mesenchymal stem cell fate will be a good therapeutic strategy for cartilage repair. Therefore, we first explored the deficiency of microfractures in cartilage repair. The microfracture not only induced inflammatory cell aggregation in blood clots but also consisted of loose granulation tissue with increased levels of proteins related to fibrogenesis. We then fabricated a functional cartilage scaffold using two strong bioactive cues, transforming growth factor-β3 and decellularized cartilage extracellular matrix, to modulate the cell fate of mesenchymal stem cells. Additionally, poly(ε-caprolactone) was also coprinted with extracellular matrix-based bioinks to provide early mechanical support. The in vitro studies showed that microenvironmentally optimized scaffolds exert powerful effects on modulating the mesenchymal stem cell fate, such as promoting cell migration, proliferation and chondrogenesis. Importantly, this strategy achieved superior regeneration in sheep via scaffolds with biomechanics (restored well-organized collagen orientation) and antiapoptotic properties (cell death-related genes were also downregulated). In summary, this study provides evidence that microenvironmentally optimized scaffolds improve cartilage regeneration in situ by regulating the microenvironment and support further translation in human cartilage repair. STATEMENT OF SIGNIFICANCE: Although microfracture (MF)-based treatment for chondral defects has been commonly used, critical gaps exist in understanding the biochemistry of MF-induced repaired tissue. More importantly, the clinically unsatisfactory effects of MF treatment have prompted researchers to focus on tissue engineering scaffolds that may have sufficient therapeutic efficacy. In this manuscript, a 3D printing ink containing cartilage tissue-specific extracellular matrix (ECM), methacrylate gelatin (GelMA), and transforming growth factor-β3 (TGF-β3)-embedded polylactic-coglycolic acid (PLGA) microspheres was coprinted with poly(ε-caprolactone) (PCL) to fabricate tissue engineering scaffolds for chondral defect repair. The sustained release of TGF-β3 from scaffolds successfully directed endogenous stem/progenitor cell migration and differentiation. This microenvironmentally optimized scaffold produced improved tissue repair outcomes in the sheep animal model, explicitly guiding more organized neotissue formation and therefore recapitulating the anisotropic structure of native articular cartilage. We hypothesized that the cell-free scaffolds might improve the clinical applicability and become a new therapeutic option for chondral defect repair.
Collapse
|
12
|
Marín Fermín T, Macchiarola L, Zampeli F, Maskalo G, Olory B, Papakostas E, Murawski CD, Hogan MV, Kennedy JG, D'Hooghe P. Osteochondral lesions of the talar dome in the athlete: what evidence leads to which treatment. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2022; 2:100065. [DOI: 10.1016/j.jcjp.2022.100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Irem Demir A, Pulatkan A, Ucan V, Yilmaz B, Tahmasebifar A, Tok OE, Tuncay I, Elmali N, Ozturk BY, Uzer G. Comparison of 3 Cell-Free Matrix Scaffolds Used to Treat Osteochondral Lesions in a Rabbit Model. Am J Sports Med 2022; 50:1399-1408. [PMID: 35354059 DOI: 10.1177/03635465221074292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various cell-free scaffolds are already in use for the treatment of osteochondral defects (OCDs); however, a gold standard material has not yet been defined. PURPOSE This study compared the macroscopic, histological, and scanning electron microscopy (SEM) characteristics of Chondro-Gide (CG), MaioRegen (MA), and poly-d,l-lactide-co-caprolactone (PLCL) cell-free scaffolds enhanced with small-diameter microfractures (SDMs) for OCDs in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS In total, 54 knees from 27 rabbits were used in this study. Three rabbits were sacrificed at the beginning of the study to form an intact cartilage control group (group IC). An OCD model was created at the center of the trochlea, and SDMs were generated in 24 rabbits. Rabbits with OCDs were divided into 4 groups (n = 12 knees per group) according to the cell-free scaffold applied: CG (group CG), MA (group MA), PLCL (group PLCL), and a control group (group SDM). Half of the rabbits were sacrificed at 1 month after treatment, while the other half were sacrificed at 3 months after treatment. Healed cartilage was evaluated macroscopically (using International Cartilage Regeneration & Joint Preservation Society [ICRS] classification criteria) and histopathologically (using modified O'Driscoll scores and collagen staining). Additionally, cell-free scaffold morphologies were compared using SEM analysis. RESULTS ICRS and modified O'Driscoll classification and staining with collagen type 1 and type 2 demonstrated significant differences among groups at both 1 and 3 months after treatment (P < .05). The histological characteristics of the group IC samples were superior to those of all other groups, except group PLCL, at 3 months after treatment (P < .05). In addition, the histological properties of group PLCL samples were superior to those of group SDM samples at both 1 and 3 months after treatment in terms of the modified O'Driscoll scores and type 1 collagen staining (P < .05). Concerning type 2 collagen staining intensity, the groups were ranked from highest to lowest at 3 months after treatment as follows: group PLCL (30.3 ± 2.6) > group MA (26.6 ± 1.2) > group CG (23.3 ± 2.3) > group SDM (18.9 ± 0.9). CONCLUSION OCDs treated with enhanced SDM using cell-free PLCL scaffolds had superior histopathological and microenvironmental properties, more hyaline cartilage, and more type 2 collagen compared with those treated using CG or MA scaffolds. CLINICAL RELEVANCE OCDs treated with PLCL cell-free scaffolds may have superior histopathological properties and contain more type 2 collagen than do OCDs treated with CG or MA cell-free scaffolds.
Collapse
Affiliation(s)
- Ahder Irem Demir
- Department of Orthopaedics and Traumatology, Istanbul Beykoz State Hospital, Istanbul, Turkey
| | - Anil Pulatkan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Vahdet Ucan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Bengi Yilmaz
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Olgu Enis Tok
- Department of Histology and Embryology, Medipol University Medical Faculty Regenerative and Restorative Medicine Research Center, Istanbul, Turkey
| | - Ibrahim Tuncay
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nurzat Elmali
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Gokcer Uzer
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
14
|
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering. Stem Cells Int 2021; 2021:5590479. [PMID: 34912460 PMCID: PMC8668357 DOI: 10.1155/2021/5590479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.
Collapse
|
15
|
Lesion Size May Predict Return to Play in Young Elite Athletes Undergoing Microfracture for Osteochondral Lesions of the Talus. Arthroscopy 2021; 37:1612-1619. [PMID: 33359815 DOI: 10.1016/j.arthro.2020.12.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the clinical and sports-related outcomes of arthroscopic microfracture (MFx) for osteochondral lesion of the talus (OLT) in elite athletes. METHODS The athletes who underwent arthroscopic MFx for OLTs at our institution between January 2011 and September 2015 with minimum 2 years of follow-up were reviewed. The Foot and Ankle Outcome Score, American Orthopaedic Foot & Ankle Society, and visual analog scale pain score, time and rate of "return-to-competition" (RTC, return to an official match for at least 1 minute after treatment), and rate of "return-to-play" (RTP, participation in at least 2 entire seasons after treatment) were used to evaluate the outcomes. We compared athletes who were able to RTP with those who were not. RESULTS In total, 41 patients (mean age 19.34 ± 3.76 years) were included. The mean follow-up was 54.9 ± 13.72 months. In total, 36 patients had medial lesions, and 5 patients had lateral lesions. All subscales of preoperative Foot and Ankle Outcome Score were significantly improved at the final follow-up. The mean preoperative American Orthopaedic Foot & Ankle Society score of 74.46 ± 8.10 improved to 91.62 ± 2.99 (P < .001) at the final follow-up. The mean preoperative visual analog scale pain score of 5.44 ± 1.57 improved to 2.66 ± 1.04 (P < .001). All patients achieved RTC (100%) at mean time of 5.45 ± 3.18 months, and 74.4% of patients were able to RTP. The RTP-group showed significantly smaller lesions compared to the No-RTP group (71.52 ± 43.29 vs 107.00 ± 45.28 mm2, P = .009). The cut-off OLT size for predicting RTP was 84.0 mm2, with a sensitivity of 90.0% and specificity of 75.9%. CONCLUSIONS All athletes were able to RTC at average of 5.45 months after MFx for OLTs with minimal subchondral involvement, and 74.4% were able to RTP. The only prognostic variable for RTP was lesion size, and its predictive cut-off was 84.0 mm2. LEVEL OF EVIDENCE IV, Case series.
Collapse
|
16
|
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am J Sports Med 2021; 49:958-969. [PMID: 33606561 DOI: 10.1177/0363546521988941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.
Collapse
Affiliation(s)
- Yannik P Morscheid
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
17
|
Oláh T, Cai X, Michaelis JC, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part I: Large animals. Ann Anat 2021; 235:151680. [PMID: 33548412 DOI: 10.1016/j.aanat.2021.151680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human knee is a complex joint, and affected by a variety of articular cartilage disorders. Large animal models are critical to model the complex disease mechanisms affecting a functional joint. Species-dependent differences highly affect the results of a pre-clinical study and need to be considered, necessitating specific knowledge not only of macroscopic and microscopic anatomical and pathological aspects, but also characteristics of their individual gait and joint movements. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major translational large animal species, comprising dogs, (mini)pigs, sheep, goats, and horses in comparison with humans. Specific characteristics of each species, including kinematical gait parameters are provided. Considering these multifactorial dimensions will allow to select the appropriate model for answering the research questions in a clinically relevant fashion.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
18
|
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol 2021; 8:607764. [PMID: 33553146 PMCID: PMC7859330 DOI: 10.3389/fcell.2020.607764] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
There is emerging awareness that subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). This review presents recent investigations on the cellular and molecular mechanism of subchondral bone remodeling, and summarizes the current interventions and potential therapeutic targets related to OA subchondral bone remodeling. The first part of this review covers key cells and molecular mediators involved in subchondral bone remodeling (osteoclasts, osteoblasts, osteocytes, bone extracellular matrix, vascularization, nerve innervation, and related signaling pathways). The second part of this review describes candidate treatments for OA subchondral bone remodeling, including the use of bone-acting reagents and the application of regenerative therapies. Currently available clinical OA therapies and known responses in subchondral bone remodeling are summarized as a basis for the investigation of potential therapeutic mediators.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Shah SS, Lee S, Mithoefer K. Next-Generation Marrow Stimulation Technology for Cartilage Repair: Basic Science to Clinical Application. JBJS Rev 2021; 9:e20.00090. [PMID: 33512974 DOI: 10.2106/jbjs.rvw.20.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
» Given the relatively high prevalence of full-thickness articular cartilage lesions, including in patients who are <40 years of age, and an inability to detect some of these lesions until the time of arthroscopy, there is value in performing a single-stage cartilage procedure such as marrow stimulation (MS). » While the positive outcomes of first-generation MS (namely microfracture) have been observed to drop off after 24 months in several studies, improvements have been seen when compared with preoperative conditions for lesions that are 2 to 3 cm2 in size, and MS is considered to be a procedure with technical simplicity, fairly short surgical times, and relatively low morbidity. A recent study showed that autologous chondrocyte implantation (ACI) and osteochondral allograft (OCA) transplantation remain viable treatment options for chondral defects of the knee in the setting of failed MS. » Basic science principles that have been elucidated in recent years include (1) the creation of vertical walls during defect preparation, (2) an increased depth of subchondral penetration, (3) a smaller awl diameter, and (4) an increased number of subchondral perforations, which are all thought to help resolve issues of access to the mesenchymal stromal cells (MSCs) and the subchondral bone structure/overgrowth issues. » Pioneering and evolving basic science and clinical studies have led to next-generation clinical applications, such as a hyaluronic acid-based scaffold (ongoing randomized controlled trial [RCT]), an atelocollagen-based gel (as described in a recently published RCT), a micronized allogeneic cartilage scaffold (as described in a recently completed prospective cohort study), and a biosynthetic hydrogel that is composed of polyethylene glycol (PEG) diacrylate and denatured fibrinogen (as described in an ongoing prospective study). » This review summarizes important points for defect preparation and the recent advances in MS techniques and identifies specific scaffolding augmentation strategies (e.g., mesenchymal augmentation and scaffold stimulation [MASS]) that have the capacity to advance cartilage regeneration in light of recent laboratory and clinical studies.
Collapse
Affiliation(s)
- Sarav S Shah
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Boston, Massachusetts
| | - Sonia Lee
- Department of Orthopaedic Surgery, Tufts University School of Medicine, Boston, Massachusetts
| | - Kai Mithoefer
- Department of Orthopedics and Sports Medicine, Harvard Vanguard Medical Associates, Boston, Massachusetts
| |
Collapse
|
20
|
Gao L, Cucchiarini M, Madry H. Cyst formation in the subchondral bone following cartilage repair. Clin Transl Med 2020; 10:e248. [PMID: 33377663 PMCID: PMC7733665 DOI: 10.1002/ctm2.248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Subchondral bone cysts represent an early postoperative sign associated with many articular cartilage repair procedures. They may be defined as an abnormal cavity within the subchondral bone in close proximity of a treated cartilage defect with a possible communication to the joint cavity in the absence of osteoarthritis. Two synergistic mechanisms of subchondral cyst formation, the theory of internal upregulation of local proinflammatory factors, and the external hydraulic theory, are proposed to explain their occurrence. This review describes subchondral bone cysts in the context of articular cartilage repair to improve investigations of these pathological changes. It summarizes their epidemiology in both preclinical and clinical settings with a focus on individual cartilage repair procedures, examines an algorithm for subchondral bone analysis, elaborates on the underlying mechanism of subchondral cyst formation, and condenses the clinical implications and perspectives on subchondral bone cyst formation in cartilage repair.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental OrthopaedicsSaarland University Medical Center and Saarland UniversityHomburgGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University Medical Center and Saarland UniversityHomburgGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University Medical Center and Saarland UniversityHomburgGermany
| |
Collapse
|
21
|
Small-Diameter Subchondral Drilling Improves DNA and Proteoglycan Content of the Cartilaginous Repair Tissue in a Large Animal Model of a Full-Thickness Chondral Defect. J Clin Med 2020; 9:jcm9061903. [PMID: 32570841 PMCID: PMC7356183 DOI: 10.3390/jcm9061903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
This study quantified changes in the DNA content and extracellular matrix composition of both the cartilaginous repair tissue and the adjacent cartilage in a large animal model of a chondral defect treated by subchondral drilling. Content of DNA, proteoglycans, and Type II and Type I collagen, as well as their different ratios were assessed at 6 months in vivo after treatment of full-thickness cartilage defects in the femoral trochlea of adult sheep with six subchondral drill holes, each of either 1.0 mm or 1.8 mm in diameter by biochemical analyses of the repair tissue and the adjacent cartilage and compared with the original cartilage. Only subchondral drilling which were 1.0 mm in diameter significantly increased both DNA and proteoglycan content of the repair tissue compared to the original cartilage. DNA content correlated with the proteoglycan and Type II collagen content within the repair tissue. Significantly higher amounts of Type I collagen within the repair tissue and significantly increased DNA, proteoglycan, and Type I collagen content in the adjacent cartilage were identified. These translational data support the use of small-diameter bone-cutting devices for marrow stimulation. Signs of early degeneration were present within the cartilaginous repair tissue and the adjacent cartilage.
Collapse
|
22
|
Song M, Zhang Z, Yan L, Liu D. [Effectiveness of arthroscopic microfracture combined with osteochondral autologous transplantation for large area cartilage injury of femoral condyle of knee]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:330-334. [PMID: 32174078 DOI: 10.7507/1002-1892.201907048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the effectiveness of arthroscopic microfracture combined with osteochondral autologous transplantation (OAT) in treatment of large area (4-6 cm 2) cartilage injury of the femoral condyle of knee. Methods Between March 2016 and June 2017, 22 patients of large area cartilage injury of the femoral condyle of knee were treated with arthroscopic microfracture combined with OAT. There were 16 males and 6 females with an average age of 22-60 years (mean, 38.6 years). The cause of injury was traffic accident in 8 cases and sports injuries in 14 cases. The disease duration was 1-6 months (mean, 3.4 months). There were 15 cases of medial femoral condyle injuries and 7 cases of lateral condyle injuries. The area of cartilage defect was 4-6 cm 2 (mean, 4.98 cm 2). According to the International Cartilage Repair Society (ICRS) classification, 9 cases were rated as grade Ⅲ and 13 cases as grade Ⅳ. Eighteen cases were combined with meniscus injuries. Preoperative visual analogue scale (VAS) score was 6.36±1.25 and Lysholm score was 36.00±7.77. Results All incisions healed by first intention. All patients were followed up 2-3 years with an average of 2.3 years. At 2 years after operation, the VAS score was 1.27±0.94 and the Lysholm score was 77.82±6.21, which were significantly improved when compared with those before operation ( t=16.595, P=0.000; t=21.895, P=0.000). At 2 years after operation, MRI showed that the cartilage defect was repaired well. Conclusion Arthroscopic microfracture combined with OAT can be used to treat large area cartilage injury of the femoral condyle of knee, and the good early effectiveness can be obtained.
Collapse
Affiliation(s)
- Meng Song
- Department of Orthopedic Surgery and Sports Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Zheng Zhang
- Department of Orthopedic Surgery and Sports Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Lixiang Yan
- Department of Orthopedic Surgery and Sports Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Danping Liu
- Department of Orthopedic Surgery and Sports Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| |
Collapse
|
23
|
Sun Y, Kwak JM, Kholinne E, Zhou Y, Tan J, Koh KH, Jeon IH. Small Subchondral Drill Holes Improve Marrow Stimulation of Rotator Cuff Repair in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2020; 48:706-714. [PMID: 31928410 DOI: 10.1177/0363546519896350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture of the greater tuberosity has been proved effective for enhancing tendon-to-bone healing after rotator cuff repair. However, no standard diameter for the microfracture has been established. PURPOSE/HYPOTHESIS This study aimed to assess treatment with large- and small-diameter microfractures to enhance healing during rotator cuff repair surgery in a rabbit model of chronic rotator cuff tear. It was hypothesized that a small-diameter microfracture had advantages in terms of tendon-to-bone integration, bone-tendon interface maturity, microfracture healing, and biomechanical properties compared with a large-diameter microfracture. STUDY DESIGN Controlled laboratory study. METHODS Bilateral supraspinatus tenotomy from the greater tuberosity was performed on 21 New Zealand White rabbits. Bilateral supraspinatus repair was performed 6 weeks later. Small-diameter (0.5 mm) microfracture and large-diameter microfracture (1 mm) were performed on the left side and right side, respectively, in 14 rabbits as a study group, and simple repair without microfracture was performed in 7 rabbits as a control group. At 12 weeks later, 7 of 14 rabbits in the study group were sacrificed for micro-computed tomography evaluation and biomechanical testing. Another 6 rabbits were sacrificed for histological evaluation. In the control group, 3 of the 7 rabbits were sacrificed for histological evaluation and the remaining rabbits were sacrificed for biomechanical testing. RESULTS Significantly better bone-to-tendon integration was observed in the small-diameter microfracture group. Better histological formation and maturity of the bone-tendon interface corresponding to better biomechanical results (maximum load to failure and stiffness) were obtained on the small-diameter microfracture side compared with the large-diameter side and the control group. The large-diameter microfracture showed worse radiographic and histological properties for healing of the microfracture holes on the greater tuberosity. Additionally, the large-diameter microfracture showed inferior biomechanical properties but similar histological results compared with the control group. CONCLUSION Small-diameter microfracture showed advantages with enhanced rotator cuff healing for biomechanical, histological, and radiographic outcomes compared with large-diameter microfracture, and large-diameter microfracture may worsen the rotator cuff healing. CLINICAL RELEVANCE This animal study suggested that a smaller diameter microfracture may be a better choice to enhance healing in clinical rotator cuff repair surgery in humans.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Youlang Zhou
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jun Tan
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| |
Collapse
|
24
|
Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc 2020; 28:670-706. [PMID: 30659314 DOI: 10.1007/s00167-019-05359-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE To systematically review and evaluate novel clinical data following microfracture treatment of knee articular cartilage defects. METHODS A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases for clinical trials on microfracture treatment, published between 2013 and 2018. Titles, abstracts, and articles were reviewed, and data concerning patient demographics, study design, pre-, intra-, and postoperative findings were extracted. PRISMA guidelines were applied. The methodological quality of the included studies was analyzed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. RESULTS Eighteen studies including 1830 defects (1759 patients) were included. Of them, 8 (59% of patients) were cohort studies without a comparison group. Overall study quality was moderate (mean total CMS: 64 points), mainly due to low patient numbers, short follow-up periods, lack of control groups and structural repair tissue evaluation, and inhomogeneity in outcome parameters. Microfracture treatment of full-thickness articular cartilage defects (3.4 ± 2.1 cm2) was performed at 43.4 ± 68.0 months of symptom duration. Postoperative assessment at 79.5 ± 27.2 months revealed failure rates of 11-27% within 5 years and 6-32% at 10 years. Imaging analysis was conducted in 10 studies, second-look arthroscopies were reported twice (n = 205 patients) and revealed well integrated fibrocartilaginous repair tissue. CONCLUSIONS Microfracture provides good function and pain relief at the mid-term and clinically largely satisfying results thereafter. Standardized, high-quality future study designs will better refine optimal indications for microfracture in the context of cartilage repair strategies. LEVEL OF EVIDENCE This systematic review is based on studies with levels of evidence ranging between I and IV (see results section and Table). Therefore, and according to this journals Instructions for Authors (SYSTEMATIC REVIEWS AND META-ANALYSES are assigned a level of evidence equivalent to the lowest level of evidence used from the manuscripts analysed), level of evidence is IV.
Collapse
Affiliation(s)
- Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany. .,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany.
| |
Collapse
|
25
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
26
|
Shimozono Y, Vannini F, Ferkel RD, Nakamura N, Kennedy JG. Restorative procedures for articular cartilage in the ankle: state-of-the-art review. J ISAKOS 2019. [DOI: 10.1136/jisakos-2017-000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
28
|
Gao L, Orth P, Cucchiarini M, Madry H. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence. Am J Sports Med 2019; 47:222-231. [PMID: 29161138 DOI: 10.1177/0363546517740575] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). PURPOSE To examine the current clinical evidence regarding AMIC for focal chondral defects. STUDY DESIGN Systematic review. METHODS A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. RESULTS Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm2) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. CONCLUSION This systematic review reveals a paucity of high-quality, randomized controlled studies testing the AMIC technique versus established procedures such as microfracture or ACI. Evidence is insufficient to recommend joint-specific indications for AMIC. Additional nonbiased, high-powered, randomized controlled clinical trials will provide better clinical and structural long-term evidence, thus helping to define possible indications for this technique.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
29
|
Abstract
Over the past decade, hip arthroscopy has become increasingly popular in managing hip conditions in a minimally invasive approach. The development of specialist equipment and training in this field has allowed indications for hip arthroscopy to be extended to a range of conditions. However, the need for special equipment and training has also limited the use of hip arthroscopy to specialized centers. This article will outline the evolution of hip arthroscopy, the pathology of hip conditions, what it has been used for and how this technique has now been extended to help manage these conditions in a minimally invasive approach, limiting the complications of open surgery.
Collapse
Affiliation(s)
- Edward Massa
- Department of Orthopaedics and Trauma, Kings College Hospital, Denmark Hill, London, U.K
| | - Venu Kavarthapu
- Department of Orthopaedics and Trauma, Kings College Hospital, Denmark Hill, London, U.K,Address for correspondence: Dr. Venu Kavarthapu, Department of Orthopaedics and Trauma, Kings College Hospital, Denmark Hill, London, SE5 9RS, U.K. E-mail:
| |
Collapse
|
30
|
Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies. Cartilage 2019; 10:70-81. [PMID: 28573889 PMCID: PMC6376565 DOI: 10.1177/1947603517711220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. DESIGN The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). RESULTS Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. CONCLUSIONS Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ian D. Hutchinson
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Albany Medical Center, Albany, NY, USA
| | - Eoghan T. Hurley
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - John G. Kennedy
- Hospital for Special Surgery, New York, NY, USA,John G. Kennedy, Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY 10021, USA.
| |
Collapse
|
31
|
Kamei N, Ochi M, Adachi N, Ishikawa M, Yanada S, Levin LS, Kamei G, Kobayashi T. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2018; 26:3626-3635. [PMID: 29549388 DOI: 10.1007/s00167-018-4898-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A new cell delivery system using magnetic force, termed magnetic targeting, was developed for the accumulation of locally injected cells in a lesion. The aim of this study was to assess the safety and efficacy of mesenchymal stem cell (MSC) magnetic targeting in patients with a focal articular cartilage defect in the knee. METHODS MSC magnetic targeting for five patients was approved by the Ministry of Health Labour and Welfare of Japan. Autologous bone marrow MSCs were cultured and subsequently magnetized with ferucarbotran. The 1.0-T compact magnet was attached to a suitable position around the knee joint to allow the magnetic force to be as perpendicular to the surface of the lesion as possible. Then 1 × 107 MSCs were injected into the knee joint. The magnet was maintained in the same position for 10 min after the MSC injection. The primary endpoint was the occurrence of any adverse events. The secondary endpoints were efficacy assessed by magnetic resonance imaging (MRI) T2 mapping and clinical outcomes using the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation and the Knee Injury and Osteoarthritis Outcome Score (KOOS). RESULTS No serious adverse events were observed during the treatment or in the follow-up period. Swelling of the treated knee joint was observed from the day after surgery in three of the five patients. The swelling resolved within 2 weeks in two patients. MRI showed that the cartilage defect areas were almost completely filled with cartilage-like tissue. MOCART scores were significantly higher 48 weeks postoperatively than preoperatively (74.8 ± 10.8 vs 27.0 ± 16.8, p = 0.042). Arthroscopy in three patients showed complete coverage of their cartilage defects. Clinical outcome scores were significantly better 48 weeks postoperatively than preoperatively for the IKDC Subjective Knee Evaluation (74.8 ± 17.7 vs 46.9 ± 17.7, p = 0.014) and knee-related quality-of-life (QOL) in the KOOS (53.8 ± 26.4 vs 22.5 ± 30.8, p = 0.012). CONCLUSION Magnetic targeting of MSCs was safely performed and showed complete coverage of the defects with cartilage-like tissues and significant improvement in clinical outcomes 48 weeks after treatment. The magnetic targeting of MSCs is useful as a minimally invasive treatment for cartilage repair. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Hiroshima University, Higashihiroshima, Japan.
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | - L Scott Levin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Goki Kamei
- Department of Orthopaedic Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Takaaki Kobayashi
- Department of Orthopaedic Surgery, Tsuchiya General Hospital, Hiroshima, Japan
| |
Collapse
|
32
|
Hayashi S, Nakasa T, Ishikawa M, Nakamae A, Miyaki S, Adachi N. Histological Evaluation of Early-Phase Changes in the Osteochondral Unit After Microfracture in a Full-Thickness Cartilage Defect Rat Model. Am J Sports Med 2018; 46:3032-3039. [PMID: 30067073 DOI: 10.1177/0363546518787287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The microfracture (MF) technique is an established surgical treatment for cartilage injury. However, the early-phase histological changes in full-thickness cartilage defects (FTCDs) after MF and the concomitant changes in the subchondral bone are still unknown. PURPOSE To determine the early-phase histological changes in FTCD associated with subchondral bone remodeling after MF in rat model. STUDY DESIGN Controlled laboratory study. METHODS Rats were subjected to FTCD, followed by MF at the trochlear groove. For histological analysis, experiment and untreated control rats were sacrificed at 0, 1, 3, 7, 14, 28, and 56 days postoperatively (n = 6 knees per time point). Cartilage healing response was evaluated with the Pineda score. Osteoclast activity was evaluated by counting and locating the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the subchondral bone. MF hole diameter and bone mineral density in the subchondral bone were measured sequentially in 3 rats (n = 6 knees) by 3-dimensional μ-computed tomography. RESULTS Pineda score showed no difference in cartilage response from day 0 to day 3 but a significant improvement from day 7 to day 56. Although the MF holes were filled with blood clots in all specimens, the defect sites were not. The number of TRAP-positive cells peaked at day 3, mostly accumulating around the deeper zone of the MF holes. Over time, the number of TRAP-positive cells decreased to preoperative levels, localizing around the aperture of the MF holes where there was active remodeling of the osteochondral unit. The MF hole diameter was largest at day 14, and most holes disappeared by day 28. Bone mineral density was also highest at day 14 and decreased to preoperative levels by day 56. CONCLUSION Histological changes in the FTCD after MF were derived from endochondral ossification within the deeper zone of the MF holes. CLINICAL RELEVANCE The absence of healing by blood clot in the FTCD should be noted by surgeons performing MF, and indications for MF should be carefully considered not only for maximizing the postoperative clinical outcome but also minimizing potential complications, such as formation of subchondral bone cysts or intralesional osteophytes.
Collapse
Affiliation(s)
- Seiju Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
33
|
Shimozono Y, Hurley ET, Yasui Y, Deyer TW, Kennedy JG. The Presence and Degree of Bone Marrow Edema Influence Midterm Clinical Outcomes After Microfracture for Osteochondral Lesions of the Talus. Am J Sports Med 2018; 46:2503-2508. [PMID: 30015509 DOI: 10.1177/0363546518782701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Subchondral bone marrow edema (BME) has been associated with articular cartilage loss, with the potential to be a negative prognostic indicator for clinical outcomes after microfracture. However, no single study has investigated the association between BME and clinical outcomes after microfracture for osteochondral lesions of the talus (OLTs) at midterm follow-up. PURPOSE To clarify the association between postoperative subchondral BME and clinical outcomes in patients treated with microfracture for OLTs at both short-term and midterm follow-up using a grading system that classified the extent of BME of the talus. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Patients who underwent microfracture between 2008 and 2013 were assessed at 2- and 4-year postoperative follow-up. BME was evaluated using magnetic resonance imaging, and the presence of subchondral BME was determined with fat-suppressed T2-weighted sequences. Clinical outcomes were evaluated using the Foot and Ankle Outcome Score (FAOS). P < .05 was considered to be statistically significant. RESULTS Forty-three (83%) of 52 eligible patients were included. No significant differences were found in the FAOS between the BME and no BME groups at 2-year follow-up (83.1 ± 6.5 vs 88.6 ± 8.0, respectively; P = .109), but there was a significant difference at 4-year follow-up (77.5 ± 11.1 vs 84.7 ± 8.4, respectively; P = .041). A significant difference was found among BME grades at 4-year follow-up (grade 0: 84.7 ± 7.4, grade 1: 80.1 ± 10.5, grade 2: 74.0 ± 10.3, and grade 3: 67.5 ± 7.1; P = .035). A post hoc analysis showed significant differences between grades 0 and 2, 0 and 3, and 1 and 3 ( P = .041, .037, and .048, respectively). In addition, at 4-year follow-up, a significant correlation was noted between the FAOS and BME grade ( r = -0.453, P = .003) but not at 2-year follow-up ( r = -0.212, P = .178). Seventy-four percent of patients still had subchondral BME at 4-year follow-up after microfracture for OLTs. CONCLUSION Patients with subchondral BME at midterm follow-up after microfracture for OLTs had worse clinical outcomes than those without subchondral BME. In addition, the degree of subchondral BME at midterm follow-up was correlated with clinical outcomes. However, at short-term follow-up, there were no significant differences in clinical outcomes based on both the presence and degree of BME, and no correlation was found between clinical outcomes and the degree of BME. The current study suggests that BME at short-term follow-up is a normal physiological reaction. However, BME at midterm follow-up after microfracture for OLTs may be pathological and is associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Yoshiharu Shimozono
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eoghan T Hurley
- Hospital for Special Surgery, New York, New York, USA.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Gao L, Goebel LKH, Orth P, Cucchiarini M, Madry H. Subchondral drilling for articular cartilage repair: a systematic review of translational research. Dis Model Mech 2018; 11:dmm034280. [PMID: 29728409 PMCID: PMC6031351 DOI: 10.1242/dmm.034280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 12/09/2022] Open
Abstract
Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed; however, a robust systematic analysis of its translational evidence was still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals was identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling led to improved repair outcome compared with defects that were untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Within the 12 studies, considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
| | - Lars K H Goebel
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Patrick Orth
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
35
|
Cartilage Surgery in Overweight Patients: Clinical and MRI Results after the Autologous Matrix-Induced Chondrogenesis Procedure. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6363245. [PMID: 29854770 PMCID: PMC5964598 DOI: 10.1155/2018/6363245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
Modern orthopaedic surgery provides a variety of techniques for cartilage repair. The Autologous Matrix-Induced Chondrogenesis (AMIC) procedure is a single-step technique with a collagen I/III scaffold for the treatment of full-thickness cartilage lesions. The aim of the study was to analyze the outcome of the AMIC procedure in overweight patients with knee cartilage defects. Overweight patients treated with AMIC surgery were followed up by clinical and MRI examination. 9 patients with a cartilage defect of the knee with a mean lesion size of 2.1 ± 1.2 cm2 and an average body mass index (BMI) of 29.3 were available for the follow-up. The Lysholm Score was significantly improved by the AMIC procedure (38 to 67, p ≤ 0.008). The VAS Score was significantly lower after the procedure (9 to 3, p ≤ 0.018). In the postoperative MOCART Scale, the scaffold reached defect covering of 80%. However, 2 patients had to be revised due to persisting knee pain. The AMIC procedure enhances pain reduction and gain of knee function for cartilage defects of overweight patients. However, in cases of an increased BMI, the patient had to be informed that success rate is reduced despite good defect covering.
Collapse
|
36
|
Salzmann GM, Niemeyer P, Hochrein A, Stoddart MJ, Angele P. Articular Cartilage Repair of the Knee in Children and Adolescents. Orthop J Sports Med 2018; 6:2325967118760190. [PMID: 29568785 PMCID: PMC5858627 DOI: 10.1177/2325967118760190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage predominantly serves a biomechanical function, which begins in utero and further develops during growth and locomotion. With regard to its 2-tissue structure (chondrocytes and matrix), the regenerative potential of hyaline cartilage defects is limited. Children and adolescents are increasingly suffering from articular cartilage and osteochondral deficiencies. Traumatic incidents often result in damage to the joint surfaces, while repetitive microtrauma may cause osteochondritis dissecans. When compared with their adult counterparts, children and adolescents have a greater capacity to regenerate articular cartilage defects. Even so, articular cartilage injuries in this age group may predispose them to premature osteoarthritis. Consequently, surgery is indicated in young patients when conservative measures fail. The operative techniques for articular cartilage injuries traditionally performed in adults may be performed in children, although an individualized approach must be tailored according to patient and defect characteristics. Clear guidelines for defect dimension–associated techniques have not been reported. Knee joint dimensions must be considered and correlated with respect to the cartilage defect size. Particular attention must be given to the subchondral bone, which is frequently affected in children and adolescents. Articular cartilage repair techniques appear to be safe in this cohort of patients, and no differences in complication rates have been reported when compared with adult patients. Particularly, autologous chondrocyte implantation has good biological potential, especially for large-diameter joint surface defects.
Collapse
Affiliation(s)
- Gian M Salzmann
- Lower Extremity Orthopaedics, Musculoskeletal Center, Schulthess Clinic, Zurich, Switzerland.,Gelenkzentrum Rhein-Main, Wiesbaden, Germany
| | | | | | - Martin J Stoddart
- Musculoskeletal Regeneration Program, AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Peter Angele
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany.,Sporthopaedicum Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Shimozono Y, Coale M, Yasui Y, O'Halloran A, Deyer TW, Kennedy JG. Subchondral Bone Degradation After Microfracture for Osteochondral Lesions of the Talus: An MRI Analysis. Am J Sports Med 2018; 46:642-648. [PMID: 29144772 DOI: 10.1177/0363546517739606] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture is the most common cartilage-reparative procedure for the treatment of osteochondral lesions of the talus (OLTs). Damage to the subchondral bone (SCB) during microfracture may irreversibly change the joint-loading support of the ankle, leading to reparative fibrocartilage degradation over time. PURPOSE To investigate the morphological change in the SCB after microfracture for OLT by developing a novel magnetic resonance imaging (MRI) scoring system specifically for evaluating the SCB. Furthermore, this study assesses the influence of the morphological changes of the SCB on clinical outcomes based on the new score. STUDY DESIGN Case series; Level of evidence, 4. METHODS Forty-two patients who underwent microfracture for OLT were included. An SCB Health (SCBH) scoring system was developed according to the amount of edema, subchondral cyst diameter, and qualitative and thickness change in the SCB, with a total score of 12 indicating normal SCB. MRI was obtained postoperatively from 6 months to 1 year, 1 to 2 years, 2 to 4 years, and 4 to 6 years. The Foot and Ankle Outcome Score (FAOS) was evaluated preoperatively and at 2 years and final follow-up. RESULTS The mean patient age was 38.4 ± 15.6 years, with a mean follow-up of 51.7 ± 22.8 months. The mean FAOS improved significantly from 57.8 ± 14.4 preoperatively to 84.3 ± 7.2 at 24 months ( P < .001) and decreased to a final mean value of 77.1 ± 12.6 ( P < .001). The mean SCBH score decreased from 8.6 ± 1.9 preoperatively to 7.1 ± 1.8 on the first follow-up MRI ( P < .001) and significantly decreased to 5.9 ± 2.3 on the fourth follow-up MRI ( P < .001). Subchondral cysts were noticeably worse at the fourth follow-up MRI than at the first and second ( P < .001, P = .006, respectively). There was a positive correlation between the final FAOS and the SCBH score on the third and fourth follow-up MRI ( r = 0.55, P < .001; r = 0.70, P < .001, respectively), but no correlation was found on the first and second follow-up. CONCLUSION The SCBs following microfracture for OLT were not restored at midterm follow-up. There was a significant decrease of the overall SCBH score over time. Noticeably, subchondral cysts deteriorated over time consistently. In addition, the SCBH score at midterm follow-up was positively correlated with clinical outcomes. Lasting morphological changes in the SCB may be indicative of longer-term failure of the microfracture procedure.
Collapse
Affiliation(s)
- Yoshiharu Shimozono
- Hosptial for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Max Coale
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Youichi Yasui
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | | | | | | |
Collapse
|
38
|
Gao L, Orth P, Cucchiarini M, Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices 2018; 14:717-732. [PMID: 28817971 DOI: 10.1080/17434440.2017.1368386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.
Collapse
Affiliation(s)
- Liang Gao
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Patrick Orth
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Henning Madry
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
39
|
Bell AD, Hurtig MB, Quenneville E, Rivard GÉ, Hoemann CD. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. Cartilage 2017; 8:417-431. [PMID: 28934884 PMCID: PMC5613897 DOI: 10.1177/1947603516676872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan-NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro-computed tomography after 1 day ( n = 1) and 6 months ( n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage.
Collapse
Affiliation(s)
- Angela D. Bell
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Mark B. Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Caroline D. Hoemann
- Department of Chemical Engineering, Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada,Caroline D. Hoemann, Department of Chemical Engineering, Institute of Biomedical Engineering, École Polytechnique, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
40
|
Lanham NS, Carroll JJ, Cooper MT, Perumal V, Park JS. A Comparison of Outcomes of Particulated Juvenile Articular Cartilage and Bone Marrow Aspirate Concentrate for Articular Cartilage Lesions of the Talus. Foot Ankle Spec 2017; 10:315-321. [PMID: 27903929 DOI: 10.1177/1938640016679697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Articular cartilage lesions of the talus remain a challenging clinical problem because of the lack of natural regeneration and limited treatment options. Microfracture is often the first-line therapy, however lesions larger than 1.5 cm2 have been shown to not do as well with this treatment method. METHODS The objective of this retrospective study was to evaluate the outcomes of iliac crest bone marrow aspirate concentrate/collagen scaffold (ICBMA) and particulated juvenile articular cartilage (PJAC) for larger articular cartilage lesions of the talus. Fifteen patients undergoing ICBMA or PJAC for articular cartilage lesions of the talus from 2010 to 2013 were reviewed. Twelve patients, 6 from each treatment option, were included in the study. American Orthopaedic Foot and Ankle Surgeons (AOFAS), Foot and Ankle Ability Measure (FAAM), and Short Form-12 (SF-12) outcome scores were collected for each patient. RESULTS The mean age was 34.7 ± 14.8 years for ICBMA and 31.5 ± 7.4 years for PJAC. Lesion size was 2.0 ± 1.1 cm2 for ICBMA and 1.9 ± 0.9 cm2 for PJAC. At a mean follow-up of 25.7 months (range, 12-42 months), the mean AOFAS score was 71.33 for ICBMA and 95.83 for PJAC ( P = .019). The FAAM activities of daily living subscale mean was 77.77 for ICBMA and 97.02 for PJAC ( P = .027). The mean FAAM sports subscale was 45.14 for ICBMA and 86.31 for PJAC ( P = .054). The SF-12 physical health mean was 47.58 for ICBMA and 53.98 for PJAC ( P = .315). The SF-12 mental health mean was 53.25 for ICBMA and 57.8 for PJAC ( P = .315). One patient in treated initially with ICBMA underwent revision fixation for nonunion of their medial malleolar osteotomy, which ultimately resulted in removal of hardware and tibiotalar arthrodesis at 2 years from the index procedure. CONCLUSION In the present analysis, PJAC yields better clinical outcomes at 2 years when compared with ICBMA for articular cartilage lesions of the talus that were on average greater than 1.5cm2. LEVELS OF EVIDENCE Therapeutic, Level IV: Retrospective, Case series.
Collapse
Affiliation(s)
- Nathan S Lanham
- Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| | - John J Carroll
- Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| | - Minton T Cooper
- Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| | - Venkat Perumal
- Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| | - Joseph S Park
- Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
41
|
Zedde P, Cudoni S, Manunta L, Passino ES, Masala G, Brunetti A, Uboldi FM, Manunta AF. Second Generation Needling Techniques for the Treatment of Chondral Defects in Animal Model. JOINTS 2017; 5:27-33. [PMID: 29114627 PMCID: PMC5672857 DOI: 10.1055/s-0037-1601412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose To compare the macroscopic, histological, and immunohistochemical characteristics of the repair tissue of chondral defects treated with microfracture and nanofracture in an ovine model. Methods Full-thickness chondral lesions were created in the medial femoral condyle of both knees in four adult sheep and were treated with microfracture on one side and with nanofracture on the contralateral side. Chondral repair was assessed after 12 months by macroscopic, histological, and immunohistochemical analyses. Results Histological cartilage repair significantly improved in the samples treated with nanofracture for cellular morphological characteristics and cartilage architecture. The immunohistochemical analysis showed a significantly higher immunoreactivity to type II collagen in the defects treated with nanofracture. Conclusion Nanofracture provided better repair tissue than microfracture, with a more satisfactory cartilage architecture renovation and tissue having greater type II collagen content. Clinical Relevance Mesenchymal stem cell stimulation is the most frequently used primary cartilage repair procedure. Nanofracture represents a novel technique to stimulate bone marrow that results into a successful repair of chondral defects.
Collapse
Affiliation(s)
- Pietro Zedde
- Orthopedic and Traumatology Unit, Nuoro Hospital, Nuoro, Italy
| | | | - Lucia Manunta
- Department of Veterinary Surgery, University of Sassari, Sassari, Italy
| | | | - Gerolamo Masala
- Department of Veterinary Surgery, University of Sassari, Sassari, Italy
| | | | - Francesco Mattia Uboldi
- Orthopedic Traumatology Unit, Department of Biomedical Science, Sassari University Hospital, Sassari, Italy
| | - Andrea Fabio Manunta
- Orthopedic Traumatology Unit, Department of Biomedical Science, Sassari University Hospital, Sassari, Italy
| |
Collapse
|
42
|
Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects. Stem Cells Int 2017; 2017:1609685. [PMID: 28607559 PMCID: PMC5451778 DOI: 10.1155/2017/1609685] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed.
Collapse
|
43
|
Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair. Sci Rep 2017; 7:45189. [PMID: 28345610 PMCID: PMC5366926 DOI: 10.1038/srep45189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/20/2017] [Indexed: 12/18/2022] Open
Abstract
Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques.
Collapse
|
44
|
Shimozono Y, Yasui Y, Ross AW, Kennedy JG. Osteochondral lesions of the talus in the athlete: up to date review. Curr Rev Musculoskelet Med 2017; 10:131-140. [PMID: 28188546 DOI: 10.1007/s12178-017-9393-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Osteochondral lesions of the talus (OLT) are common injuries in athletes. The purpose of this study is to comprehensively review the clinical results and return to sport capacity in athletes following treatment for OLT. RECENT FINDINGS Reparative procedures, such as bone marrow stimulation, and replacement procedures, such as autologous osteochondral transplantation, provide good clinical outcomes in short- and mid-term follow-up in the athlete. Recently, biological augmentation and scaffold-based therapies have been shown to improve clinical and radiological outcomes in OLT in both the general population and athletes. Most studies are of a low level of evidence. Studies analyzing the return to sport capability in athletes are further lacking. High-level evidence and well-designed clinical trials are required to establish the most effective treatment protocol.
Collapse
Affiliation(s)
- Yoshiharu Shimozono
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Youichi Yasui
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Andrew W Ross
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA
| | - John G Kennedy
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.
| |
Collapse
|
45
|
Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes. Stem Cells Int 2017; 2017:1709582. [PMID: 28133485 PMCID: PMC5241498 DOI: 10.1155/2017/1709582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.
Collapse
|
46
|
Gao L, Orth P, Goebel LKH, Cucchiarini M, Madry H. A novel algorithm for a precise analysis of subchondral bone alterations. Sci Rep 2016; 6:32982. [PMID: 27596562 PMCID: PMC5011758 DOI: 10.1038/srep32982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/12/2016] [Indexed: 11/23/2022] Open
Abstract
Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen’s kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Lars K H Goebel
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
47
|
Zedde P, Cudoni S, Giachetti G, Manunta ML, Masala G, Brunetti A, Manunta AF. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study. JOINTS 2016; 4:87-93. [PMID: 27602348 DOI: 10.11138/jts/2016.4.2.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE microfracture, providing direct stimulation of chondrogenic mesenchymal stem cells (MSCs) in the subchondral bone, remains the most frequently used primary cartilage repair technique. However, the newly formed type I collagen-rich fibrocartilaginous tissue has poor biomechanical properties and a tendency to degenerate. To overcome these limitations the nanofracture technique was introduced. Our purpose was to compare subchondral bone remodeling 6 months after microfracture versus nanofracture (subchondral needling) treatment in an ovine model. METHODS full-thickness chondral lesions were created in the load-bearing area of the medial femoral condyles in four adult sheep. Each animal was then treated on one side with microfracture and on the contralateral side with nanofracture. Subchondral bone remodeling was assessed by micro-CT using a Bruker(®) SKYSCAN and CTVOX 2.7 software (Bruker Corp., Billerica, MA, USA) for image reconstruction; trabecular bone density measurements were performed through a color-representation structure thickness analysis. RESULTS at the six-month endpoint, the microfracture-treated samples showed limited perforation depth and cone-shaped channels with large diameters at the joint surface. The channel walls displayed a high degree of regularity with significant trabecular bone compaction leading to a sealing effect with limited communication with the surrounding trabecular canals. Condyles treated with nanofracture showed channels characterized by greater depth and smaller diameters and natural irregularities of the channel walls, absence of trabecular compaction around the perforation, remarkable communication with trabecular canals, and neo-trabecular remodeling inside the channels. CONCLUSIONS nanofracture is an effective and innovative repair technique allowing deeper perforation into subchondral bone with less trabecular fragmentation and compaction when compared to microfracture; it results in better restoration of the normal subchondral bone architecture at six months. CLINICAL RELEVANCE our data support the use of smaller-diameter and deeper subchondral bone perforation for MSC stimulation; this technique may prove to be an attractive alternative to standard microfracture procedures.
Collapse
Affiliation(s)
- Pietro Zedde
- Orthopaedic and Traumatology Unit, Hospital San Francesco, Nuoro, Italy
| | - Sebastiano Cudoni
- Orthopaedic and Traumatology Unit, Hospital San Francesco, Nuoro, Italy
| | | | | | - Gerolamo Masala
- Department of Veterinary Medicine, University of Sassari, Italy
| | | | | |
Collapse
|
48
|
|