1
|
Del Duchetto F, Dussault-Picard C, Gagnon M, Dixon P, Cherni Y. Can Foot Orthoses Benefit Symptomatic Runners? Mechanistic and Clinical Insights Through a Scoping Review. SPORTS MEDICINE - OPEN 2024; 10:108. [PMID: 39365485 PMCID: PMC11452579 DOI: 10.1186/s40798-024-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Running is a widely practiced sport worldwide associated with a host of benefits on cardiovascular, metabolic, musculoskeletal, and mental health, but often leads to musculoskeletal overuse injuries. The prescription of a foot orthosis (FO) is common to manage musculoskeletal impairments during physical activity or functional tasks. Although FOs are frequently prescribed by clinicians for symptomatic populations of runners, the existing literature supporting the prescription of FOs in runners has predominantly focused on either uninjured individuals or a mix of uninjured and symptomatic populations. Thus, the effects of FOs on the treatment and/or prevention of overuse running injuries need to be investigated to guide future research and assist clinicians in their decision-making process. MAIN BODY This scoping review aimed to evaluate the immediate and long-term effects of FOs on lower limb biomechanics, neuromuscular parameters, and pain and disability in symptomatic runners, and to identify factors that may influence the effects of FOs. Five databases (CINAHL, SPORTDiscus, MEDLINE, Embase, and Web of Science) were searched, resulting in 2536 studies. A total of 30 studies, published between 1992 and 2023 (730 symptomatic runners), were included following the removal of duplicates and the screening process. Wearing FOs while running is related to an immediate and a long-term decrease in pain and symptoms of overuse running injuries. Also, wearing FOs while running decreases eversion at the foot/ankle complex, leads to a more lateral plantar pressure at the heel and forefoot, and may change running motor control strategies. Finally, the effectiveness of FOs is influenced by its added features. CONCLUSIONS This study provides recommendations for future research such as the need for standardized methods in describing FOs, considering participant characteristics such as foot morphology, and comparing different types of FOs. Also, this scoping review provides valuable insights for guiding the prescription and design of FOs, and suggests that integrating FOs into a comprehensive treatment plan may yield better results than standalone first-line treatments. Nonetheless, this scoping review highlights the need for future research to explore the optimal integration of FOs into injury-specific treatment plans.
Collapse
Affiliation(s)
- Francis Del Duchetto
- École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montréal, QC, Canada
| | - Cloé Dussault-Picard
- École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montréal, QC, Canada
- Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de Recherche Azrieli du CHU Ste Justine, Montréal, QC, Canada
| | - Martine Gagnon
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Philippe Dixon
- École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montréal, QC, Canada
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Yosra Cherni
- École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montréal, QC, Canada.
- Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de Recherche Azrieli du CHU Ste Justine, Montréal, QC, Canada.
- Centre Interdisciplinaire de Recherche sur le Cerveau et L'apprentissage (CIRCA), Montréal, QC, Canada.
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Dar G, Shenhar M, Finestone AS, Witchalls J, Waddington G, Paulman O, Nemet D, Steinberg N. Is Achilles tendon structure associated with functional ability and chronic ankle instability in military recruits? Musculoskelet Sci Pract 2024; 74:103197. [PMID: 39366311 DOI: 10.1016/j.msksp.2024.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE To determine the relationship between Achilles tendon (AT) structure, functional ability and chronic ankle instability (CAI) in military recruits. METHODS Three hundred and sixty newly recruited infantry male soldiers recruited in April 2022 were assessed for AT structure by Ultrasound Tissue Characterization (UTC), for functional abilities (included proprioception ability, heel-raise test, dynamic postural balance, and hopping agility ability) and for CAI (recurrent sprains and a positive perceived instability). RESULTS Soldiers that were identified with disorganized tendon had significantly lower heel-raise and agility scores compared to those with organized tendon structures (33.6 ± 18.1(n) vs. 49.9 ± 28.9(n), p < 0.001; and 5.39 ± 2.12(n) vs. 6.16 ± 1.90(n), p = 0.002, respectively). The best discriminator between soldiers with organized vs. disorganized structure, was heel-raise test (AUC = 0.741). Moreover, soldiers with disorganized AT structure had a higher prevalence of CAI compared with those with organized tendon structures (p < 0.05). CONCLUSION Recruits with disorganized tendon structures displayed reduced heel-raise score, agility ability and dynamic postural-balance and greater ankle instability. Inferior tendon quality at the onset of military service is an important physical indicator to consider when seeking to manage future injuries and potential for physical performance. Pre-recruitment screening of the AT structure, CAI, and functional abilities, especially in high-intensity infantry programs, needs to be considered.
Collapse
Affiliation(s)
- Gali Dar
- Department of Physical Therapy, Faculty of Social Welfare and Health Studies, University of Haifa, Israel.
| | - Michal Shenhar
- The Academic College Levinsky-WIngate, Wingate Campus, Netanya, Israel.
| | - Aharon S Finestone
- Department of Orthopaedic Surgery, Shamir Medical Center, Israel; Affiliated to the Faculty of Medicine, Tel Aviv University, Israel.
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, University of Canberra, Australia.
| | | | - Omer Paulman
- Military Medical Corps, Israel Defense Forces, Israel.
| | - Dan Nemet
- Child Health and Sport Center, Pediatrics, Meir Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nili Steinberg
- The Academic College Levinsky-WIngate, Wingate Campus, Netanya, Israel.
| |
Collapse
|
3
|
Mesquita RM, Willems PA, Catavitello G, Gibertini G, Natalucci V, Luciano F, Minetti AE, Pavei G, Dewolf AH. Biomechanics of human locomotion in the wind. J Appl Physiol (1985) 2024; 137:616-628. [PMID: 39024409 DOI: 10.1152/japplphysiol.00253.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
In laboratory settings, human locomotion encounters minimal opposition from air resistance. However, moving in nature often requires overcoming airflow. Here, the drag force exerted on the body by different headwind or tailwind speeds (between 0 and 15 m·s-1) was measured during walking at 1.5 m·s-1 and running at 4 m·s-1. To our knowledge, the biomechanical effect of drag in human locomotion has only been evaluated by simulations. Data were collected on eight male subjects using an instrumented treadmill placed in a wind tunnel. From the ground reaction forces, the drag and external work done to overcome wind resistance and to sustain the motion of the center of mass of the body were measured. Drag increased with wind speed: a 15 m·s-1 headwind exerted a drag of ∼60 N in walking and ∼50 N in running. The same tailwind exerted -55 N of drag in both gaits. At this wind speed, the work done to overcome the airflow represented ∼80% of the external work in walking and ∼50% in running. Furthermore, in the presence of fast wind speeds, subjects altered their drag area (CdA) by adapting their posture to limit the increase in air friction. Moving in the wind modified the ratio between positive and negative external work performed. The modifications observed when moving with a head- or tailwind have been compared with moving uphill or downhill. The present findings may have implications for optimizing aerodynamic performance in competitive running, whether in sprints or marathons.NEW & NOTEWORTHY This is the first study to assess the biomechanical adaptations to a wide range of wind speeds inside a wind tunnel. Humans increase their mechanical work and alter their drag area (CdA) by adapting their posture when walking and running against increasing head and tailwinds. The observed drag force applied to the subject is different between walking and running at similar headwind speeds.
Collapse
Affiliation(s)
- Raphael M Mesquita
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick A Willems
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Giovanna Catavitello
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Giuseppe Gibertini
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | - Valentina Natalucci
- Laboratory of Physiomechanics, Department of Pathophysiology and Transplantation-Division of Physiology, University of Milan, Milan, Italy
| | - Francesco Luciano
- Laboratory of Physiomechanics, Department of Pathophysiology and Transplantation-Division of Physiology, University of Milan, Milan, Italy
| | - Alberto Enrico Minetti
- Laboratory of Physiomechanics, Department of Pathophysiology and Transplantation-Division of Physiology, University of Milan, Milan, Italy
| | - Gaspare Pavei
- Laboratory of Physiomechanics, Department of Pathophysiology and Transplantation-Division of Physiology, University of Milan, Milan, Italy
| | - Arthur H Dewolf
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Paiva R, Guadagnin EC, Emilio de Carvalho J, Metsavaht L, Leporace G. Test-retest reliability and minimal detectable change in pelvis and lower limb coordination during running assessed with modified vector coding. J Biomech 2024; 174:112259. [PMID: 39126784 DOI: 10.1016/j.jbiomech.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the reliability of Modified Vector Coding in assessing the coordination and coordination variability of the lower limbs and pelvis during running and to determine the Minimal Detectable Change (MDC). Twenty-five healthy runners participated in a biomechanical analysis of treadmill running using a motion capture system. Modified vector coding was applied to assess the three-dimensional coordination among various pelvis and lower limb segmental couplings. Reliability was assessed using the Intraclass Correlation Coefficient (ICC), Standard Error of Measurement (SEM), MDC, and Bland-Altman analysis to ascertain measurement consistency, agreement, and the smallest clinically meaningful change that exceeds measurement error. The test-retest reliability for 33 of 42 segmental couplings analyzed was good to excellent, with ICC values ranging from 0.613 to 0.928 (p <0.05), which substantiates the robustness of modified vector coding in running biomechanics. However, nine couplings, particularly femur-tibia in the sagittal plane during midstance and foot in the frontal plane-tibia in the transverse plane during late stance, exhibited poor to moderate reliability. These findings underscore the need for cautious interpretation due to significant proportional bias (p <0.05). SEM and MDC provided insights into the precision and minimal clinically significant changes for each coupling. The findings confirm the reliability of modified vector coding for biomechanical analysis in running, with most couplings demonstrating consistent high reliability. Nevertheless, specific couplings should be interpreted with caution due to potential measurement errors. The application of MDC highlights the precision of modified vector coding in biomechanical analyses and emphasizes the importance of careful interpretation to improve clinical and research outcomes in running-related injuries.
Collapse
Affiliation(s)
- Rodrigo Paiva
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil
| | | | | | - Leonardo Metsavaht
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil
| | - Gustavo Leporace
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Nam HW, Yang JH, Park SG, Rhim HC, Kim HJ. Is There a Pathologic Running Motion Associated with Running-Related Injuries? A Methodological Study Using a Motion Analysis System Without Sensors. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1249. [PMID: 39202530 PMCID: PMC11356779 DOI: 10.3390/medicina60081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
(1) Background and objectives: Running-related injuries (RRIs) are commonly attributed to improper running posture and overuse. This study aims to analyze the running motions of individuals with and without RRIs using a sensor-free method, which offers a user-friendly and straightforward approach. (2) Materials and Methods: A total of 155 runners were divided into two groups: the normal runner group (runners who had never been injured, n = 50) and the RRI group (runners who had experience at least one injury while running, n = 105). The forward head posture (FHP), trunk lean, hip rotation, horizontal movement of the center of gravity (COG), vertical movement of the COG, pelvic rotation, hip hike, and type of strike were measured for posture analysis. (3) Results: We found that the left-right balance of the pelvis and the spinal posture during running were associated with RRIs. The difference in hip hike and FHP emerged as key predictors of running-related musculoskeletal injury occurrence from our logistic regression analysis. (4) Conclusions: Identifying pathological movements in runners through running motion analysis without the use of sensors can be instrumental in the prevention and treatment of RRIs.
Collapse
Affiliation(s)
- Hyok Woo Nam
- Nam’s Orthopedic Running Clinic, 494, Yongmasan-ro, Jungnang-gu, Seoul 02182, Republic of Korea
| | - Jae Hyuk Yang
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.H.Y.); (S.G.P.)
| | - Seul Gi Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.H.Y.); (S.G.P.)
| | - Hye Chang Rhim
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02141, USA;
| | - Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, Seoul 01757, Republic of Korea;
- Department of Orthopedic Surgery, Gyeong-in Regional Military Manpower Administration, Seoul 16440, Republic of Korea
| |
Collapse
|
6
|
Rivadulla AR, Chen X, Cazzola D, Trewartha G, Preatoni E. Clustering analysis across different speeds reveals two distinct running techniques with no differences in running economy. Sports Biomech 2024:1-24. [PMID: 38990163 DOI: 10.1080/14763141.2024.2372608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Establishing the links between running technique and economy remains elusive due to high inter-individual variability. Clustering runners by technique may enable tailored training recommendations, yet it is unclear if different techniques are equally economical and whether clusters are speed-dependent. This study aimed to identify clusters of runners based on technique and to compare cluster kinematics and running economy. Additionally, we examined the agreement of clustering partitions of the same runners at different speeds. Trunk and lower-body kinematics were captured from 84 trained runners at different speeds on a treadmill. We used Principal Component Analysis for dimensionality reduction and agglomerative hierarchical clustering to identify groups of runners with a similar technique, and we evaluated cluster agreement across speeds. Clustering runners at different speeds independently produced different partitions, suggesting single speed clustering can fail to capture the full speed profile of a runner. The two clusters identified using data from the whole range of speeds showed differences in pelvis tilt and duty factor. In agreement with self-optimisation theories, there were no differences in running economy, and no differences in participants' characteristics between clusters. Considering inter-individual technique variability may enhance the efficacy of training designs as opposed to 'one size fits all' approaches.
Collapse
Affiliation(s)
| | - Xi Chen
- Department of Computer Science, University of Bath, Bath, UK
| | | | - Grant Trewartha
- Department for Health, University of Bath, Bath, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | | |
Collapse
|
7
|
Mazzella N, Trowell D, Fox A, Saunders N, Vicenzino B, Bonacci J. Gait biomechanics do not differ between adolescents with and without patellofemoral pain. Scand J Med Sci Sports 2024; 34:e14587. [PMID: 38379205 DOI: 10.1111/sms.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES To determine if adolescents with patellofemoral pain exhibit different biomechanical characteristics to asymptomatic adolescents during walking and running. METHODS Twenty-eight adolescents with patellofemoral pain (16 male, 12 female, mean [SD] age: 14.3 [1.7] years) and 24 asymptomatic adolescents (13 male, 11 female, mean [SD] age: 14.1 [1.6] years) participated. Participants walked and ran on an instrumented treadmill in a standardized athletic shoe. Continuous hip, knee, and ankle joint angles and moments, and frontal plane pelvic motion were compared between groups using one-dimensional statistical parametric mapping independent t-tests (alpha <0.05). Cadence and stride length were compared between groups using independent t-tests. RESULTS During walking, adolescents with patellofemoral pain had a higher hip extension moment at 7%-8% of the gait cycle (p = 0.04) and walked with a shorter stride length (mean difference [95% confidence interval] = -0.07 [-0.1, -0.01] m). There were no other differences between groups during walking. During running, adolescents with patellofemoral pain had greater knee flexion than asymptomatic adolescents at 35%-40% of the gait cycle (p = 0.04) and ran with a higher cadence (mean difference [95% confidence interval] = 5.8 [2.0, 9.5] steps/min). There were no other statistically significant differences between groups during running. CONCLUSIONS Adolescents with patellofemoral pain demonstrate few biomechanical differences to asymptomatic adolescents during walking and running. The identified differences are likely of limited clinical importance. Biomechanical alterations which have been previously associated with patellofemoral pain in adults, may not need to be the target of management of adolescent patellofemoral pain.
Collapse
Affiliation(s)
- Natalie Mazzella
- Centre for Sport Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Danielle Trowell
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia
| | - Aaron Fox
- Centre for Sport Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Natalie Saunders
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia
| | - Bill Vicenzino
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason Bonacci
- Centre for Sport Research, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
8
|
Joachim MR, Kliethermes SA, Heiderscheit BC. Preinjury Knee and Ankle Mechanics during Running Are Reduced among Collegiate Runners Who Develop Achilles Tendinopathy. Med Sci Sports Exerc 2024; 56:128-133. [PMID: 37703042 DOI: 10.1249/mss.0000000000003276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Achilles tendinopathies (AT) are common in runners, but prospective data assessing running mechanics associated with developing AT are limited. Asymmetry in running mechanics is also considered a risk factor for injury, although it is unknown if the problematic mechanics occur on the injured limb only or are present bilaterally. PURPOSE This study aimed to prospectively identify differences in preinjury running biomechanics in collegiate runners who did and did not develop AT and determine if between-limb asymmetries were associated with which limb developed AT. METHODS Running gait data were obtained preseason on healthy collegiate cross-country runners, and AT incidence was prospectively recorded each year. Spatiotemporal, ground reaction forces, and joint kinematics and kinetics were analyzed. Linear mixed-effects models assessed differences in biomechanics between those who did and did not develop AT during the subsequent year. Generalized linear mixed-effects models determined if the asymmetry direction was associated with which limb developed an AT, with odds ratios (OR) and 95% confidence intervals (95% CI) reported. RESULTS Data from 106 runners were analyzed and 15 developed AT. Preinjury biomechanics of runners who developed AT showed less peak knee flexion (noninjured: 45.9° (45.2°-46.6°), injured: 43.2° (41.5°-44.9°), P < 0.001), ankle dorsiflexion (noninjured: 28.7° (28.0°-30.2°), injured: 26.0° (23.8°-28.3°), P = 0.01), and knee extensor moment (noninjured: -2.18 (N·m)·kg -1 (-2.24 to -2.12 (N·m)·kg -1 ), injured: -2.00 (N·m)·kg -1 (-2.17 to -1.84 (N·m)·kg -1 ), P = 0.02). The limb demonstrating less peak knee flexion had greater odds of sustaining an AT (OR, 1.29 (1.00-1.65), P = 0.05). CONCLUSIONS Knee and ankle kinematics, in addition to knee kinetics, were associated with developing an AT. Monitoring these mechanics may be useful for prospectively identifying runners at risk of developing AT.
Collapse
|
9
|
Martin J, Huang H, Johnson R, Yu LF, Jansen E, Martin R, Yager C, Boolani A. Association between Self-reported Sleep Quality and Single-task Gait in Young Adults: A Study Using Machine Learning. Sleep Sci 2023; 16:e399-e407. [PMID: 38197030 PMCID: PMC10773524 DOI: 10.1055/s-0043-1776748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/25/2023] [Indexed: 01/11/2024] Open
Abstract
Objective The objective of the present study was to find biomechanical correlates of single-task gait and self-reported sleep quality in a healthy, young population by replicating a recently published study. Materials and Methods Young adults ( n = 123) were recruited and were asked to complete the Pittsburgh Sleep Quality Inventory to assess sleep quality. Gait variables ( n = 53) were recorded using a wearable inertial measurement sensor system on an indoor track. The data were split into training and test sets and then different machine learning models were applied. A post-hoc analysis of covariance (ANCOVA) was used to find statistically significant differences in gait variables between good and poor sleepers. Results AdaBoost models reported the highest correlation coefficient (0.77), with Support-Vector classifiers reporting the highest accuracy (62%). The most important features associated with poor sleep quality related to pelvic tilt and gait initiation. This indicates that overall poor sleepers have decreased pelvic tilt angle changes, specifically when initiating gait coming out of turns (first step pelvic tilt angle) and demonstrate difficulty maintaining gait speed. Discussion The results of the present study indicate that when using traditional gait variables, single-task gait has poor accuracy prediction for subjective sleep quality in young adults. Although the associations in the study are not as strong as those previously reported, they do provide insight into how gait varies in individuals who report poor sleep hygiene. Future studies should use larger samples to determine whether single task-gait may help predict objective measures of sleep quality especially in a repeated measures or longitudinal or intervention framework.
Collapse
Affiliation(s)
- Joel Martin
- School of Kinesiology, Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA, United States of America
| | - Haikun Huang
- Department of Computer Science, George Mason University, Fairfax, VA, United States of America
| | - Ronald Johnson
- School of Kinesiology, Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA, United States of America
| | - Lap-Fai Yu
- Department of Computer Science, George Mason University, Fairfax, VA, United States of America
| | - Erica Jansen
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rebecca Martin
- Department of Physical Therapy, Hanover College, Hanover, IN, United States of America
| | - Chelsea Yager
- Department of Neurology, St. Joseph's Hospital Health Center, Syracuse, NY, United States of America
| | - Ali Boolani
- Department of Physical Therapy, Clarkson University, Potsdam, NY, United States of America
- Department of Biology, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
10
|
Mason R, Barry G, Robinson H, O'Callaghan B, Lennon O, Godfrey A, Stuart S. Validity and reliability of the DANU sports system for walking and running gait assessment. Physiol Meas 2023; 44:115001. [PMID: 37852268 DOI: 10.1088/1361-6579/ad04b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Objective. Gait assessments have traditionally been analysed in laboratory settings, but this may not reflect natural gait. Wearable technology may offer an alternative due to its versatility. The purpose of the study was to establish the validity and reliability of temporal gait outcomes calculated by the DANU sports system, against a 3D motion capture reference system.Approach. Forty-one healthy adults (26 M, 15 F, age 36.4 ± 11.8 years) completed a series of overground walking and jogging trials and 60 s treadmill walking and running trials at various speeds (8-14 km hr-1), participants returned for a second testing session to repeat the same testing.Main results. For validity, 1406 steps and 613 trials during overground and across all treadmill trials were analysed respectively. Temporal outcomes generated by the DANU sports system included ground contact time, swing time and stride time all demonstrated excellent agreement compared to the laboratory reference (intraclass correlation coefficient (ICC) > 0.900), aside from ground contact time during overground jogging which had good agreement (ICC = 0.778). For reliability, 666 overground and 511 treadmill trials across all speeds were examined. Test re-test agreement was excellent for all outcomes across treadmill trials (ICC > 0.900), except for swing time during treadmill walking which had good agreement (ICC = 0.886). Overground trials demonstrated moderate to good test re-test agreement (ICC = 0.672-0.750), which may be due to inherent variability of self-selected (rather than treadmill set) pacing between sessions.Significance. Overall, this study showed that temporal gait outcomes from the DANU Sports System had good to excellent validity and moderate to excellent reliability in healthy adults compared to an established laboratory reference.
Collapse
Affiliation(s)
- Rachel Mason
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gillian Barry
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcasle upon Tyne, United Kingdom
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| |
Collapse
|
11
|
Dewald M, Dalland J, Stockland J. The Association of Joint Power Kinetic Variables with Running Injuries: A Case-Control Study. Int J Sports Phys Ther 2023; 18:864-873. [PMID: 37547840 PMCID: PMC10399108 DOI: 10.26603/001c.83216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background There is conflicting data on which kinetic variables are important to consider with running injuries. Furthermore, less is understood regarding differences in these variables when considering demographics such as age, sex, weight, and running speed. The primary question was what joint power kinetic variables were different between non-injured and injured runners. Purpose The purpose of this study was to identify if there were differences in joint power kinetic variables between non-injured runners and injured runners. Study Design Case-Control Study. Methods Kinetic data were collected on 122 runners (26 non-injured and 96 injured) over three years with a Bertec force plated treadmill and Qualisys 3D motion capture. The subjects were considered eligible if they self-identified themselves as runners or had running as a key component of their activity. The subjects ran at a comfortable, self-selected pace while two 10-second trials of recordings were used to calculate the means of peak power generated at the hips, knees, and ankles of each gait cycle. Foot strike was categorized by kinematic data. Two sample T-tests were used to compare peak power variables at the hips, knees, and ankles between non-injured and injured runners. Logistic regression analyses examined how a combination of demographics and peak power variables were associated with injuries. Results No peak power variable at the hip, knee, or ankle was significantly different between injured and non-injured runners (p=0.07-0.87). However, higher hip power absorbed was found to be protective against injuries (odds ratio, .16; 95% CI .025-.88) when considering demographics using a logistic regression model including sex, foot strike, BMI, speed, age, and power variables from the hip, knee, and ankle. The area under the ROC curve was .74, which is acceptable discrimination. Conclusion When controlling for age, sex, BMI, foot strike, and speed; higher hip power absorbed was found to be protective against injury. This could be due to the hip muscles' unique role in absorbing force during early stance phase. Level of Evidence 3b©The Author(s).
Collapse
|
12
|
Skypala J, Hamill J, Sebera M, Elavsky S, Monte A, Jandacka D. Running-Related Achilles Tendon Injury: A Prospective Biomechanical Study in Recreational Runners. J Appl Biomech 2023:1-9. [PMID: 37419494 DOI: 10.1123/jab.2022-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 07/09/2023]
Abstract
There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.
Collapse
Affiliation(s)
- Jiri Skypala
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Joseph Hamill
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA,USA
| | - Michal Sebera
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Steriani Elavsky
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Andrea Monte
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona,Italy
| | - Daniel Jandacka
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| |
Collapse
|
13
|
Johnson CD, Sara LK, Bradach MM, Mullineaux DR, Foulis SA, Hughes JM, Davis IS. Relationships between tibial accelerations and ground reaction forces during walking with load carriage. J Biomech 2023; 156:111693. [PMID: 37406568 DOI: 10.1016/j.jbiomech.2023.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Peak tibial accelerations (TAs) during running are strongly related to early stance vertical ground reaction forces (GRFs), which are associated with musculoskeletal injury. However, few studies have examined these correlations during walking, and none have evaluated them during walking with loads, a relevant activity for military personnel. Our purpose was to determine the relationships between GRFs and TAs in US Army trainees (n = 649) walking with loads. An inertial measurement unit was attached over their distal antero-medial tibia. Participants walked on an instrumented treadmill at 1.21-1.34 m/s, with a pack loaded with 18.1 kg, for a 3-min warm-up followed by a minimum of 14 strides of data collection. Simple linear regression models were calculated for peak vertical and resultant TAs with vertical and posterior GRF loading rates and peak forces. The strongest relationships were between vertical loading rates and peak vertical TA (R = 0.43-0.50), however the relationships were weaker than has been reported for unloaded walking and running (R > 0.7). All other relationships were trivial to small (R = 0.06-0.27). The weaker relationships for vertical GRFs and TAs may be due to methodological differences between studies, or differences in gait mechanics, such as a longer double-limb support phase in loaded vs. unloaded walking.
Collapse
Affiliation(s)
- Caleb D Johnson
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA.
| | - Lauren K Sara
- College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Molly M Bradach
- Spaulding National Running Center, Spaulding Rehabilitation Hospital, Cambridge, MA 02138, USA
| | | | - Stephen A Foulis
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Irene S Davis
- School of Physical Therapy and Rehabilitation Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Bari MA, Mir HN, Parrey JA, Ateeq A, Ajhar A, Al Muslem WH, Nuhmani S, Alduhishy A, Alsubaiei ME. Exploring variations in gait patterns and joint motion characteristics in school-aged children across different walking speeds: a comprehensive motion analysis study. J Med Life 2023; 16:895-903. [PMID: 37675178 PMCID: PMC10478655 DOI: 10.25122/jml-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 09/08/2023] Open
Abstract
This study aimed to investigate differences in gait patterns among individuals with different walking speeds and identify the range of motion (ROM) and angular velocity for various joints during gait. Forty-five schoolchildren were randomly selected for this study. To capture their walking patterns, two FDR-AX700 4K HDR camcorders were positioned to observe the predetermined walkway. Each participant completed a 5-meter walk at various speeds, including slow, normal, and fast, while maintaining a straight stride. There were significantly higher ROM and angular velocity (p<0.05) at the hip, knee, and ankle joints across most stages of walking at a faster speed compared to slow and normal speeds. At the same time, the angular velocity was significantly higher at the hip joint during hip extension terminal stance at normal speed compared to slow and fast speeds (p<0.05, ƞ2 =0.74). Similarly, the ROM of knee flexion swing, ankle plantar flexion loading response, and ankle dorsiflexion midswing angular velocity were significantly higher during normal walking speed (p<0.05). Conversely, slow-speed walking showed significantly higher ROM at knee extension terminal swing (ƞ2=0.52) and ankle dorsiflexion terminal stance (ƞ2=0.78) (p<0.05). The results indicate that individuals with different walking speeds exhibit significant differences in gait patterns. Slower walking speeds resulted in lower gait velocity and different joint motions compared to faster walking speeds.
Collapse
Affiliation(s)
- Mohd Arshad Bari
- Department of Physical Education, Aligarh Muslim University, Aligarh, India
| | - Haq Nawaz Mir
- Department of Physical Education, Aligarh Muslim University, Aligarh, India
| | | | - Amir Ateeq
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Arish Ajhar
- Department of Physical Education, Aligarh Muslim University, Aligarh, India
| | - Wafa Hashem Al Muslem
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Shibili Nuhmani
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Anas Alduhishy
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mohammed Essa Alsubaiei
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Foch E, Brindle RA, Pohl MB. Lower extremity kinematics during running and hip abductor strength in iliotibial band syndrome: A systematic review and meta-analysis. Gait Posture 2023; 101:73-81. [PMID: 36758425 DOI: 10.1016/j.gaitpost.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Iliotibial band syndrome is a common overuse injury that is twice as likely to affect female runners compared to male runners. It is unclear if there is a consistent running pattern and strength profile exhibited by female and male runners with iliotibial band syndrome. RESEARCH QUESTION The purpose of this systematic review and meta-analysis was to determine if any differences existed in lower-extremity kinematics and hip strength between runners who retrospectively, currently, or prospectively had iliotibial band syndrome. METHODS Papers included must have reported three-dimensional kinematic running data and/or hip strength data that were statistically analyzed between runners that never developed iliotibial band syndrome and runners with iliotibial band syndrome. Meta-analysis was performed for each kinematic or strength variable reported in at least three studies. Female and male runners were analyzed separately and grouped into three cohorts (retrospective, current, prospective). RESULTS Seventeen articles were included in this systematic review. Data from 10 cross-sectional studies were included for meta-analysis. Female runners with current iliotibial band syndrome exhibited smaller peak hip internal rotation angles and lower isometric hip abductor strength compared to controls. SIGNIFICANCE Although limited biomechanical evidence exists, risk factors for ITBS are different between female and male runners and may vary according to injury status. Specifically, transverse plane hip motion and hip abductor strength weakness may be biomechanical risk factors in female runners with current iliotibial band syndrome only.
Collapse
Affiliation(s)
- Eric Foch
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA.
| | | | - Michael B Pohl
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, USA
| |
Collapse
|
16
|
Bakeri H, Hasikin K, Abd Razak NA, Mohd Razman R, Khamis AA, Annuha M‘A, Tajuddin A, Reza D. Silicone Elastomeric-Based Materials of Soft Pneumatic Actuator for Lower-Limb Rehabilitation: Finite Element Modelling and Prototype Experimental Validation. APPLIED SCIENCES 2023; 13:2977. [DOI: 10.3390/app13052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study describes the basic design, material selection, fabrication, and evaluation of soft pneumatic actuators (SPA) for lower-limb rehabilitation compression therapy. SPAs can be a promising technology in proactive pressure delivery, with a wide range of dosages for treating venous-related diseases. However, the most effective design and material selection of SPAs for dynamic pressure delivery have not been fully explored. Therefore, a SPA chamber with two elastomeric layers was developed for this study, with single-side inflation. The 3D deformation profiles of the SPA chamber using three different elastomeric rubbers were analyzed using the finite element method (FEM). The best SPA-compliant behavior was displayed by food-grade silicone A10 Shore with a maximum deformation value of 25.34 mm. Next, the SPA chamber was fabricated using A10 Shore silicone and experimentally validated. During the simulation in FEM, the air pressure was applied on the inner wall of the chamber (i.e., the affected area). This is to ensure the applied pressure was evenly distributed in the inner wall while the outer wall of the chamber remained undeformed for all compression levels. During the inflation process, pressure will be applied to the SPA chamber, causing exerted pressure on the skin which is then measured for comparison. The simulation and experimental results show an excellent agreement of pressure transmission on the skin for the pressure range of 0–120 mmHg, as depicted in the Bland–Altman plots. The findings exhibited promising results in the development of the SPA chamber using low-cost and biocompatible food-grade silicone.
Collapse
Affiliation(s)
- Hanisah Bakeri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Medical Revolution Sdn. Bhd, 10 Boulevard, Petaling Jaya 47400, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center of Intelligent Systems for Emerging Technology (CISET), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nasrul Anuar Abd Razak
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rizal Mohd Razman
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abd Alghani Khamis
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad ‘Ammar Annuha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abbad Tajuddin
- Medical Revolution Sdn. Bhd, 10 Boulevard, Petaling Jaya 47400, Malaysia
| | - Darween Reza
- My Conceptual Robotics Sdn. Bhd (MyCRO), Kompleks Diamond, Bandar Baru Bangi 43650, Malaysia
| |
Collapse
|
17
|
Ohmi T, Aizawa J, Hirohata K, Ohji S, Mitomo S, Ohara T, Yagishita K. Biomechanical characteristics of the lower extremities during running in male long-distance runners with a history of medial tibial stress syndrome: a case control study. BMC Musculoskelet Disord 2023; 24:103. [PMID: 36750819 PMCID: PMC9903575 DOI: 10.1186/s12891-023-06216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Medial tibial stress syndrome (MTSS) is a running-related injury of the lower extremities. After returning to competition, there are often recurring episodes of MTSS. Therefore, it is important to prevent the onset and recurrence of MTSS among long-distance runners. This case-control study aimed to compare the kinematics and kinetics of runners with and without previous MTSS during running to clarify the biomechanical characteristics of the lower extremity of runners with previous MTSS. METHODS Thirteen male long-distance runners aged over 18 years and asymptomatic at the time of measurement were divided into an MTSS group and a non-MTSS group based on their history of MTSS as reported in a questionnaire. The kinetics and kinematics of running were analyzed when participants ran at a speed of 2.0 ± 0.2 m/s by a three-dimensional motion analysis system and two force plates. Data regarding the joint angles, moments, and powers of the ankle, knee, and hip during the stance phase while running were extracted and compared between the two groups using the Mann-Whitney U test. RESULTS Of the 13 participants, 5 and 8 were included in the MTSS (10 legs) and non-MTSS (16 legs) groups, respectively. The ankle maximum eversion moment was significantly larger in the MTSS group than in the non-MTSS group (p = 0.04). There were no significant differences in other parameters. CONCLUSIONS This study found that the ankle maximum eversion moment during the stance phase of running was larger in the MTSS group than in the non-MTSS group. Even after the disappearance of the symptoms of MTSS, the running biomechanics of participants with previous MTSS differed from those of participants without previous MTSS.
Collapse
Affiliation(s)
- Takehiro Ohmi
- Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku, 113-8519, Japan.
| | - Junya Aizawa
- grid.258269.20000 0004 1762 2738Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Kenji Hirohata
- grid.265073.50000 0001 1014 9130Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku 113-8519 Japan
| | - Shunsuke Ohji
- grid.265073.50000 0001 1014 9130Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku 113-8519 Japan
| | - Sho Mitomo
- grid.265073.50000 0001 1014 9130Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku 113-8519 Japan
| | - Toshiyuki Ohara
- grid.265073.50000 0001 1014 9130Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku 113-8519 Japan
| | - Kazuyoshi Yagishita
- grid.265073.50000 0001 1014 9130Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Bunkyo-Ku 113-8519 Japan
| |
Collapse
|
18
|
Bazett-Jones DM, Neal BS, Legg C, Hart HF, Collins NJ, Barton CJ. Kinematic and Kinetic Gait Characteristics in People with Patellofemoral Pain: A Systematic Review and Meta-analysis. Sports Med 2023; 53:519-547. [PMID: 36334239 DOI: 10.1007/s40279-022-01781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patellofemoral pain (PFP) is a prevalent knee condition with many proposed biomechanically orientated etiological factors and treatments. OBJECTIVE We aimed to systematically review and synthesize the evidence for biomechanical variables (spatiotemporal, kinematic, kinetic) during walking and running in people with PFP compared with pain-free controls, and determine if biomechanical variables contribute to the development of PFP. DESIGN Systematic review and meta-analysis. DATA SOURCES We searched Medline, CINAHL, SPORTDiscus, Embase, and Web of Science from inception to October 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES All study designs (prospective, case-control [± interventional component, provided pre-intervention data were reported for both groups], cross-sectional) comparing spatiotemporal, kinematic, and/or kinetic variables during walking and/or running between people with and without PFP. RESULTS We identified 55 studies involving 1300 people with PFP and 1393 pain-free controls. Overall pooled analysis identified that people with PFP had slower gait velocity [moderate evidence, standardized mean difference (SMD) - 0.50, 95% confidence interval (CI) - 0.72, - 0.27], lower cadence (limited evidence, SMD - 0.43, 95% CI - 0.74, - 0.12), and shorter stride length (limited evidence, SMD - 0.46, 95% CI - 0.80, - 0.12). People with PFP also had greater peak contralateral pelvic drop (moderate evidence, SMD - 0.46, 95% CI - 0.90, - 0.03), smaller peak knee flexion angles (moderate evidence, SMD - 0.30, 95% CI - 0.52, - 0.08), and smaller peak knee extension moments (limited evidence, SMD - 0.41, 95% CI - 0.75, - 0.07) compared with controls. Females with PFP had greater peak hip flexion (moderate evidence, SMD 0.83, 95% CI 0.30, 1.36) and rearfoot eversion (limited evidence, SMD 0.59, 95% CI 0.03, 1.14) angles compared to pain-free females. No significant between-group differences were identified for all other biomechanical variables. Data pooling was not possible for prospective studies. CONCLUSION A limited number of biomechanical differences exist when comparing people with and without PFP, mostly characterized by small-to-moderate effect sizes. People with PFP ambulate slower, with lower cadence and a shortened stride length, greater contralateral pelvic drop, and lower knee flexion angles and knee extension moments. It is unclear whether these features are present prior to PFP onset or occur as pain-compensatory movement strategies given the lack of prospective data. TRIAL REGISTRATION PROSPERO # CRD42019080241.
Collapse
Affiliation(s)
- David M Bazett-Jones
- Department of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA.
| | - Bradley S Neal
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, Essex, UK.,Sports and Exercise Medicine, School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Mile End Hospital, Bancroft Road, London, E1 4DG, UK
| | - Christopher Legg
- Physiotherapy Department, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Harvi F Hart
- School of Physical Therapy and Bone and Joint Institute, Western University, London, ON, Canada
| | - Natalie J Collins
- School of Health and Rehabilitation Sciences: Physiotherapy, The University of Queensland, Brisbane, QLD, Australia.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services, and Sport, La Trobe University, Bundoora, VIC, Australia
| | - Christian J Barton
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services, and Sport, La Trobe University, Bundoora, VIC, Australia.,Department of Physiotherapy, Podiatry and Prosthetics and Orthotics, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Quarmby A, Mönnig J, Mugele H, Henschke J, Kim M, Cassel M, Engel T. Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review. Front Sports Act Living 2023; 4:1012471. [PMID: 36685067 PMCID: PMC9845578 DOI: 10.3389/fspor.2022.1012471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.
Collapse
Affiliation(s)
- Andrew Quarmby
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany,Correspondence: Andrew Quarmby
| | - Jamal Mönnig
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Hendrik Mugele
- Department of Sport Science, Laboratory for Environmental and Exercise Science, University of Innsbruck, Innsbruck, Austria
| | - Jakob Henschke
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - MyoungHwee Kim
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Michael Cassel
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Tilman Engel
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
20
|
Waiteman MC, Chia L, Ducatti MHM, Bazett-Jones DM, Pappas E, de Azevedo FM, Briani RV. Trunk Biomechanics in Individuals with Knee Disorders: A Systematic Review with Evidence Gap Map and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:145. [PMID: 36503991 PMCID: PMC9742076 DOI: 10.1186/s40798-022-00536-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The trunk is the foundation for transfer and dissipation of forces throughout the lower extremity kinetic chain. Individuals with knee disorders may employ trunk biomechanical adaptations to accommodate forces at the knee or compensate for muscle weakness. This systematic review aimed to synthesize the literature comparing trunk biomechanics between individuals with knee disorders and injury-free controls. METHODS Five databases were searched from inception to January 2022. Observational studies comparing trunk kinematics or kinetics during weight-bearing tasks (e.g., stair negotiation, walking, running, landings) between individuals with knee disorders and controls were included. Meta-analyses for each knee disorder were performed. Outcome-level certainty was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE), and evidence gap maps were created. RESULTS A total of 81 studies investigating trunk biomechanics across six different knee disorders were included (i.e., knee osteoarthritis [OA], total knee arthroplasty [TKA], patellofemoral pain [PFP], patellar tendinopathy [PT], anterior cruciate ligament deficiency [ACLD], and anterior cruciate ligament reconstruction [ACLR]). Individuals with knee OA presented greater trunk flexion during squatting (SMD 0.88, 95% CI 0.58-1.18) and stepping tasks (SMD 0.56, 95% CI 0.13-.99); ipsilateral and contralateral trunk lean during walking (SMD 1.36; 95% CI 0.60-2.11) and sit-to-stand (SMD 1.49; 95% CI 0.90-2.08), respectively. Greater trunk flexion during landing tasks in individuals with PFP (SMD 0.56; 95% CI 0.01-1.12) or ACLR (SMD 0.48; 95% CI 0.21-.75) and greater ipsilateral trunk lean during single-leg squat in individuals with PFP (SMD 1.01; 95% CI 0.33-1.70) were also identified. No alterations in trunk kinematics of individuals with TKA were identified. Evidence gap maps outlined the lack of investigations for individuals with PT or ACLD, as well as for trunk kinetics across knee disorders. CONCLUSION Individuals with knee OA, PFP, or ACLR present with altered trunk kinematics in the sagittal and frontal planes. The findings of this review support the assessment of trunk biomechanics in these individuals in order to identify possible targets for rehabilitation and avoidance strategies. TRIAL REGISTRATION PROSPERO registration number: CRD42019129257.
Collapse
Affiliation(s)
- Marina C Waiteman
- Department of Physical Therapy, School of Science and Technology, Sao Paulo State University (UNESP), 305, Roberto Simonsen Street, Presidente Prudente, Sao Paulo, 19060-900, Brazil.
| | - Lionel Chia
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Cleveland Guardians Baseball Company, Cleveland, OH, USA
| | - Matheus H M Ducatti
- Department of Physical Therapy, School of Science and Technology, Sao Paulo State University (UNESP), 305, Roberto Simonsen Street, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - David M Bazett-Jones
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Evangelos Pappas
- School of Medicine and Illawarra Health and Medical Research Institute, The University of Wollongong, Wollongong, NSW, Australia
| | - Fábio M de Azevedo
- Department of Physical Therapy, School of Science and Technology, Sao Paulo State University (UNESP), 305, Roberto Simonsen Street, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Ronaldo V Briani
- Department of Physical Therapy, School of Science and Technology, Sao Paulo State University (UNESP), 305, Roberto Simonsen Street, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| |
Collapse
|
21
|
Urbaczka J, Silvernail JF, Jandacka D. The effect of fatigue on the ankle and knee kinematics and kinetics in moderately and highly trained healthy non-rearfoot runners. Sports Biomech 2022:1-15. [PMID: 36453095 DOI: 10.1080/14763141.2022.2146909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study was to compare selected ankle and knee kinematic and kinetic parameters before and a fter a prolonged exhaustive treadmill run between two groups of non-rearfoot footstrike pattern (NRFP) runners with different training volumes. Twenty-eight habitual NRFP runners were assigned to two groups based on their weekly training volume (Highly-trained (HT)/Moderately-trained (MT)). Participants underwent the VO2max test, and the exhaustive treadmill ran with biomechanical analysis at the beginning and the end. The two-way RMANOVA was used to assess differences between the groups and the phase of the run. A paired t-test was used for post-hoc analysis in case of significant interaction effect. Kinetic results showed significant group effect for ankle plantarflexion moment and hip external rotation moment (end-phase: both greater in MT group). Kinematic results showed significant group×phase interaction for ankle dorsiflexion angle (end-phase: greater in MT group) at initial contact (IC), peak knee flexion angle (end-phase: greater in MT group), and peak ankle eversion angle during the stance phase (end-phase: greater in HT group). Additionally, a group effect was found for knee flexion angle at IC (end-phase: greater in HT group). This study suggests that HT healthy NRFP runners may have less potential for increased biomechanical risk of AT overload during an exhaustive run.
Collapse
Affiliation(s)
- J Urbaczka
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - J F Silvernail
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, USA
| | - D Jandacka
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
22
|
Vincent HK, Vincent KR. Healthy Running Habits for the Distance Runner: Clinical Utility of the American College of Sports Medicine Infographic. Curr Sports Med Rep 2022; 21:463-469. [PMID: 36508604 DOI: 10.1249/jsr.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Healthy running form is characterized by motion that minimizes mechanical musculoskeletal injury risks and improves coactivation of muscles that can buffer impact loading and reduce stresses related to chronic musculoskeletal pain. The American College of Sports Medicine Consumer Outreach Committee recently launched an infographic that describes several healthy habits for the general distance runner. This review provides the supporting evidence, expected acute motion changes with use, and practical considerations for clinical use in patient cases. Healthy habits include: taking short, quick, and soft steps; abdominal bracing; elevating cadence; linearizing arm swing; controlling forward trunk lean, and; avoiding running through fatigue. Introduction of these habits can be done sequentially one at a time to build on form, or more than one over time. Adoption can be supported by various feedback forms and cueing. These habits are most successful against injury when coupled with regular dynamic strengthening of the kinetic chain, adequate recovery with training, and appropriate shoe wear.
Collapse
Affiliation(s)
- Heather K Vincent
- Department of Physical Medicine and Rehabilitation, UF Health Running Medicine and Sports Performance Center, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
23
|
Tripodi N, Dagiandis T, Hameed A, Heilberg L, Olbinski E, Reid C, White A, McLaughlin P. Inter-rater reliability between osteopaths of differing clinical experience on sagittal plane running gait analysis: A pilot study. INT J OSTEOPATH MED 2022. [DOI: 10.1016/j.ijosm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
24
|
Gaudette LW, Bradach MM, de Souza Junior JR, Heiderscheit B, Johnson CD, Posilkin J, Rauh MJ, Sara LK, Wasserman L, Hollander K, Tenforde AS. Clinical Application of Gait Retraining in the Injured Runner. J Clin Med 2022; 11:6497. [PMID: 36362725 PMCID: PMC9655004 DOI: 10.3390/jcm11216497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/22/2024] Open
Abstract
Despite its positive influence on physical and mental wellbeing, running is associated with a high incidence of musculoskeletal injury. Potential modifiable risk factors for running-related injury have been identified, including running biomechanics. Gait retraining is used to address these biomechanical risk factors in injured runners. While recent systematic reviews of biomechanical risk factors for running-related injury and gait retraining have been conducted, there is a lack of information surrounding the translation of gait retraining for injured runners into clinical settings. Gait retraining studies in patients with patellofemoral pain syndrome have shown a decrease in pain and increase in functionality through increasing cadence, decreasing hip adduction, transitioning to a non-rearfoot strike pattern, increasing forward trunk lean, or a combination of some of these techniques. This literature suggests that gait retraining could be applied to the treatment of other injuries in runners, although there is limited evidence to support this specific to other running-related injuries. Components of successful gait retraining to treat injured runners with running-related injuries are presented.
Collapse
Affiliation(s)
- Logan W. Gaudette
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| | - Molly M. Bradach
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| | - José Roberto de Souza Junior
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
- Graduate Program of Sciences and Technologies in Health, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Bryan Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53706, USA
| | - Caleb D. Johnson
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
- United States Army Research Institute for Environmental Medicine, Military Performance Division, Natick, MA 01760, USA
| | - Joshua Posilkin
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| | - Mitchell J. Rauh
- Doctor of Physical Therapy Program, San Diego State University, San Diego, CA 92182, USA
| | - Lauren K. Sara
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| | - Lindsay Wasserman
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Faculty of Medicine, MSH, Medical School Hamburg, 20457 Hamburg, Germany
| | - Adam S. Tenforde
- Spaulding Rehabilitation Hospital, Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
25
|
Boolani A, Martin J, Huang H, Yu LF, Stark M, Grin Z, Roy M, Yager C, Teymouri S, Bradley D, Martin R, Fulk G, Kakar RS. Association between Self-Reported Prior Night's Sleep and Single-Task Gait in Healthy, Young Adults: A Study Using Machine Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7406. [PMID: 36236511 PMCID: PMC9572361 DOI: 10.3390/s22197406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Failure to obtain the recommended 7−9 h of sleep has been associated with injuries in youth and adults. However, most research on the influence of prior night’s sleep and gait has been conducted on older adults and clinical populations. Therefore, the objective of this study was to identify individuals who experience partial sleep deprivation and/or sleep extension the prior night using single task gait. Participants (n = 123, age 24.3 ± 4.0 years; 65% female) agreed to participate in this study. Self-reported sleep duration of the night prior to testing was collected. Gait data was collected with inertial sensors during a 2 min walk test. Group differences (<7 h and >9 h, poor sleepers; 7−9 h, good sleepers) in gait characteristics were assessed using machine learning and a post-hoc ANCOVA. Results indicated a correlation (r = 0.79) between gait parameters and prior night’s sleep. The most accurate machine learning model was a Random Forest Classifier using the top 9 features, which had a mean accuracy of 65.03%. Our findings suggest that good sleepers had more asymmetrical gait patterns and were better at maintaining gait speed than poor sleepers. Further research with larger subject sizes is needed to develop more accurate machine learning models to identify prior night’s sleep using single-task gait.
Collapse
Affiliation(s)
- Ali Boolani
- Honors Program, Clarkson University, Potsdam, NY 13699, USA
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA 20110, USA
| | - Haikun Huang
- Department of Computer Science, George Mason University, Manassas, VA 20110, USA
| | - Lap-Fai Yu
- Department of Computer Science, George Mason University, Manassas, VA 20110, USA
| | - Maggie Stark
- Department of Medicine, Lake Erie College of Osteopathic Medicine, Elmira, NY 14901, USA
| | - Zachary Grin
- Honors Program, Clarkson University, Potsdam, NY 13699, USA
| | - Marissa Roy
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA 20110, USA
| | | | - Seema Teymouri
- Department of Engineering and Technology, State University of New York Canton, Canton, NY 13617, USA
| | - Dylan Bradley
- Department of Physical Therapy, Hanover College, Hanover, IN 47243, USA
| | - Rebecca Martin
- Department of Neurology, St. Joseph’s Hospital Health Center, Syracuse, NY 13203, USA
| | - George Fulk
- Department of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rumit Singh Kakar
- Human Movement Science Department, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
26
|
Burke A, Dillon S, O’Connor S, Whyte EF, Gore S, Moran KA. Comparison of impact accelerations between injury-resistant and recently injured recreational runners. PLoS One 2022; 17:e0273716. [PMID: 36084137 PMCID: PMC9462674 DOI: 10.1371/journal.pone.0273716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction/Purpose Previous injury has consistently been shown to be one of the greatest risk factors for running-related injuries (RRIs). Runners returning to participation following injury may still demonstrate injury-related mechanics (e.g. repetitive high impact loading), potentially exposing them to further injuries. The aim of this study was to determine if the magnitude (Peakaccel) and rate of loading (Rateaccel) at the tibia and sacrum differ between runners who have never been injured, those who have acquired injury resistance (runners who have not been injured in the past 2 years) and those who have been recently injured (RRI sustained 3–12 months ago). Methods Runners completed an online survey capturing details of their RRI history over the previous 2 years. Never injured runners were matched by sex, quarterly annual mileage and typical training speed to runners who had acquired injury resistance and to runners who had been recently injured. Differences in Peakaccel and Rateaccel of the tibia and sacrum were assessed between the three groups during a treadmill run at a set speed, with consideration for sex. Results A total of 147 runners made up the three injury status groups (n: 49 per group). There was a significant main effect of injury status for Peakaccel and Rateaccel at the sacrum, with recently injured runners demonstrating significantly greater Rateaccel than never injured and acquired injury resistant runners. There was also a significant main effect for sex, with females demonstrating greater tibial Peakaccel, sacrum Peakaccel and Rateaccel than males. Conclusion Rateaccel at the sacrum distinguishes recently injured runners from never injured runners and runners who may have acquired injury resistance, potentially highlighting poor impact acceleration attenuation in recently injured runners.
Collapse
Affiliation(s)
- Aoife Burke
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
- * E-mail:
| | - Sarah Dillon
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Siobhán O’Connor
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| | - Enda F. Whyte
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| | - Shane Gore
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Kieran A. Moran
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| |
Collapse
|
27
|
Reliability and validity of 2-dimensional video analysis for a running task: A systematic review. Phys Ther Sport 2022; 58:16-33. [DOI: 10.1016/j.ptsp.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
|
28
|
Johnson CD, Davis IS. What differentiates rearfoot strike runners with low and high vertical load rates? Gait Posture 2022; 96:149-153. [PMID: 35660239 DOI: 10.1016/j.gaitpost.2022.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Runners with a rearfoot strike pattern typically show high vertical ground reaction force loading rates (LRs), that are associated with injuries, compared with forefoot strikers. However, some runners with a rearfoot strike pattern run in a way that reduces LRs. Our purpose was to identify differences in running mechanics between rearfoot strike runners with high and low vertical LRs. METHODS 42 healthy runners, 21 with high (≥ 80.5 BW/s) and 21 with low (≤ 46.3 BW/s) LRs, were included in the current study. Lower extremity kinematic and kinetic data were then collected while participants ran along a 30 m runway. Running mechanics were calculated, including sagittal plane knee stiffness during early stance, the components of knee stiffness (Δ knee flexion and flexion moment), sagittal joint angles at initial contact, as well as cadence. The two LR groups were compared for differences in outcome variables using independent t-tests or Mann Whitney U tests. FINDINGS Knee stiffness was significantly lower in the low LR group (p < 0.01, d = 0.87), due to higher knee flexion excursion (p < 0.01, d = 1.38). At initial contact, the low LR group showed lower hip and knee flexion, but greater ankle and foot dorsiflexion (p = 0.01-0.04, d = 0.64-0.93). No differences were found in cadence. INTERPRETATION These results provide potential targets, related to gait kinematics and kinetics, for gait retraining aimed at reducing LRs in rearfoot strike runners.
Collapse
Affiliation(s)
- Caleb D Johnson
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge St., Cambridge, MA 02139, USA.
| | - Irene S Davis
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge St., Cambridge, MA 02139, USA
| |
Collapse
|
29
|
DeJong Lempke AF, Whitney KE, Collins SE, d'Hemecourt PA, Meehan Iii WP. Biomechanical running gait assessments across prevalent adolescent musculoskeletal injuries. Gait Posture 2022; 96:123-129. [PMID: 35642825 DOI: 10.1016/j.gaitpost.2022.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND While there is substantial information available regarding expected biomechanical adaptations associated with adult running-related injuries, less is known about adolescent gait profiles that may influence injury development. RESEARCH QUESTIONS Which biomechanical profiles are associated with prevalent musculoskeletal lower extremity injuries among adolescent runners, and how do these profiles compare across injury types and body regions? METHODS We conducted a cross-sectional study of 149 injured adolescents (110 F; 39 M) seen at a hospital-affiliated injured runner's clinic between the years 2016-2021. Biomechanical data were obtained from 2-dimensional video analyses and an instrumented treadmill system. Multivariate analyses of variance covarying for gender and body mass index were used to compare continuous biomechanical measures, and Chi-square analyses were used to compare categorical biomechanical variables across injury types and body regions. Spearman's rho correlation analyses were conducted to assess the relationship of significant outcomes. RESULTS Patients with bony injuries had significantly higher maximum vertical ground reaction forces (bony: 1.87 body weight [BW] vs. soft tissue: 1.79BW, p = 0.05), and a higher proportion of runners with contralateral pelvic drop at midstance (χ2 =5.3, p = 0.02). Maximum vertical ground reaction forces and pelvic drop were significantly yet weakly correlated (ρ = 0.20, p = 0.01). Foot strike patterns differed across injured body regions, with a higher proportion of hip and knee injury patients presenting with forefoot strike patterns (χ2 =22.0, p = 0.01). SIGNIFICANCE These biomechanical factors may represent risk factors for injuries sustained by young runners. Clinicians may consider assessing these gait adaptations when treating injured adolescent patients.
Collapse
Affiliation(s)
- Alexandra F DeJong Lempke
- Micheli Center for Sports Injury Prevention, Waltham, MA, USA; Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA.
| | - Kristin E Whitney
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sara E Collins
- Micheli Center for Sports Injury Prevention, Waltham, MA, USA; Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
| | - Pierre A d'Hemecourt
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - William P Meehan Iii
- Micheli Center for Sports Injury Prevention, Waltham, MA, USA; Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Intraobserver Assessment of Shear Wave Elastography in Tensor Fasciae Latae and Gluteus Maximus Muscle: The Importance of the Hip Abductor Muscles in Runners Knee Compared to Healthy Controls. J Clin Med 2022; 11:jcm11133605. [PMID: 35806887 PMCID: PMC9267262 DOI: 10.3390/jcm11133605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Iliotibial band syndrome (ITBS) represents one of the most common running related injuries. The pathophysiology is postulated to be caused by excessive ITB tension, impingement and irritation of soft tissues at the lateral femoral epicondyle. However, direct evidence has yet to be found and the multifactorial etiology is under discussion. The purpose was to evaluate stiffness of ITB, gluteus maximus (GM) and tensor fasciae latae (TFL) muscles using shear wave elastography (SWE). Methods: In 14 patients with clinically verified ITBS and 14 healthy controls, three SWE measurements each of ITB, GM and TFL in both legs was performed to determine measurement reliability and between-group and -leg differences. Results: The mean value of ITB was 12.8 m/s with ICC of 0.76, whereas the values measured in the GM were 3.02 m/s with an ICC of 0.87. No statistically significant difference in controls compared to patients were found (p = 0.62). The mean value of TFL was 5.42 m/s in healthy participants, compared to 3.89 m/s patients with an ICC of 0.98 (p = 0.002). Conclusion: Although SWE showed no difference in ITB stiffness, significant differences for TFL muscle stiffness in runner’s knee was found, suggesting that the hip abductor muscles might play a bigger role in the pathophysiology of ITBS. We aimed to implement baseline values for stiffness assessments and prove reliability for further prospective studies of SWE in runner’s knee.
Collapse
|
31
|
Madou EJ, Haber C, Moudy SC, Strike SC. Altered mechanics and increased loading on intact limbs of individuals with a unilateral transtibial amputation in comparison with non-amputees during a start-stop task. J Biomech 2022; 137:111088. [DOI: 10.1016/j.jbiomech.2022.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
32
|
Affiliation(s)
| | - Nicolas S Hatamiya
- Department of Family and Community Medicine, University of California, San Francisco
| | - Lisa C Barkley
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
| |
Collapse
|
33
|
Prehabilitation for Recreational Runners: Motivators, Influencers, and Barriers to Injury Prevention Strategies for Running-Related Injury. J Sport Rehabil 2022; 31:544-553. [PMID: 35135901 DOI: 10.1123/jsr.2021-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Injury prevention programs are effective when implemented in team sports, but many recreational runners have less access to such focused interventions or peer support and often seek other sources to learn about injury reduction strategies. OBJECTIVE This study aimed to explore runners' motivations in attending a prehabilitation (prehab) for runners workshop, establish their comprehension of prehab, and identify barriers to ongoing engagement with injury prevention. DESIGN Qualitative study using focus groups. PARTICIPANTS AND SETTING Twenty-two runners participating in prehab for runners workshops took part in one of 4 focus groups, each recorded, transcribed, and analyzed using Grounded Theory to create codes, subthemes, and themes. RESULTS Four themes emerged: (1) Participation was influenced by experience of previous injury and worry of cessation of running. As the workshop ran weekly for 4 weeks, opportunity to see someone more than once who was also a physiotherapist influenced participation. (2) Runners welcomed clarification for online exercises and advice suggested for runners. They were surprised by the difficulty of single-leg neuromuscular facilitation exercises and reported benefit from most or all information especially non-exercise-based approaches such as load management, pain monitoring, and running cues. (3) Participants were empowered by a structured, holistic, and evidence-based approach that embraced autonomy for exercise self-selection and progression. Confidence to engage in open discussion was due to small group size. (4) Barriers to prehab were personal responsibility, equipment, time, lack of supervision, and peer influence. CONCLUSION A composite approach to strategies for injury risk reduction during prehab, combining progressive exercises with educational resources, can address runners' individual needs. Early discussion of motivational tools on commencement of prehab with guidance from runners on how to incorporate prehab independently into running training is recommended. Providing these tools allows runners to self-identify the approach best suited to their personal running profile at that given time.
Collapse
|
34
|
Lower Extremity Kinetics and Kinematics in Runners with Patellofemoral Pain: A Retrospective Case–Control Study Using Musculoskeletal Simulation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patellofemoral pain (PFP) is a common atraumatic knee pathology in runners, with a complex multifactorial aetiology influenced by sex differences. This retrospective case–control study therefore aimed to evaluate lower limb kinetics and kinematics in symptomatic and control male and female runners using musculoskeletal simulation. Lower extremity biomechanics were assessed in 40 runners with PFP (15 females and 25 males) and 40 controls (15 females and 25 males), whilst running at a self-selected velocity. Lower extremity biomechanics were explored using a musculoskeletal simulation approach. Four intergroup comparisons—(1) overall PFP vs. control; (2) male PFP vs. male control; (3) female PFP vs. female control; and (4) male PFP vs. female PFP—were undertaken using linear mixed models. The overall (stress per mile: PFP = 1047.49 and control = 812.93) and female (peak stress: PFP = 13.07 KPa/BW and control = 10.82 KPa/BW) comparisons showed increased patellofemoral joint stress indices in PFP runners. A significantly lower strike index was also shown in PFP runners in the overall (PFP = 17.75% and control = 33.57%) and female analyses (PFP = 15.49% and control = 40.20%), revealing a midfoot strike in control, and a rearfoot pattern in PFP runners. Peak rearfoot eversion and contralateral pelvic drop range of motion (ROM) were shown to be greater in PFP runners in the overall (eversion: PFP = −8.15° and control = −15.09°/pelvic drop ROM: PFP = 3.64° and control = 1.88°), male (eversion: PFP = −8.05° and control = −14.69°/pelvic drop ROM: PFP = 3.16° and control = 1.77°) and female (eversion: PFP = 8.28° and control = −15.75°/pelvic drop ROM: PFP = 3.64° and control = 1.88°) PFP runners, whilst female PFP runners (11.30°) exhibited a significantly larger peak hip adduction compared to PFP males (7.62°). The findings from this investigation highlight biomechanical differences between control and PFP runners, as well as demonstrating distinctions in PFP presentation for many parameters between sexes, highlighting potential risk factors for PFP that may be addressed through focused intervention modalities, and also the need, where appropriate, for sex-specific targeted treatment approaches.
Collapse
|
35
|
Willwacher S, Kurz M, Robbin J, Thelen M, Hamill J, Kelly L, Mai P. Running-Related Biomechanical Risk Factors for Overuse Injuries in Distance Runners: A Systematic Review Considering Injury Specificity and the Potentials for Future Research. Sports Med 2022; 52:1863-1877. [PMID: 35247202 PMCID: PMC9325808 DOI: 10.1007/s40279-022-01666-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Running overuse injuries (ROIs) occur within a complex, partly injury-specific interplay between training loads and extrinsic and intrinsic risk factors. Biomechanical risk factors (BRFs) are related to the individual running style. While BRFs have been reviewed regarding general ROI risk, no systematic review has addressed BRFs for specific ROIs using a standardized methodology. OBJECTIVE To identify and evaluate the evidence for the most relevant BRFs for ROIs determined during running and to suggest future research directions. DESIGN Systematic review considering prospective and retrospective studies. (PROSPERO_ID: 236,832). DATA SOURCES PubMed. Connected Papers. The search was performed in February 2021. ELIGIBILITY CRITERIA English language. Studies on participants whose primary sport is running addressing the risk for the seven most common ROIs and at least one kinematic, kinetic (including pressure measurements), or electromyographic BRF. A BRF needed to be identified in at least one prospective or two independent retrospective studies. BRFs needed to be determined during running. RESULTS Sixty-six articles fulfilled our eligibility criteria. Levels of evidence for specific ROIs ranged from conflicting to moderate evidence. Running populations and methods applied varied considerably between studies. While some BRFs appeared for several ROIs, most BRFs were specific for a particular ROI. Most BRFs derived from lower-extremity joint kinematics and kinetics were located in the frontal and transverse planes of motion. Further, plantar pressure, vertical ground reaction force loading rate and free moment-related parameters were identified as kinetic BRFs. CONCLUSION This study offers a comprehensive overview of BRFs for the most common ROIs, which might serve as a starting point to develop ROI-specific risk profiles of individual runners. We identified limited evidence for most ROI-specific risk factors, highlighting the need for performing further high-quality studies in the future. However, consensus on data collection standards (including the quantification of workload and stress tolerance variables and the reporting of injuries) is warranted.
Collapse
Affiliation(s)
- Steffen Willwacher
- grid.440974.a0000 0001 2234 6983Department for Mechanical and Process Engineering, Offenburg University of Applied Sciences, Offenburg, Germany ,grid.27593.3a0000 0001 2244 5164Institute for Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Markus Kurz
- grid.29050.3e0000 0001 1530 0805Department of Quality Technology & Mechanical Engineering, Mid Sweden University, Östersund, Sweden
| | - Johanna Robbin
- grid.440974.a0000 0001 2234 6983Department for Mechanical and Process Engineering, Offenburg University of Applied Sciences, Offenburg, Germany ,grid.27593.3a0000 0001 2244 5164Institute for Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Matthias Thelen
- grid.27593.3a0000 0001 2244 5164Institute for Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Joseph Hamill
- grid.266683.f0000 0001 2166 5835Biomechanics Laboratory, University of Massachusetts, Amherst, MA USA
| | - Luke Kelly
- grid.1003.20000 0000 9320 7537School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD Australia
| | - Patrick Mai
- grid.440974.a0000 0001 2234 6983Department for Mechanical and Process Engineering, Offenburg University of Applied Sciences, Offenburg, Germany ,grid.27593.3a0000 0001 2244 5164Institute for Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
36
|
Vincent HK, Brownstein M, Vincent KR. Injury Prevention, Safe Training Techniques, Rehabilitation, and Return to Sport in Trail Runners. Arthrosc Sports Med Rehabil 2022; 4:e151-e162. [PMID: 35141547 PMCID: PMC8811510 DOI: 10.1016/j.asmr.2021.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
This current concept, narrative review provides the latest integrated evidence of the musculoskeletal injuries involved with trail running and therapeutic strategies to prevent injury and promote safe participation. Running activities that comprise any form of off-road running (trail running, orienteering, short-long distance, different terrain, and climate) are relevant to this review. Literature searches were conducted to 1) identify types and mechanisms of acute and chronic/overuse musculoskeletal injuries in trail runners, 2) injury prevention techniques most relevant to running trails, 3) safe methods of participation and rehabilitation timelines in the sport. The majority of acute and chronic trail running-related musculoskeletal injuries in trail running occur in the lower leg, primarily in the knee and ankle. More than 70% are due to overuse, and ankle sprains are the most common acute injury. Key mechanisms underlying injury and injury progression include inadequate neuromotor control-balance-coordination, running through fatigue, and abnormal kinematics on variable terrain. Complete kinetic chain prehabilitation programs consisting of dynamic flexibility, neuromotor strength and balance, and plyometrics exercise can foster stable, controlled movement on trails. Patient education about early musculoskeletal pain symptoms and training adjustment can help prevent injury from progressing to serious overuse injuries. Real-time adjustments to cadence, step length, and knee flexion on the trail may also mitigate impact-related risk for injury. After injury occurs, rehabilitation will involve similar exercise components, but it will also incorporate rest and active rest based on the type of injury. Multicomponent prehabilitation can help prevent musculoskeletal injuries in trail runners through movement control and fatigue resistance.
Collapse
Affiliation(s)
- Heather K Vincent
- Department of Physical Medicine and Rehabilitation, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Michael Brownstein
- Department of Physical Medicine and Rehabilitation, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Kevin R Vincent
- Department of Physical Medicine and Rehabilitation, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
37
|
Friede MC, Innerhofer G, Fink C, Alegre LM, Csapo R. Conservative treatment of iliotibial band syndrome in runners: Are we targeting the right goals? Phys Ther Sport 2021; 54:44-52. [PMID: 35007886 DOI: 10.1016/j.ptsp.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Iliotibial band syndrome (ITBS) is presumably caused by excessive tension in the iliotibial band (ITB) leading to compression and inflammation of tissues lying beneath it. Usually managed conservatively, there is a lack of scientific evidence supporting the treatment recommendations, and high symptom recurrence rates cast doubt on their causal effectiveness. This review discusses the influence of common physiotherapeutic measures on risk factors contributing to tissue compression beneath the ITB. METHODS The potential pathogenic factors are presented on the basis of a simple biomechanical model showing the forces acting on the lateral aspect of the knee. Existent literature on the most commonly prescribed physiotherapeutic interventions is critically discussed against the background of this model. Practical recommendations for the optimization of physiotherapy are derived. RESULTS According to biomechanical considerations, ITBS may be promoted by anatomical predisposition, joint malalignments, aberrant activation of inserting muscles as well as excessive ITB stiffness. Hip abductor strengthening may correct excessive hip adduction but also increase ITB strain. Intermittent stretching interventions are unlikely to change the ITB's length or mechanical properties. Running retraining is a promising yet understudied intervention. CONCLUSIONS High-quality research directly testing different physiotherapeutic treatment approaches in randomized controlled trials is needed.
Collapse
Affiliation(s)
- Miriam C Friede
- Carinthia University of Applied Sciences, Department of Physiotherapy, Klagenfurt, Austria.
| | - Gunnar Innerhofer
- University of Innsbruck, Department of Sport Science, Innsbruck, Austria
| | - Christian Fink
- Gelenkpunkt Sports and Joint Surgery, Innsbruck, Austria; University for Health Sciences, Medical Informatics and Technology, Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Hall, Austria
| | - Luis M Alegre
- University of Castilla-La Mancha, GENUD Toledo Research Group, Toledo, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- University of Vienna, Department of Sport Science, Vienna, Austria
| |
Collapse
|
38
|
Hughes R, Cross M, Stokes K, Tobin D, Power E, McNally S, Pamment J. Novel biomechanical injury risk score demonstrates correlation with lower limb posterior chain injury in 50 elite-level rugby union athletes. BMJ Open Sport Exerc Med 2021; 7:e001062. [PMID: 34745646 PMCID: PMC8527128 DOI: 10.1136/bmjsem-2021-001062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/07/2023] Open
Abstract
Objectives Lower limb posterior chain injury (PCI) is common among athletic populations, with multifactorial risk factors including age, previous injury, strength measurements, range of motion and training load. Biomechanics are commonly considered in the prevention and rehabilitation of PCI by performance staff. However, there is no documented testing method to assess for associations between biomechanics and PCI. The aim of this study was to investigate whether there is an association between an easily applicable, novel biomechanical assessment tool and PCI. Methods Fifty male elite-level rugby union athletes (age 22.83±5.08) participating in the highest tier of England were tested at the start of the 2019 preseason period and PCIs (N=48) were recorded over the 2019/2020 playing season. Participants’ biomechanics were analysed using two-dimensional video analysis against an injury risk score (IRS) system in the performance of the combined movement—prone hip extension and knee flexion. Participants’ biomechanics in carrying out this movement were scored against the 10-point IRS, where the more compensatory movement recorded sees an increase in an individual’s IRS. Participants’ IRS was then compared against the number of PCIs sustained and Spearman’s correlation coefficient was used for statistical analysis. Results There is a significant association between IRS and PCI (R=0.542, p<0.001). Linear regression demonstrated that an increase in 1 in IRS was associated with a 35% increase in PCI incidence (R²=0.346). Conclusion A significance between the IRS and PCI provides preliminary support for its use as an injury risk assessment tool.
Collapse
Affiliation(s)
- Rhys Hughes
- Performance Medical Department, Gloucester Rugby Ltd, Gloucester, UK.,Department for Health, University of Bath, Bath, UK
| | - Matt Cross
- Research and Rugby Development, Premier Rugby Ltd, Twickenham, UK
| | - Keith Stokes
- Department for Health, University of Bath, Bath, UK.,Medical Research, Rugby Football Union, Twickenham, London, UK
| | - Daniel Tobin
- Performance Medical Department, Gloucester Rugby Ltd, Gloucester, UK
| | - Eoin Power
- Performance Medical Department, Gloucester Rugby Ltd, Gloucester, UK
| | - Steph McNally
- Performance Medical Department, Gloucester Rugby Ltd, Gloucester, UK
| | - Jonathan Pamment
- Performance Medical Department, Gloucester Rugby Ltd, Gloucester, UK
| |
Collapse
|
39
|
Zainuddin FL, Abd Rahman NA, Razman R, Shaharudin S. Lower limb biomechanical factors associated with Achilles tendinopathy in runners: a systematic review. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
The influence of maturation and sex on pelvis and hip kinematics in youth distance runners. J Sci Med Sport 2021; 25:272-278. [PMID: 34756802 DOI: 10.1016/j.jsams.2021.09.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate differences in stance phase pelvic and hip running kinematics based on maturation and sex among healthy youth distance runners. DESIGN Cross-Sectional. METHODS 133 uninjured youth distance runners (M = 60, F = 73; age = 13.5 ± 2.7 years) underwent a three-dimensional running analysis on a treadmill at a self-selected speed (2.8 ± 0.6 m·s-1). Participants were stratified as pre-pubertal, mid-pubertal, or post-pubertal according to the modified Pubertal Maturational Observation Scale. Stance phase pelvis and hip range of motion (RoM) and peak joint positions were extracted. Two-way ANCOVAs (sex, maturation; covariate of running velocity) were used with Bonferroni-Holm method to control for multiple comparisons with a target alpha level of 0.05. RESULTS A two-way interaction between sex and maturation was detected (p = 0.009) for frontal plane pelvic obliquity RoM. Post-hoc analysis identified a maturation main effect only among females (p˂0.008). Pelvic obliquity RoM was significantly greater among post-pubertal (p = 0.001) compared to pre-pubertal females. Significant main effects of sex (p = 0.02), and maturation (p = 0.01) were found for hip adduction RoM. Post-hoc analysis indicated a significant increase in hip adduction RoM from pre-pubertal to post-pubertal female runners (p = 0.001). A significant main effect of sex was found for peak hip adduction angle (p = 0.001) with female runners exhibiting greater maximum peak hip adduction compared to males. CONCLUSIONS Maturation influences pelvic and hip kinematics greater in female than male runners. Sex differences became more pronounced during later stages of puberty. These differences may correspond to an increased risk for running-related injuries in female runners compared to male runners.
Collapse
|
41
|
Losciale J, Wayman K, Mansfield CJ, Rethman KK, Briggs MS. A preliminary analysis of physical therapist agreement regarding the perceived impairments in cases of runners with knee pain. Physiother Theory Pract 2021; 38:2938-2948. [PMID: 34315318 DOI: 10.1080/09593985.2021.1946876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: There is a scarcity of evidence describing how physical therapists use data from clinical examinations to inform the treatment of runners with knee pain.Objective: Our purpose was to examine the between physical therapist agreement on the selection of perceived impairments in runners with knee pain.Methods: Twelve physical therapists reviewed two cases of runners with knee pain. The cases included clinical subjective information, objective data, and review of videos of each participant running. Each rater selected up to three perceived impairments (from a list of eight) that each physical therapist would address at the next physical therapy session. Percent agreement was calculated to determine the between rater agreement on each individual perceived impairment selection and Fleiss Kappa was calculated for each unique combination of three perceived impairments per case.Results: Twelve raters with 51 (18-156) months of clinical experience participated. Percent agreement ranged from 8%-100% for both cases for individual impairments. When assessing the unique combination of three impairments selected, inter-rater agreement was less than what is expected due to chance alone (κ = -0.09, p = .92; κ = -0.09, p = .98) for both cases.Conclusion: The 12 physical therapists demonstrated poor to excellent levels of agreement when selecting an individual perceived impairment. Agreement was worse than chance when selecting a combination of three unique impairments.
Collapse
Affiliation(s)
- Justin Losciale
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Wayman
- Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cody J Mansfield
- Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Jameson Crane Sports Medicine Institute, Columbus, OH, USA.,School of Health and Rehabilitation Sciences, College of Medicine, Ohio State University, Columbus, OH, USA.,Ambulatory Rehabilitation, Ohio State Sports Medicine Care Point Gahanna, The Ohio State University Wexner Medical Center, Gahanna, OH, USA
| | - Katherine K Rethman
- Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Briggs
- Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Jameson Crane Sports Medicine Institute, Columbus, OH, USA.,School of Health and Rehabilitation Sciences, College of Medicine, Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
42
|
Mahoney G, Martin J, Martin R, Yager C, Smith ML, Grin Z, Vogel-Rosbrook C, Bradley D, Appiah-Kubi KO, Boolani A. Evidence that feelings of energy and fatigue are associated differently with gait characteristics and balance: an exploratory study. FATIGUE: BIOMEDICINE, HEALTH & BEHAVIOR 2021. [DOI: 10.1080/21641846.2021.1950405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Giulia Mahoney
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Fairfax, VA, USA
| | - Rebecca Martin
- Department of Physical Therapy, Hanover College, Hanover, IN, USA
| | - Chelsea Yager
- Department of Neurology, St. Joseph’s Hospital Health Center, Syracuse, NY, USA
| | - Matthew Lee Smith
- Center for Population Health and Aging, Texas A&M University, College Station, TX, USA
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Zachary Grin
- Department of Physical Therapy, Clarkson University, Potsdam, NY, USA
| | | | - Dylan Bradley
- Department of Engineering Technology, State University of New York Canton, Canton, NY, USA
| | | | - Ali Boolani
- Department of Biology, Clarkson University, Potsdam, NY, USA
- Department of Physical Therapy, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
43
|
Bramah C, Preece SJ, Gill N, Herrington L. Kinematic Characteristics of Male Runners With a History of Recurrent Calf Muscle Strain Injury. Int J Sports Phys Ther 2021; 16:732-740. [PMID: 34123526 PMCID: PMC8169031 DOI: 10.26603/001c.22971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Calf muscle strain injuries are a common running injury affecting male runners and are known to have high reoccurrence rates. Currently, limited evidence exists investigating factors associated with this injury with no previous study investigating the running kinematics of male runners with a history of repeat calf muscle strain injuries. PURPOSE To investigate whether male runners with a history of repeat calf muscle strain injury demonstrate differences in stance phase running kinematics when compared to healthy controls. STUDY DESIGN Case-control investigation. LEVEL OF EVIDENCE 3b. METHODS Stance phase kinematics were compared between 15 male runners with a history of calf muscle strain injury and 15 male control participants during treadmill running at 3.2m/s. Independent t-tests were used to compare differences in stance phase kinematic parameters between groups and effect sizes were calculated using Cohen's d. RESULTS The group with a history of calf muscle strain injury demonstrated a significant 2.1⁰ and 3.1⁰ increase in contralateral pelvic drop and anterior pelvic tilt during mid stance. In addition, this group exhibited longer stance times and a more anterior tilted pelvis, flexed hip and a greater distance between the heel and centre of mass at initial contact. Large effect sizes, greater than 0.8, were observed for all differences. No significant differences were observed for ankle and knee joint kinematics between the groups. CONCLUSION This is the first study to identify kinematic characteristics associated with recurrent calf muscle strain injury. While it is not possible to determine causality, the observed kinematic differences may contribute to recurrent nature of this injury. Specifically, it is possible that neuromuscular deficits of the hip and calf muscle complex may lead to increased strain on the calf complex. Rehabilitation interventions which focus on addressing pelvis and hip kinematics may reduce the demands placed upon the calf complex and could prove clinically effective.
Collapse
|
44
|
Validity of a Rehab and Reconditioning Program Following an Adductor Longus Injury in Professional Soccer. J Sport Rehabil 2021; 30:1224-1229. [PMID: 33837168 DOI: 10.1123/jsr.2020-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT The high rates of adductor injuries and reinjuries in soccer have suggested that the current rehabilitation programs may be insufficient; therefore, there is a need to create prevention and reconditioning programs to prepare athletes for the specific demands of the sport. OBJECTIVE The aim of this study is to validate a rehab and reconditioning program (RRP) for adductor injuries through a panel of experts and determine the effectiveness of this program through its application in professional soccer. DESIGN A 20-item RRP was developed, which was validated by a panel of experts anonymously and then applied to 12 injured male professional soccer players. SETTING Soccer pitch and indoor gym. PARTICIPANTS Eight rehabilitation fitness coaches (age = 33.25 [2.49] y) and 8 academic researchers (age = 38.50 [3.74] y) with PhDs in sports science and/or physiotherapy. The RRP was applied to 12 male professional players (age = 23.75 [4.97] y; height = 180.56 [8.41] cm; mass = 76.89 [3.43] kg) of the Spanish First and Second Division (La Liga). INTERVENTIONS The experts validated an indoor and on-field reconditioning program, which was based on strengthening the injured muscle and retraining conditional capacities with the aim of reducing the risk of reinjury. MAIN OUTCOME MEASURES Aiken V for each item of the program and number of days taken by the players to return to full team training. RESULTS The experts evaluated all items of the program very highly as seen from Aiken V values between 0.77 and 0.94 (range: 0.61-0.98) for all drills, and the return to training was in 13.08 (±1.42) days. CONCLUSION This RRP following an injury to the adductor longus was validated by injury experts, and initial results suggested that it could permit a faster return to team training.
Collapse
|
45
|
Bramah C, Preece SJ, Gill N, Herrington L. The between-day repeatability, standard error of measurement and minimal detectable change for discrete kinematic parameters during treadmill running. Gait Posture 2021; 85:211-216. [PMID: 33610824 DOI: 10.1016/j.gaitpost.2020.12.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Kinematic parameters of the trunk, pelvis and lower limbs are frequently associated with both running injuries and performance, and the target of clinical interventions. Currently there is limited evidence reporting the between-day repeatability of discrete kinematic parameters of the trunk, pelvis and lower limbs during treadmill running. RESEARCH QUESTION What is the between-day repeatability, standard error of measurement and minimal detectable change of discrete kinematic parameters of the trunk, pelvis and lower limbs during treadmill running? METHODS 16 healthy participants attended two kinematic data collection sessions two weeks apart. Three-dimensional kinematic data were collected while participants ran on a motorised treadmill at 3.2 m/s. The interclass correlation coefficient, standard error of measurement and minimal detectable change were calculated for discrete kinematic parameters at initial contact, toe off, peak angles and joint excursions during the stance phase of running. RESULTS Good to excellent repeatability with low standard error of measurement and minimal detectable change values were observed for sagittal and frontal plane kinematics at initial contact (Range: ICC, 0.829-0.941; SEM, 0.6°- 2.6°; MDC, 1.5°- 7.2) and peak angles during stance (Range: ICC, 0.799 - 0.946; SEM, 0.6°- 2.6°; MDC, 1.7°- 7.1°). Peak transverse plane kinematics of the hip (ICC, 0.783; SEM, 3.2°; MDC, 8.7°) and knee (ICC, 0.739; SEM, 3°; MDC, 8.4°) demonstrated moderate between-day repeatability with large SEM and MDC values. Kinematics at toe off demonstrated the lowest ICC values and largest measurement errors of all parameters (Range: ICC, 0.109 - 0.900; SEM, 0.8°- 5.7°; MDC, 2.5°- 15.7°). SIGNIFICANCE This is the first study detailing the measurement error and minimal detectable change for discrete kinematic parameters of the trunk and pelvis during treadmill running. The reported values may provide a useful reference point for future studies investigating between-day differences in running kinematics.
Collapse
Affiliation(s)
- Christopher Bramah
- School of Health & Society, Health Sciences Research Centre, University of Salford, Salford, Manchester, M6 6PU, United Kingdom.
| | - Stephen J Preece
- School of Health & Society, Health Sciences Research Centre, University of Salford, Salford, Manchester, M6 6PU, United Kingdom
| | - Niamh Gill
- School of Health & Society, Health Sciences Research Centre, University of Salford, Salford, Manchester, M6 6PU, United Kingdom
| | - Lee Herrington
- School of Health & Society, Health Sciences Research Centre, University of Salford, Salford, Manchester, M6 6PU, United Kingdom
| |
Collapse
|
46
|
Gutiérrez-Hellín J, Baltazar-Martins G, Aguilar-Navarro M, Ruiz-Moreno C, Oliván J, Del Coso J. Effect of ACTN3 R577X Genotype on Injury Epidemiology in Elite Endurance Runners. Genes (Basel) 2021; 12:genes12010076. [PMID: 33430120 PMCID: PMC7828078 DOI: 10.3390/genes12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the ACTN3 XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism in the injury epidemiology of elite endurance athletes. Using a cross-sectional experiment, the epidemiology of running-related injuries was recorded for one season in a group of 89 Spanish elite endurance runners. ACTN3 R577X genotype was obtained for each athlete using genomic DNA samples. From the study sample, 42.7% of athletes had the RR genotype, 39.3% had the RX genotype, and 18.0% had the XX genotype. A total of 96 injuries were recorded in 57 athletes. Injury incidence was higher in RR runners (3.2 injuries/1000 h of running) than in RX (2.0 injuries/1000 h) and XX (2.2 injuries/1000 h; p = 0.030) runners. RR runners had a higher proportion of injuries located in the Achilles tendon, RX runners had a higher proportion of injuries located in the knee, and XX runners had a higher proportion of injuries located in the groin (p = 0.025). The ACTN3 genotype did not affect the mode of onset, the severity, or the type of injury. The ACTN3 genotype slightly affected the injury epidemiology of elite endurance athletes with a higher injury rate in RR athletes and differences in injury location. However, elite ACTN3 XX endurance runners were not more prone to muscle-type injuries.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Gabriel Baltazar-Martins
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Jesús Oliván
- Faculty of Physical Activity and Sport Sciences, Technical University of Madrid, 28040 Madrid, Spain;
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28933 Fuenlabrada, Spain
- Correspondence:
| |
Collapse
|
47
|
Drapeaux A, Carlson K. The Effect of Manual Therapy on Lower Extremity Joint Kinematics during Running: A single-subject case study. J Bodyw Mov Ther 2020; 25:218-222. [PMID: 33714499 DOI: 10.1016/j.jbmt.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2020] [Accepted: 12/05/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND While there is scarcity of current literature to support the effectiveness of muscle energy techniques (MET) with musculoskeletal injuries, the overall impact on gait kinematics necessitates investigation. This case study involved a 48-year-old male runner and aimed to determine the effect of manual therapy, including joint mobilization and MET, on lower extremity (LE) kinematics. The subject had a medical history that included: Achilles tendonitis, low back pain, and iliotibial band syndrome. METHODS A clinical exam and Xsens motion capture were performed on the subject prior to treatment and at the conclusion of the 6 weeks of treatment. Motion capture was used to examine bilateral foot contact time, hip transverse plane motion and ankle sagittal plane motion. Pre-treatment and post-treatment ipsilateral and bilateral differences between groups were analyzed. RESULTS Changes were noted between ipsilateral and bilateral pre- and post-treatment contact times; right foot sagittal plane joint angle at foot off; left hip transverse plane joint angle at foot contact and foot off, all bilateral pre- and post-treatment hip angles at foot contact and foot off, all bilateral pre- and post-treatment ankle angles at foot contact and foot off. CONCLUSIONS Clinical exams paralleled the change in hip external rotation bringing the hips to a more neutral position. In addition, the final clinical exam noted a decrease in subtalar eversion bilaterally, which may relate to the improved pelvic symmetry and biomechanical compensation pattern. Clinically, these findings may coincide with improving proximal lumbopelvic symmetry assisting with normalizing distal mobility by using manual therapy.
Collapse
|
48
|
Between-day repeatability of lower limb EMG measurement during running and walking. J Electromyogr Kinesiol 2020; 55:102473. [DOI: 10.1016/j.jelekin.2020.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
|
49
|
Langley B, Knight N, Morrison SC. Comparison of Transverse Plane Tibial and Frontal Plane Rearfoot Motion and Movement Coordination Between Runners With Medial Tibial Stress Syndrome and Healthy Controls. J Appl Biomech 2020; 36:375-380. [PMID: 32919385 DOI: 10.1123/jab.2019-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
Medial tibial stress syndrome (MTSS) is a common running-related injury. Alterations in movement patterns and movement coordination patterns have been linked to the development of overuse injuries. The aim of this study was to compare transverse plane tibial and frontal plane rearfoot motion and the coordination of these movements between runners with MTSS and healthy controls. A total of 10 recreational runners with MTSS and 10 healthy controls ran at 11 km/h on a treadmill. A 3-camera motion analysis system operating at 200 Hz was used to calculate tibia and rearfoot motion. Stance phase motion patterns were compared between groups using multivariate analysis, specifically, Hotelling T2 test with statistical parametric mapping. A modified vector coding technique was used to classify the coordination of transverse plane tibial and frontal plane rearfoot motion. The frequency of each coordination pattern displayed by each group was compared using independent samples t tests. Individuals with MTSS displayed significantly (P = .037, d = 1.00) more antiphase coordination (tibial internal rotation with rearfoot inversion) despite no significant (P > .05) differences in stance phase kinematics. The increased antiphase movement may increase the torsional stress placed upon the medial aspect of the tibia, contributing to the development of MTSS.
Collapse
|
50
|
Moltó IN, Albiach JP, Amer-Cuenca JJ, Segura-Ortí E, Gabriel W, Martínez-Gramage J. Wearable Sensors Detect Differences between the Sexes in Lower Limb Electromyographic Activity and Pelvis 3D Kinematics during Running. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6478. [PMID: 33198427 PMCID: PMC7697594 DOI: 10.3390/s20226478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
Each year, 50% of runners suffer from injuries. Consequently, more studies are being published about running biomechanics; these studies identify factors that can help prevent injuries. Scientific evidence suggests that recreational runners should use personalized biomechanical training plans, not only to improve their performance, but also to prevent injuries caused by the inability of amateur athletes to tolerate increased loads, and/or because of poor form. This study provides an overview of the different normative patterns of lower limb muscle activation and articular ranges of the pelvis during running, at self-selected speeds, in men and women. METHODS 38 healthy runners aged 18 to 49 years were included in this work. We examined eight muscles by applying two wearable superficial electromyography sensors and an inertial sensor for three-dimensional (3D) pelvis kinematics. RESULTS the largest differences were obtained for gluteus maximus activation in the first double float phase (p = 0.013) and second stance phase (p = 0.003), as well as in the gluteus medius in the second stance phase (p = 0.028). In both cases, the activation distribution was more homogeneous in men and presented significantly lower values than those obtained for women. In addition, there was a significantly higher percentage of total vastus medialis activation in women throughout the running cycle with the median (25th-75th percentile) for women being 12.50% (9.25-14) and 10% (9-12) for men. Women also had a greater range of pelvis rotation during running at self-selected speeds (p = 0.011). CONCLUSIONS understanding the differences between men and women, in terms of muscle activation and pelvic kinematic values, could be especially useful to allow health professionals detect athletes who may be at risk of injury.
Collapse
Affiliation(s)
- Iván Nacher Moltó
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Juan Pardo Albiach
- Embedded Systems and Artificial Intelligence Group, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain;
| | - Juan José Amer-Cuenca
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Eva Segura-Ortí
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Willig Gabriel
- Laboratorio de Investigaciones Biomecánicas, Cátedra de Anatomía Funcional y Biomecánica, Universidad de Buenos Aires, Buenos Aires 1107, Argentina;
| | - Javier Martínez-Gramage
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| |
Collapse
|