1
|
Sanajou S, Yirün A, Arca Çakır D, Demirel G, Şahin G, Erkekoğlu P, Baydar T. Unraveling the neuroprotective mechanisms of naltrexone against aluminum-induced neurotoxicity. Drug Chem Toxicol 2024; 47:854-865. [PMID: 38221775 DOI: 10.1080/01480545.2024.2303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Aluminum (Al) is a known neurotoxic trace element linked to Alzheimer's disease (AD). Naltrexone, an opioid antagonist, has shown promising effects in reducing neuroinflammation at lower doses than those prescribed for addiction. This study aimed to determine the neuroprotective effects of naltrexone on Al-induced neurotoxicity in an in vitro AD model. The SH-SY5Y cells were first cultivated in a standard growth medium. Subsequently, the cells were induced to differentiate by decreasing the concentration of fetal bovine serum and introducing retinoic acid (RA) into the culture media. Subsequently, the inclusion of brain-derived neurotrophic factor (BDNF) was implemented in conjunction with RA. The process of differentiation was concluded on the seventh day. Study groups (n = 3) were designed as the control group, naltrexone group, Al group, Al-Nal group, Alzheimer' model (AD) group, Alzheimer model + Al-exposed group (AD-Al), Alzheimer model + Nal applied group (AD-Nal) and Alzheimer model + Al-exposed + Nal applied group (AD-Al-Nal). Hyperphosphorylated Tau protein as the specific marker of AD was measured in all groups. Glycogen synthase kinase-3 (GSK-3)β, Protein phosphatase 2A (PP2A), Akt and Wnt signaling pathways were analyzed comparatively. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl and reactive oxygen species) were measured comparatively in the study groups. The results showed that naltrexone reduced hyperphosphorylated tau protein levels by regulating GSK-3β, PP2A, Akt and Wnt signaling. Also, exposure to naltrexone decreased oxidative stress parameters. Based on these results, naltrexone shows promise as a potential therapy for AD, subject to additional clinical assessments.
Collapse
Affiliation(s)
- Sonia Sanajou
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Anil Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Deniz Arca Çakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University, Vaccine Institute, Ankara, Turkey
| | - Göksun Demirel
- Department of Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Gönül Şahin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University, Vaccine Institute, Ankara, Turkey
| | - Terken Baydar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Hadrup N, Sørli JB, Jenssen BM, Vogel U, Sharma AK. Toxicity and biokinetics following pulmonary exposure to aluminium (aluminum): A review. Toxicology 2024; 506:153874. [PMID: 38955312 DOI: 10.1016/j.tox.2024.153874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
During the manufacture and use of aluminium (aluminum), inhalation exposure may occur. We reviewed the pulmonary toxicity of this metal including its toxicokinetics. The normal serum/plasma level based on 17 studies was 5.7 ± 7.7 µg Al/L (mean ± SD). The normal urine level based on 15 studies was 7.7 ± 5.3 µg/L. Bodily fluid and tissue levels during occupational exposure are also provided, and the urine level was increased in aluminium welders (43 ± 33 µg/L) based on 7 studies. Some studies demonstrated that aluminium from occupational exposure can remain in the body for years. Excretion pathways include urine and faeces. Toxicity studies were mostly on aluminium flakes, aluminium oxide and aluminium chlorohydrate as well as on mixed exposure, e.g. in aluminium smelters. Endpoints affected by pulmonary aluminium exposure include body weight, lung function, lung fibrosis, pulmonary inflammation and neurotoxicity. In men exposed to aluminium oxide particles (3.2 µm) for two hours, lowest observed adverse effect concentration (LOAEC) was 4 mg Al2O3/m3 (= 2.1 mg Al/m3), based on increased neutrophils in sputum. With the note that a similar but not statistically significant increase was seen during control exposure. In animal studies LOAECs start at 0.3 mg Al/m3. In intratracheal instillation studies, all done with aluminium oxide and mainly nanomaterials, lowest observed adverse effect levels (LOAELs) started at 1.3 mg Al/kg body weight (bw) (except one study with a LOAEL of ∼0.1 mg Al/kg bw). The collected data provide information regarding hazard identification and characterisation of pulmonary exposure to aluminium.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, 105 Lersø Parkallé, Copenhagen Ø, Denmark; Research Group for Risk-Benefit, National Food Institute, Technical University of Denmark, Denmark; Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Jorid B Sørli
- National Research Centre for the Working Environment, 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Ulla Vogel
- National Research Centre for the Working Environment, 105 Lersø Parkallé, Copenhagen Ø, Denmark; National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, Kgs Lyngby 2800, Denmark
| |
Collapse
|
3
|
Vlasak T, Dujlovic T, Barth A. Aluminum exposure and cognitive performance: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167453. [PMID: 37777128 DOI: 10.1016/j.scitotenv.2023.167453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Aluminum is increasingly used in various industrial processes due to its beneficial properties. Occupational exposure to aluminum, however, has been linked to several adverse health effects. The impact of occupational aluminum exposure on worker's cognitive performance and its contribution in developing neurodegenerative diseases is highly discussed with competing results. METHOD We conducted a literature search via online databases until June 2023. Applicable studies fulfilling inclusion criteria investigating the effects of occupational aluminum exposure on cognitive functions were gathered. Results were aggregated using random effects meta-analysis and the effect size g. We further explored types of publication biases, moderating variables and exposure-effect relationships using meta-regressions. RESULTS The final sample consisted of 18 studies with 87 effect sizes for seven cognitive functions. We found significant worse performances in workers occupationally exposed to aluminum regarding processing speed, working memory, attention, and reaction time after exclusion of outliers. Additionally, we found increased blood plasma aluminum significantly predicting decreased cognitive performance in exposed workers. CONCLUSION Our results show decreased performance levels in processing speed, working memory, attention and reaction time in workers occupationally exposed to aluminum compared to controls. Furthermore, we found that aluminum in blood plasma was the only biomarker as significant predictor of cognitive performance. We discuss recommendations for further research in relation to occupational health and safety. Finally, we extend the discourse between occupational aluminum exposure and development of neurodegenerative diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas Vlasak
- Department of Psychology, Sigmund Freud Private University Linz, Linz, Austria
| | - Tanja Dujlovic
- Department of Psychology, Sigmund Freud Private University Linz, Linz, Austria
| | - Alfred Barth
- Department of Psychology, Sigmund Freud Private University Linz, Linz, Austria.
| |
Collapse
|
4
|
Jiang S, Fu Y, Cheng HW. Daylight exposure and circadian clocks in broilers: part I-photoperiod effect on broiler behavior, skeletal health, and fear response. Poult Sci 2023; 102:103162. [PMID: 37924580 PMCID: PMC10654592 DOI: 10.1016/j.psj.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
The aim of this study was to examine effects of various daylight exposure during the 24-h light-dark (L-D) cycle on growth performance, skeletal health, and welfare state in broilers. Environmental photoperiod and related circadian clock, the 24-h L-D cycle, are important factors in maintaining productive performance, pathophysiological homeostasis, and psychological reaction in humans and animals. Currently, various lighting programs as management tools for providing a satisfactory environmental condition have been used in commercial broiler production. Four hundred thirty-two 1-day-old Rose 308 broiler chicks were assigned to 24 pens (18 birds/pen). The pens were randomly assigned to 1 of 4 thermal and lighting control rooms, then the birds were exposed to (n = 6): 1) 12L, 2) 16L, 3) 18L, or 4) 20L at 15 d of age. Lighting program effects on bird body weight, behavioral patterns, bone health, and stress levels were evaluated from d 35 to d 45, respectively. The birds of 12L as well as 16L groups, reared under short photoperiods close to the natural 24-h L-D cycle, had improved production performance, leg bone health, and suppressed stress reaction compared to the birds of both 18L and 20L groups. Especially, 12L birds had heavier final body weight and averaged daily weight gain (P < 0.05), higher BMD and BMC with longer and wider femur (P < 0.05), lower H/L ratio (P < 0.05), and more birds reached the observer during the touch test (P < 0.05) but spent shorter latency during the tonic immobility test (P < 0.05). Taken together, the data suggest that supplying 12 h as well as 16L of daily light improves performance and health while decreasing stress levels in broilers, making it a potentially suitable approach for broiler production.
Collapse
Affiliation(s)
- Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Heng-Wei Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Shang N, Zhang L, Gao Q, Li W, Wang S, Gao X, Chen J, Zhang L, Niu Q, Zhang Q. Simultaneous effects of aluminum exposure on the homeostasis of essential metal content in rat brain and perturbation of gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114707. [PMID: 36893695 DOI: 10.1016/j.ecoenv.2023.114707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The theory of the brain-gut axis has confirmed that gut microbiota and metabolites are involved in the progression of neurodegenerative diseases through multiple pathways. However, few studies have highlighted the role of gut microbiota in cognitive impairment induced by aluminum (Al) exposure and its correlations with the homeostasis of essential metal content in the brain. To explore the relationship between alterations in the content of essential metals in the brain and relative abundance changes in gut microbiota induced by Al exposure, the Al, zinc (Zn), copper (Cu), iron (Fe), chromium (Cr), manganese (Mn), and cobalt (Co) content level in the hippocampus, olfactory bulb, and midbrain tissue were measured by inductively coupled plasma mass spectrometry (ICP-MS) methods after Al maltolate was intraperitoneally injected every other day for exposed groups. Then the unsupervised principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe) were used to analyze the relative abundance of the gut microbiota community and the structure of the gut microbiome. Finally, the correlations between gut microbiota composition and essential metal content in the different exposure groups were explored by using the Pearson correlation coefficient method. Based on the results, we indicated that the content of Al in the hippocampus, olfactory bulb, and midbrain tissue was increased and then decreased with the increasing exposure duration, with peaks occurring between 14 and 30 days. Concomitantly, Al-exposure decreased the Zn, Fe, and Mn levels in these tissues. 16 S rRNA gene sequencing results indicated that significant differences in the intestinal microbial community structure at the phylum, family, and genus levels were found in the Day 90 exposed group compared with the Day 7 exposed group. Ten enriched species in the exposed group were identified as markers at the three levels. Furthermore, ten bacteria at the genus level were identified to have a significantly strong correlation (r = 0.70-0.90) with Fe, Zn, Mn, and Co.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, First Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China.
| | - Lan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Qi Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Weipeng Li
- School of Pharmacy, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Shanshan Wang
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Xiaocheng Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan Shanxi 030001, China
| |
Collapse
|
6
|
Merighi S, Nigro M, Travagli A, Gessi S. Microglia and Alzheimer's Disease. Int J Mol Sci 2022; 23:12990. [PMID: 36361780 PMCID: PMC9657945 DOI: 10.3390/ijms232112990] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 07/30/2023] Open
Abstract
There is a huge need for novel therapeutic and preventative approaches to Alzheimer's disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness's later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | | | | | | |
Collapse
|
7
|
Zhang J, Hao Y, Wang Y, Han Y, Zhang S, Niu Q. Relationship between the expression of TNFR1-RIP1/RIP3 in peripheral blood and cognitive function in occupational Al-exposed workers: A mediation effect study. CHEMOSPHERE 2021; 278:130484. [PMID: 33838418 DOI: 10.1016/j.chemosphere.2021.130484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Aluminium (Al), not essential for biological activities, accumulates in the tissues. It exerts toxic effects on the nervous system, inducing in humans' irreversible cognitive impairment. In this study, a cluster sampling method was used to observe the cognitive function of long-term occupational Al-exposed workers in a large Al factory, and determine the expression of peripheral blood tumour necrosis factor receptor 1 (TNFR1), receptor-interacting protein 1 (RIP1), and RIP3. TNF-alpha, expressed in blood macrophages and microglia, with its receptors TNFR1, TR1 and TR3, enhances the necroptosis of neurons. Additionally, the relationship between the expression of TNFR1, RIP1, and RIP3 in the peripheral blood of long-term occupational Al-exposed workers and changes in their cognitive function was explored. The differences in the distributions of clock drawing test (CDT) scores among the three groups were statistically significant (P < 0.05). The results of correlation analysis showed that RIP1 and RIP3 protein contents were negatively correlated with mini-mental state examination (MMSE) and CDT scores (P < 0.05). Plasma Al content was positively correlated with other biological indicators (P < 0.05), and negatively correlated with MMSE and CDT scores (P < 0.05). Results showed that RIP3 protein had an incomplete mediation effect between plasma Al content and cognitive function. This suggests that Al may affect cognitive function by influencing the expression of TNFR1, RIP1, and RIP3 in the nervous system.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanxia Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shuhui Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
8
|
Bagepally BS, Balachandar R, Kalahasthi R, Tripathi R, Haridoss M. Association between aluminium exposure and cognitive functions: A systematic review and meta-analysis. CHEMOSPHERE 2021; 268:128831. [PMID: 33187649 DOI: 10.1016/j.chemosphere.2020.128831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Chronic Aluminium (Al) exposure is reported to be linked with neuro-cognitive impairment. However, there is limited synthesized information on the role of chronic Al exposure on individual cognitive domains. This knowledge gap is explored here by systematic review and meta-analysis of the published literature. METHODS Observational studies that reported the association between Al exposure and cognitive functions were systematically searched in PubMed, Scopus and Embase databases since inception to June 2019 and updated on September 2020. PRISMA guidelines were adhered in this study. Meta-analysis was performed using a random-effect model if the included studies exhibited heterogeneity, in the absence of heterogeneity fixed effect model was used. Heterogeneity was assessed using Cochran-Q test and I2 statistic. Risk of bias was assessed using the risk of bias in non-randomized studies of exposures. Sub-group analysis and meta regression analysis were explored. RESULTS Twenty-three studies including 1781 Al exposed and 1186 unexposed were part of the final results. The pooled standardized mean difference of global cognitive scores (-0.65, 95%CI: -1.09 to -0.22, I2 = 91.09%), memory (-0.45, 95% CI: -0.69 to -0.21, I2 = 81.67%), working memory (-0.3, 95%CI: -0.45 to -0.15, I2 = 0%) and processing speed domains were significantly inferior among Al exposed as compared to unexposed. The other evaluated cognitive domains, such as cognitive flexibility, visuospatial abilities and psychomotor functions did not significantly differ between the two groups. We observed a serious risk of bias in most of the included studies. CONCLUSION Current pieces of evidence suggest an association between chronic Al exposure and impaired cognitive function in majority of domains including memory, processing speed and working memory while no significant influence in other cognitive domains. However, considering high heterogeneity and low quality of primary evidence, further high-quality studies are necessary for conclusive evidence in this regard.
Collapse
Affiliation(s)
| | - Rakesh Balachandar
- Clinical Epidemiology, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India.
| | - Ravibabu Kalahasthi
- Biochemistry, Regional Occupational Health Centre (Southern), ICMR-National Institute of Occupational Health, Bengaluru, Karnataka Nadu, India
| | - Ravikesh Tripathi
- Assistant Professor, Institute of Behavioral Science, Gujarat Forensic Science University, Gandhinagar, Gujarat, India
| | - Madhumita Haridoss
- Non-Communicable Diseases, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
He C, Zhao X, Li H, Wang F, Zhang J, Wang Y, Han Y, Yuan C, Niu Q. Regulation of mGluR1 on the Expression of PKC and NMDAR in Aluminum-Exposed PC12 Cells. Neurotox Res 2021; 39:634-644. [PMID: 33464538 DOI: 10.1007/s12640-020-00319-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Aluminum demonstrates clear neurotoxicity and can cause Alzheimer's disease (AD)-like symptoms, including cognitive impairment. One toxic effect of aluminum is a decrease in synaptic plasticity, but the specific mechanism remains unclear. In this study, PC12 cells were treated with Al(mal)3 to construct a toxic cell model. (S)-3,5-Dihydroxyphenylglycine (DHPG), α-methyl-4-carboxyphenylglycine (MCPG), and mGluR1-siRNA were used to interfere with the expression of metabotropic glutamate receptor subtype 1 (mGluR1). Polymerase chain reaction and western blotting were used to investigate the expression of mGluR1, protein kinase C (PKC), and N-methyl-D-aspartate receptor (NMDAR) subunits. ELISA was used to detect PKC enzyme activity. In PC12 cells, mRNA and protein expressions of PKC and NMDAR subunits were inhibited by Al(mal)3. Aluminum may further regulate the expression of NMDAR1 and NMDAR2B through mGluR1 to regulate PKC enzyme activity, thereby affecting learning and memory functions. Furthermore, the results implied that the mGluR1-PKC-NMDAR signaling pathway may predominately involve positive regulation. These findings provide new targets for studying the neurotoxic mechanism of aluminum.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Key Lab of Environmental Hazard & Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fei Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunman Yuan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Key Lab of Environmental Hazard & Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
10
|
Li H, Xue X, Li Z, Pan B, Hao Y, Niu Q. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. CHEMOSPHERE 2020; 244:125445. [PMID: 31835052 DOI: 10.1016/j.chemosphere.2019.125445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Aluminium is an environmental neurotoxin that comes extensively in contact with human being. The molecular mechanism of aluminium toxicity remains unclear. A number of studies have indicated that exposure to aluminium can impair learning and memory function. The purpose of this study was to investigate the mechanism of long-term potentiation(LTP) injury and the related signalling pathway activated by aluminium exposure. The results showed that aluminium treatment produced dose-dependent inhibition of LTP and reduced the activity of Histone H3K9 demethylation (H3K9me2) demethylase and the expression of the PHD (plant homeodomain) finger protein 8 (PHF8). Interestingly, there was no statistically significant difference in the expression of the PHF8 gene, suggesting that aluminium exposure only affects the translation process. Decrease in brain-derived neurotrophic factor (BDNF) expression may be related to the effect of aluminium. With correlation analysis between the hippocampal standardised field excitatory postsynaptic potential (fEPSP) amplitude and the expression of various proteins in the aluminium-exposed rat, the hippocampal standardised fEPSP amplitude was positively correlated with the expression of hippocampal PHF8 and BDNF proteins, and negatively correlated with the expression of hippocampal H3K9me2 protein. The correlation between H3K9me2 and BDNF was also considered negative. The results suggest that changes in synaptic plasticity might be related to changes in these proteins, which were induced by aluminium exposure. In conclusion, chronic aluminium exposure may inhibit PHF8 and prevent it from functioning as a demethylase. This may block H3K9me2 demethylation, decrease BDNF protein expression, and lead to LTP impairment.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Zhaoyang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanxia Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
11
|
Li H, Xue X, Li L, Li Y, Wang Y, Huang T, Wang Y, Meng H, Pan B, Niu Q. Aluminum-Induced Synaptic Plasticity Impairment via PI3K-Akt-mTOR Signaling Pathway. Neurotox Res 2020; 37:996-1008. [PMID: 31970651 DOI: 10.1007/s12640-020-00165-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Aluminum (Al) is an environmental neurotoxin with extensive exposure by humans, but the molecular mechanism of its toxicity is still unclear. Several studies have indicated that exposure to aluminum can impair learning and memory function. The purpose of this study was to investigate the mechanism of LTP injury and the effect of aluminum exposure on related signal pathways. The results showed that the axonal dendrites of neurons in the hippocampal CA1 area of rats exposed to maltol aluminum showed neuritic beading and the dendritic spines were reduced. This resulted in dose-dependent LTP inhibition and led to impaired learning and memory function in rats. The PI3K-Akt-mTOR pathway may play a crucial role in this process.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Liang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Huaxing Meng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China.
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Lu X. Occupational Exposure to Aluminum and Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:85-97. [DOI: 10.1007/978-981-13-1370-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Niu Q. Overview of the Relationship Between Aluminum Exposure and Health of Human Being. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:1-31. [PMID: 30315446 DOI: 10.1007/978-981-13-1370-7_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aluminum is a type of ubiquitously existing naturally and widely used metal in our world. It is combined with other elements and forms different compounds. In different pH and due to other conditions, it can be released into ions of different valence states. Our century is an "aluminum age"; aluminum is used in many fields of our daily life, such as vaccine adjuvant, antacids, food additives, skin care products, cosmetics, and cooking wares, and may be as elements or contaminants appeared in a lot of foods, including infant formulae, milk products, juice, wine, sea foods, and tea. It also appears in drinking water due to the water treatment process, or naturally coming from weathering rocks and soils, or released from rocks and soils caused by pollution-induced acid rain. Due to good physical and chemical property, aluminum is being tremendously utilized in many industries. In a lot of production and process procedures, aluminum particulates are seriously exposed by workers. Many factors, such as silicon, citrate, iron, calcium, fluoride, etc., can affect absorption of aluminum in human body. Human being ingests aluminum through the respiratory and digestive system and skin. Aluminum can affect our health, especially impair central nervous system. The important damage is cognitive impairment in Al-exposed peoples, Alzheimer's disease and other neurodegenerative disorders have been related with aluminum exposure, and aluminum has been proposed as etiology.
Collapse
Affiliation(s)
- Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
14
|
Ahangari G, Ostadali MR, Rabani A, Rashidian J, Sanati MH, Zarindast MR. Growth Hormone Antibodies Formation in Patients Treated with Recombinant Human Growth Hormone. Int J Immunopathol Pharmacol 2016; 17:33-8. [PMID: 15000864 DOI: 10.1177/039463200401700105] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human growth hormone (hGH) is normally produced by acidophilic cells of the anterior lobe of the pituitary gland. Recombinant DNA technology has made it possible to produce rhGH. There have been reports of immunological reactions in patients treated with rhGH. For this reason, it is necessary to check sera of patients for presence of antibody against rhGH. Forty-seven children were treated for up to 6 months with recombinant human growth hormone (rhGH-Novo), 0.1 IU/Kg body weight, subcutaneously, three times weekly. The magnitude of growth response was similar to those expected from clinical experience with pituitary growth hormone. We examined sera for specific antibodies against rhGH by ELISA methods. Four patients developed serum antibodies against growth hormone. The analysis of these four sera by Dot blotting method also showed presence of antibodies against rhGH. In the sera of treated patients, pre-incubated with different concentration of rhGH, specific antibodies were detected by neutralizing assay. This finding was confirmed by ELISA technique. In conclusion, the main concern with anti-GH antibodies could be their ability to neutralize circulating growth hormone and inhibition its growth promoting effect.
Collapse
Affiliation(s)
- G Ahangari
- Department of Molecular Medicine and Immunology, National Research Center for Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
15
|
Kempuraj D, Konstantinidou A, Boscolo P, Ferro F, Di Giannantonio M, Conti CM, Merlitti D, Petrarca C, Castellani ML, Doyle R, Theoharides TC. Cytokines and the Brain. Int J Immunopathol Pharmacol 2016; 17:229-32. [PMID: 15461855 DOI: 10.1177/039463200401700301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Fluegge KR, Fluegge KR. Glyphosate Use Predicts ADHD Hospital Discharges in the Healthcare Cost and Utilization Project Net (HCUPnet): A Two-Way Fixed-Effects Analysis. PLoS One 2015; 10:e0133525. [PMID: 26287729 PMCID: PMC4543553 DOI: 10.1371/journal.pone.0133525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
There has been considerable international study on the etiology of rising mental disorders, such as attention-deficit hyperactivity disorder (ADHD), in human populations. As glyphosate is the most commonly used herbicide in the world, we sought to test the hypothesis that glyphosate use in agriculture may be a contributing environmental factor to the rise of ADHD in human populations. State estimates for glyphosate use and nitrogen fertilizer use were obtained from the U.S. Geological Survey (USGS). We queried the Healthcare Cost and Utilization Project net (HCUPNET) for state-level hospitalization discharge data in all patients for all-listed ADHD from 2007 to 2010. We used rural-urban continuum codes from the USDA-Economic Research Service when exploring the effect of urbanization on the relationship between herbicide use and ADHD. Least squares dummy variable (LSDV) method and within method using two-way fixed effects was used to elucidate the relationship between glyphosate use and all-listed ADHD hospital discharges. We show that a one kilogram increase in glyphosate use, in particular, in one year significantly positively predicts state-level all-listed ADHD discharges, expressed as a percent of total mental disorders, the following year (coefficient = 5.54E-08, p<.01). A study on the effect of urbanization on the relationship between glyphosate and ADHD indicates that the relationship is marginally significantly positive after multiple comparison correction only in urban U.S. counties (p<.025). Furthermore, total glyphosate use is strongly positively associated with total farm use of nitrogen fertilizers from 1992 to 2006 (p<.001). We present evidence from the biomedical research literature of a plausible link among glyphosate, nitrogen dysbiosis and ADHD. Glyphosate use is a significant predictor of state hospitalizations for all-listed ADHD hospital discharges, with the effect concentrated in urban U.S. counties. This effect is seen even after controlling for individual state characteristics, strong correlations over time, and other significant associations with ADHD in the literature. We draw upon the econometric results to propose unique mechanisms, borrowing principles from soil and atmospheric sciences, for how glyphosate-based herbicides may be contributing to the rise of ADHD in all populations.
Collapse
Affiliation(s)
- Keith R. Fluegge
- Institute of Health and Environmental Research (IHER), Cleveland, Ohio, 44118 United States of America
- Graduate School, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kyle R. Fluegge
- Institute of Health and Environmental Research (IHER), Cleveland, Ohio, 44118 United States of America
- Department of Epidemiology & Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, United States of America
| |
Collapse
|
18
|
Anger WK. Reconsideration of the WHO NCTB strategy and test selection. Neurotoxicology 2014; 45:224-31. [PMID: 25172409 PMCID: PMC4268438 DOI: 10.1016/j.neuro.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022]
Abstract
The World Health Organization-recommended neurobehavioral core test battery (NCTB) became the international standard for identifying adverse human behavioral effects due to neurotoxic chemical exposure when it was first proposed in 1983. Since then the WHO NCTB has been repeatedly cited as the basis for test selection in human neurotoxicology research. A discussion group was held before the International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health to review the NCTB and reconsider its tests. The workshop made three consensus recommendations to the International Congress on Occupational Health (ICOH) Scientific Committee on Neurotoxicology and Psychophysiology (SCNP):. 1. A 'screening' battery of broadly sensitive tests is needed as guidance to the field of human neurotoxicology 2. The SCNP should convene a panel to reconsider the functions measured and the tests in the WHO NCTB 3. Three disciplines should be represented in the panel recommending a revised NCTB: neuropsychology; experimental psychology; neurology. This recommendation will be pursued at the next meeting of the International Congress on Occupational Health (ICOH) Scientific Committee on Neurotoxicology and Psychophysiology (SCNP).
Collapse
Affiliation(s)
- W Kent Anger
- Oregon Health & Science University, Portland, OR 97034, USA.
| |
Collapse
|
19
|
Giorgianni CM, D’Arrigo G, Brecciaroli R, Abbate A, Spatari G, Tringali MA, Gangemi S, Luca AD. Neurocognitive effects in welders exposed to aluminium. Toxicol Ind Health 2012; 30:347-56. [DOI: 10.1177/0748233712456062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Various authors who studied the effects of aluminium (Al) exposure on the neurocognitive system in the last 30 years have reached different and often contradictory conclusions. The aim of this study is to help clarify the effects that the metal causes on cognitive ability in a group of naval welders exposed to Al. Methods: The study was performed on a sample of 86 male Al welders in a shipyard in Messina. The average value of environmental Al, recorded in the workplace, was 19.5 mg/m3. The blood levels of Al, zinc, manganese, lead and chromium were monitored in all the subjects. The reagents used for the neuropsychic study were the Wechsler Memory Scale (WMS), the Colour Word Test or Stroop Test and the Test of Attention Matrixes. The results were compared with those obtained in a similar control group not exposed to Al and with an Al-b value of 6.93 g/l. Results: For all the mental reagents used, the reply is obtained in the sample of exposed subjects showed decreased cognitive response with regard to attention and memory performance. The comparison between the individual tests showed greater sensitivity of performance studied using the WMS and the Stroop Test compared with the Test of Attention Matrixes. The alterations encountered in the cognitive functions studied increased proportionally to time of exposure and quantity of metal absorbed. Conclusion: The study confirmed that occupational exposure to Al causes alteration in cognitive responses that are more evident in complex functions.
Collapse
Affiliation(s)
- Concetto Mario Giorgianni
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| | - Graziella D’Arrigo
- Dipartimento di Statistica, Università degli Studi di Messina, Valeria, Messina, Italy
| | - Renato Brecciaroli
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| | - Adriana Abbate
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| | - Giovanna Spatari
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| | | | - Silvia Gangemi
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| | - Annamaria De Luca
- Dipartimento di Medicina Sociale del Territorio Sez, Medicina del Lavoro, Università degli Studi di Messina, Valeria, Messina, Italy
| |
Collapse
|
20
|
Neurocognitive Effects in Welders Exposed to Aluminium: An Application of the NPC Test and NPC Ranking Methods. STAT METHOD APPL-GER 2006. [DOI: 10.1007/s10260-006-0019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Yuan H, He S, He M, Niu Q, Wang L, Wang S. A comprehensive study on neurobehavior, neurotransmitters and lymphocyte subsets alteration of Chinese manganese welding workers. Life Sci 2006; 78:1324-8. [PMID: 16243361 DOI: 10.1016/j.lfs.2005.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 07/05/2005] [Indexed: 11/17/2022]
Abstract
The neurotoxicity of manganese has been demonstrated by many researches. But few reports have been found on its immunotoxicity in manganese-exposed workers. Here we selected welding workers (aged 34 years) as Mn-exposed subjects. They have been exposed to manganese for 16 years. The control group was from a flour plant. The average concentrations of Mn, Cd, Fe and Ni in work place were 138.40 +/- 11.60 microg/m3, 581.40 +/- 45.32 microg/m3, 3.84 +/- 0.53 microg/m3 and 12.64 +/- 2.80 ng/m3, respectively. Blood Mn (4.84 mug/dl) of welding workers was higher than that of the control group (1.92 microg/dl). Neurobehavioral core test battery (NCTB) recommended by WHO was conducted on the subjects and found that the scores of negative emotions, such as confusion-bewilderment, depression-dejection, fatigue-inertia, and tension-anxiety, were higher in welding workers. Visual simple reaction time and the fast simple reaction time were shorter than that of the control group. The numbers of digital span, forward digital span, backward digital span and digital symbol decreased in welding workers compared with control group. Monoamine neurotransmitters and their metabolism substances in urine were tested by HPLC-ultraviolet. NE, E, MHPG, HVA, DA, DOPAC and 5-HT in the urine of Mn-exposed group had no significant changes while 5-HIAA in Mn-exposed group had significantly decreased compared with that of the control group. Lymphocyte subsets of the subjects were determined by Flow Cytometer. CD3+ T cell, CD4+CD8- T cell, CD4-CD8+ T cell, CD4+CD45RO- "virgin" lymphocytes, CD4+CD45RO+ "memory" lymphocytes, and CD3-CD19+ B cell had no significant changes compared with the control group. The results showed that long-term exposure to manganese in welding might have adverse effects on mood state, neurobehavior, and peripheral neurotransmitters. However, they had no effects on lymphocyte subsets parameters.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Psychology, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
22
|
Lucchini R, Albini E, Benedetti L, Alessio L. Neurobehavioral science in hazard identification and risk assessment of neurotoxic agents--what are the requirements for further development? Int Arch Occup Environ Health 2005; 78:427-37. [PMID: 15895244 DOI: 10.1007/s00420-005-0607-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Modern neurobehavioral methods find useful application in research into the early effects of exposure to neurotoxic agents in the environment. This paper briefly describes the history and evolution of neurobehavioral toxicology, reviews some current trends in research in this specific discipline and identifies the most important needs and challenges to be addressed in future studies. METHODS All published literature was considered, including ad hoc meeting reports. Further information was obtained directly from experts in the field. RESULTS The number of studies (including those in occupational, environmental and pediatric exposure) using neurobehavioral evaluation is constantly increasing. Regulatory agencies are using scientific data obtained through neurobehavioral assessment, which includes other areas such as neurosensory toxicology. However, further development of this discipline is facing a number of problems and issues. Three major areas that deserve further attention have been identified: (1) specific technical issues regarding testing development, (2) epidemiological issues regarding the study design, including the need for meta-analysis/multi-center studies and for longitudinal observation, and statistical issues regarding the most adequate models for the analysis and treatment of complex neurobehavioral datasets, and (3) the need for scientific consensus on the significance of adverse effects identified with neurobehavioral methods. CONCLUSIONS The importance of neurobehavioral toxicology in the evaluation of mechanisms of action and for preventive purposes is progressively growing. Further development is needed for the advancement of this discipline through collaboration between experts from different fields.
Collapse
Affiliation(s)
- Roberto Lucchini
- Institute of Occupational Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | | | | | | |
Collapse
|
23
|
Huang SH, Frydas S, Conti P, Kempuraj D, Barbacane RC, Grilli A, Boucher W, Letourneau R, Papadopoulou N, Donelan J, Madhappan B, Theoharides TC, De Lutiis MA, Riccioni G, Sabatino G. Interleukin-17: a revisited study. Int J Immunopathol Pharmacol 2004; 17:1-4. [PMID: 15000860 DOI: 10.1177/039463200401700101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Kempuraj D, Devi RS, Madhappan B, Conti P, Nazer MY, Christodoulou S, Reginald J, Suthinthirarajan N, Namasivayam A. T lymphocyte subsets and immunoglobulins in intracranial tumor patients before and after treatment, and based on histological type of tumors. Int J Immunopathol Pharmacol 2004; 17:57-64. [PMID: 15000867 DOI: 10.1177/039463200401700108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been reported that nervous system and peripheral immune system communicate with each other and the peripheral immune status is depressed in some intracranial tumor (ICT) patients pre operatively. Little is known about the immune status of intracranial tumor patients during the post operative survival period. We thus investigated total T cells (CD 11+), helper/inducer (CD4+) T cells, suppressor/cytotoxic (CD8+) T cells, B cells (CD19+) and serum immunoglobulins in peripheral blood in certain ICT patients before and after treatment, and based on the histological type of the tumors. Post treatment analysis were conducted 30 days after surgical removal of tumor tissue in benign brain tumor patients and 30 days after chemo therapy (CT)/radiotherapy (RT) following surgical removal of tumor tissue in malignant brain tumor patients. Decreased CD11+, CD4+ and increased CD8+ T cell counts were observed in both benign and malignant tumor cases before treatment compared with control subjects. After treatment, CD4+ T cell count increased and CD8+ T cell count decreased than their pre treatment levels. Serum IgA and IgG levels were decreased in both benign and malignant brain tumor patients before treatment than in control subjects. Serum IgM level has been increased in both benign and malignant tumor patients before and after treatment than in control subjects. Anaplastic malignant astrocytoma, medulloblastoma and glioblastoma multiforme patients showed higher IgM level than astrocytoma, meningioma and ependymoma patients. In conclusions, the depressed host cellular immunity in benign and malignant tumor patients before treatment may be due to the changes in CD4+ and CD8+ counts in addition to tumour specific immunosuppressive factors. Treatment procedures such as surgery, CT and RT may play certain role in the post operative depressed immunosuppression in malignant tumor patients. Humoral immune mechanism (CD19+) in the ICT patients was less markedly affected.
Collapse
Affiliation(s)
- D Kempuraj
- Depaertment Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kempuraj D, Donelan J, Frydas S, Iezzi T, Conti F, Boucher W, Papadopoulou NG, Madhappan B, Letourneau L, Cao J, Sabatino G, Meneghini F, Stellin L, Verna N, Riccioni G, Theoharides TC. Interleukin-28 and 29 (IL-28 and IL-29): new cytokines with anti-viral activities. Int J Immunopathol Pharmacol 2004; 17:103-6. [PMID: 15171810 DOI: 10.1177/039463200401700201] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|