1
|
Gladen-Kolarsky N, Neff CJ, Hack W, Brandes MS, Wiedrick J, Meza-Romero R, Lockwood DR, Quinn JF, Offner H, Vandenbark AA, Gray NE. The CD74 inhibitor DRhQ improves short-term memory and mitochondrial function in 5xFAD mouse model of Aβ accumulation. Metab Brain Dis 2025; 40:95. [PMID: 39808341 DOI: 10.1007/s11011-024-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression. Here, we evaluate its effects in amyloid-β (Aβ) overexpressing mice. 5xFAD mice and their wild type littermates were treated with DRhQ (100 µg) or vehicle for 4 weeks. DRhQ improved cognition and cortical mitochondrial function in both male and female 5xFAD mice. Aβ plaque burden in 5xFAD animals was not robustly impacted by DRhQ treatment in either the hippocampus or the cortex. Cortical microglial activation was similarly not apparently affected by DRhQ treatment, although in the hippocampus there was evidence of a reduction in activated microglia for female 5xFAD mice. Future studies are needed to confirm this possible sex-dependent response on microglial activation, as well as to optimize the dose and timing of DRhQ treatment and gain a better understanding of its mechanism of action in AD.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cody J Neff
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mikah S Brandes
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, OHSU-PSU School of Public Health, Portland, OR, 97201, USA
| | - Roberto Meza-Romero
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Denesa R Lockwood
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Halina Offner
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
4
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
5
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
6
|
Balaguer F, Barrena M, Enrique M, Maicas M, Álvarez B, Tortajada M, Chenoll E, Ramón D, Martorell P. Bifidobacterium animalis subsp. lactis BPL1™ and Its Lipoteichoic Acid Modulate Longevity and Improve Age/Stress-Related Behaviors in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:2107. [PMID: 38136226 PMCID: PMC10740966 DOI: 10.3390/antiox12122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Life expectancy has increased globally in recent decades, driving interest in maintaining a healthy life that includes preservation of physical and mental abilities, particularly in elderly people. The gut microbiome becomes increasingly perturbed with aging so the use of probiotics can be a strategy for maintaining a balanced gut microbiome. A previous report showed that Bifidobacterium animalis subsp. lactis BPL1™ induces through its lipoteichoic acid (LTA) fat reduction activities via the insulin/IGF-1 signaling pathway. Here, we have delved into the mechanism of action, eliminating alternative pathways as putative mechanisms. Furthermore, we have identified that BPL1™, its heat treated form (BPL1™ HT) and its LTA prolong longevity in Caenorhabditis elegans (C. elegans) in an insulin/IGF-1-dependent mechanism, and its consumption improves the oxidative stress response, gut permeability and protection against pathogenic infections. Furthermore, positive effects on C. elegans stress-related behaviors and in the Alzheimer's Disease model were found, highlighting the potential of the strain in improving the cognitive functions and proteotoxicity in the nematode. These results indicate the pivotal role of the IGF-1 pathway in the activity of the strain and pave the way for potential applications of BPL1™, BPL1™ HT and its LTA in the field of longevity and age-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain (M.B.); (M.E.); (M.T.); (E.C.)
| |
Collapse
|
7
|
Tancheva L, Kalfin R, Minchev B, Uzunova D, Tasheva K, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Solak A, Lazarova M, Hodzhev Y, Grigorova V, Yarkov D, Petkova-Kirova P. Memory Recovery Effect of a New Bioactive Innovative Combination in Rats with Experimental Dementia. Antioxidants (Basel) 2023; 12:2050. [PMID: 38136170 PMCID: PMC10740861 DOI: 10.3390/antiox12122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- National Sports Academy, Department of Physiology and Biochemistry, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Ayten Solak
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd 53, 1407 Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, Yanko Sakazov Blvd 26, 1504 Sofia, Bulgaria;
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Dobri Yarkov
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| |
Collapse
|
8
|
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ. Anti-Amnesia-like Effect of Pinus densiflora Extract by Improving Apoptosis and Neuroinflammation on Trimethyltin-Induced ICR Mice. Int J Mol Sci 2023; 24:14084. [PMID: 37762386 PMCID: PMC10531555 DOI: 10.3390/ijms241814084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aβ accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1β. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| |
Collapse
|
9
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative blood-based characterization of oxidative mitochondrial DNA damage variants implicates Mexican American's metabolic risk for developing Alzheimer's disease. Sci Rep 2023; 13:14765. [PMID: 37679478 PMCID: PMC10484983 DOI: 10.1038/s41598-023-41190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Family Medicine, Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics and Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
10
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Lee EG, Leong L, Chen S, Tulloch J, Yu CE. APOE Locus-Associated Mitochondrial Function and Its Implication in Alzheimer's Disease and Aging. Int J Mol Sci 2023; 24:10440. [PMID: 37445616 PMCID: PMC10341489 DOI: 10.3390/ijms241310440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The Apolipoprotein E (APOE) locus has garnered significant clinical interest because of its association with Alzheimer's disease (AD) and longevity. This genetic association appears across multiple genes in the APOE locus. Despite the apparent differences between AD and longevity, both conditions share a commonality of aging-related changes in mitochondrial function. This commonality is likely due to accumulative biological effects partly exerted by the APOE locus. In this study, we investigated changes in mitochondrial structure/function-related markers using oxidative stress-induced human cellular models and postmortem brains (PMBs) from individuals with AD and normal controls. Our results reveal a range of expressional alterations, either upregulated or downregulated, in these genes in response to oxidative stress. In contrast, we consistently observed an upregulation of multiple APOE locus genes in all cellular models and AD PMBs. Additionally, the effects of AD status on mitochondrial DNA copy number (mtDNA CN) varied depending on APOE genotype. Our findings imply a potential coregulation of APOE locus genes possibly occurring within the same topologically associating domain (TAD) of the 3D chromosome conformation. The coordinated expression of APOE locus genes could impact mitochondrial function, contributing to the development of AD or longevity. Our study underscores the significant role of the APOE locus in modulating mitochondrial function and provides valuable insights into the underlying mechanisms of AD and aging, emphasizing the importance of this locus in clinical research.
Collapse
Affiliation(s)
- Eun-Gyung Lee
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Lesley Leong
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sunny Chen
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jessica Tulloch
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer's Disease. Antibodies (Basel) 2023; 12:41. [PMID: 37366656 DOI: 10.3390/antib12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
In the elderly, a debilitating condition known as dementia, which is a major health concern, is caused by Alzheimer's disease (AD). Despite promising advances by researchers, there is currently no way to completely cure this devastating disease. It is illustrated by the deposition of amyloid β-peptide (Aβ) plaques that are followed by neural dysfunction and cognitive decline. Responses against AD activate an immune system that contributes to and accelerates AD pathogenesis. Potential efforts in the field of pathogenesis have prompted researchers to explore novel therapies such as active and passive vaccines against Aβ proteins (Aβ immunotherapy), intravenous immunoglobulin, and tau immunotherapy, as well as targets that include microglia and several cytokines for the treatment of AD. Aims are now underway by experts to begin immunotherapies before the clinical manifestation, which is made possible by improving the sensitivity of biomarkers used for the diagnosis of AD to have better outcome measures. This review provides an overview of approved immunotherapeutic strategies for AD and those currently being investigated in clinical trials. We examine their mechanisms of action and discuss the potential perspectives and challenges associated with immunotherapies for AD.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Fernandes J, Uppal K, Liu KH, Hu X, Orr M, Tran V, Go YM, Jones DP. Antagonistic Interactions in Mitochondria ROS Signaling Responses to Manganese. Antioxidants (Basel) 2023; 12:804. [PMID: 37107179 PMCID: PMC10134992 DOI: 10.3390/antiox12040804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Antagonistic interaction refers to opposing beneficial and adverse signaling by a single agent. Understanding opposing signaling is important because pathologic outcomes can result from adverse causative agents or the failure of beneficial mechanisms. To test for opposing responses at a systems level, we used a transcriptome-metabolome-wide association study (TMWAS) with the rationale that metabolite changes provide a phenotypic readout of gene expression, and gene expression provides a phenotypic readout of signaling metabolites. We incorporated measures of mitochondrial oxidative stress (mtOx) and oxygen consumption rate (mtOCR) with TMWAS of cells with varied manganese (Mn) concentration and found that adverse neuroinflammatory signaling and fatty acid metabolism were connected to mtOx, while beneficial ion transport and neurotransmitter metabolism were connected to mtOCR. Each community contained opposing transcriptome-metabolome interactions, which were linked to biologic functions. The results show that antagonistic interaction is a generalized cell systems response to mitochondrial ROS signaling.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken H. Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative Blood-Based Characterization of Oxidative Mitochondrial DNA Damage Variants Implicates Mexican Americans' Metabolic Risk for Developing Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-2666242. [PMID: 36993752 PMCID: PMC10055654 DOI: 10.21203/rs.3.rs-2666242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65+) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latinx population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
| | | | | | - Roland J Thorpe
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health
| | - Jie Sun
- University of North Texas Health Science Center
| | | | | |
Collapse
|
15
|
Espinosa-Jiménez T, Cano A, Sánchez-López E, Olloquequi J, Folch J, Bulló M, Verdaguer E, Auladell C, Pont C, Muñoz-Torrero D, Parcerisas A, Camins A, Ettcheto M. A novel rhein-huprine hybrid ameliorates disease-modifying properties in preclinical mice model of Alzheimer's disease exacerbated with high fat diet. Cell Biosci 2023; 13:52. [PMID: 36895036 PMCID: PMC9999531 DOI: 10.1186/s13578-023-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD and the advances made in AD drug research and development, the cure of the disease remains elusive, since any developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiological features. In fact, β-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to derive effective treatments for both conditions. In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, challenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition. RESULTS Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, including Tau hyperphosphorylation, Aβ42 peptide levels and plaque formation. Moreover, we found a decreased inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synaptophysin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD consumption was observed. CONCLUSIONS Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individuals with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improvement of some of the most important hallmarks of the disease.
Collapse
Affiliation(s)
- Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Ace Alzheimer Center Barcelona-International University of Catalunya (UIC), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain
| | - Jordi Olloquequi
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain
| | - Mònica Bulló
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain.,CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain
| | - Ester Verdaguer
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Caterina Pont
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antoni Parcerisas
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain. .,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Tiwari P, Tiwari V, Gupta S, Shukla S, Hanif K. Activation of Angiotensin-converting Enzyme 2 Protects Against Lipopolysaccharide-induced Glial Activation by Modulating Angiotensin-converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. Mol Neurobiol 2023; 60:203-227. [PMID: 36251234 DOI: 10.1007/s12035-022-03061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is associated with activation of glial cells and pro-inflammatory arm of the central Renin Angiotensin System (RAS) namely, Angiotensin-Converting Enzyme/Angiotensin II/Angiotensin Type 1 Receptor (ACE/Ang II/AT1R) axis. Apart from this, another axis of RAS also exists, Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR), which counters ACE/Ang II/AT1R axis by showing anti-inflammatory properties. However, the role of ACE2/Ang (1-7)/MasR axis has not been explored in glial activation and neuroinflammation. Hence, the present study tries to unveil the role of ACE2/Ang (1-7)/MasR axis in lipopolysaccharide (LPS)-induced neuroinflammation using diminazene aceturate (DIZE), an ACE2 activator, in astroglial (C6) and microglial (BV2) cells as well as male SD rats. We found that ACE2 activation efficiently prevented LPS-induced changes by decreasing glial activation, inflammatory signaling, cell migration, ROS generation via upregulation of ACE2/Ang (1-7)/MasR signaling. In addition, activation of ACE2/Ang (1-7)/MasR axis by DIZE significantly suppressed the pro-inflammatory ACE/Ang II/AT1R axis by reducing Ang II level in neuroinflammatory conditions induced by LPS in both in vitro and in vivo. ACE2/Ang (1-7)/MasR axis activation further decreased mitochondrial depolarization and apoptosis, hence providing neuroprotection. Furthermore, to validate that the beneficial effect of the ACE2 activator was indeed through MasR, a selective MasR antagonist (A779) was used that significantly blocked the anti-inflammatory effect of ACE2 activation by DIZE. Hence, our study demonstrated that ACE2 activation imparted neuroprotection by enhancing ACE2/Ang (1-7)/MasR signaling which in turn decreased glial activation, neuroinflammation, and apoptosis and improved mitochondrial health.
Collapse
Affiliation(s)
- Priya Tiwari
- Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shivangi Gupta
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kashif Hanif
- Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
17
|
Li N, Zhang D, Guo H, Yang Q, Li P, He Y. Inhibition of circ_0004381 improves cognitive function via miR-647/PSEN1 axis in an Alzheimer disease mouse model. J Neuropathol Exp Neurol 2022; 82:84-92. [PMID: 36409993 DOI: 10.1093/jnen/nlac108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circ_0004381 promotes neuronal damage in Parkinson disease, but its role in Alzheimer disease (AD) is unreported. The goal of this study was to investigate the role and potential mechanisms of circ_0004381 effects in AD models. Primary hippocampal neurons were treated with amyloid-β (Aβ1-42) to construct AD cell models. We found that circ_0004381 was upregulated in Aβ1-42-treated hippocampal neurons. Knockdown of circ_0004381 attenuated Aβ1-42-induced apoptosis, oxidative stress, and mitochondrial dysfunction in hippocampal neurons. Next, we induced microglia activation with lipopolysaccharide (LPS). The results of flow cytometry experiments showed that knockdown of circ_0004381 promoted microglial M2-type polarization and knockdown of circ_0004381 inhibited the production of inflammatory factors by microglia. Furthermore, knockdown of circ_0004381 improved cognitive function of male APPswe/PS1dE9 transgenic mice. Mechanistically, circ_0004381 regulated presenilin-1 (PSEN1) expression by absorbing miR-647. MiR-647 inhibition attenuated the effects of circ_0004381 knockdown. In conclusion, knockdown of circ_0004381 attenuated hippocampal neuronal damage and promoted microglia M2-type polarization through the miR-647/PSEN1 axis, ultimately improving cognitive function in AD model mice.
Collapse
Affiliation(s)
- Nini Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dongdong Zhang
- Department of Neurosurgery, 521 Hospital of NORINCO Group, Xi'an, Shaanxi, China
| | - Hena Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Peng Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yifan He
- Graduate School, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM 2.5 exposure. J Environ Sci (China) 2022; 122:25-40. [PMID: 35717088 DOI: 10.1016/j.jes.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 µg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384-5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
19
|
Tan W, Zheng Q, Feng K, Feng X, Zhong W, Liao C, Li S, Liu Y, Hu W. Neuroprotection of Gastrodia elata polyphenols against H 2O 2-induced PC12 cell cytotoxicity by reducing oxidative stress. Front Pharmacol 2022; 13:1050775. [PMID: 36438797 PMCID: PMC9684467 DOI: 10.3389/fphar.2022.1050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 08/04/2023] Open
Abstract
It has been suggested that oxidative stress (OS) has a role in the development of aging and neurodegenerative disorders. Biological molecules are easily damaged by reactive oxygen species, which can ultimately result in necrotic or apoptotic cell death. Foods containing phytochemicals, such as phenolic compounds, may have potential preventive effects against several diseases, including alzheimer's disease (AD), according to epidemiological and in vitro research. Gastrodia elata is a well-known homology of medicine and food plant that has been used for centuries in China and other East Asian countries to treat central nervous system disorders. In this study, we focused on the potential of the extract, Gastrodia elata polyphenols (GPP), for the prevention and treatment of AD. H2O2 induced PC12 cell damage was used to simulate the oxidative stress of AD. The effects of GPP on the injury model were evaluated by cell survival rate, lactate dehydrogenase (LDH), lipid peroxidation (MDA), production of intracellular antioxidant enzymes, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cellular inflammation level and apoptosis level. The results showed that GPP pretreatment had a protective effect by increasing cell viability, reducing lactate dehydrogenase infiltration, decreasing MDA and increasing intracellular antioxidant enzymes, diminishing reactive oxygen species production and decreasing mitochondrial membrane potential, reducing cell inflammation and decreasing apoptosis. Accordingly, it is suggested that GPP possessed promising neuroprotective benefits which enabled the prevention or therapeutic implementation of AD along with serving as a reference towards the exploitation of functional foods or drugs derived from Gastrodia elata.
Collapse
Affiliation(s)
- Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Shangjian Li
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Yuntong Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
20
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
21
|
Vijayan M, Alvir RV, Alvir RV, Bunquin LE, Pradeepkiran JA, Reddy PH. A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell 2022; 21:e13663. [PMID: 35801276 PMCID: PMC9381918 DOI: 10.1111/acel.13663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of mental dementia in the aged population. AD is characterized by the progressive decline of memory and multiple cognitive functions, and changes in behavior and personality. Recent research has revealed age-dependent increased levels of VDAC1 in postmortem AD brains and cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal interaction between VDAC1 and P-Tau in the AD brains, leading to mitochondrial structural and functional defects. Our current study aimed to understand the impact of a partial reduction of voltage-dependent anion channel 1 (VDAC1) protein on mitophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in transgenic TAU mice in Alzheimer's disease. To determine if a partial reduction of VDAC1 reduces mitochondrial and synaptic toxicities in transgenic Tau (P301L) mice, we crossed heterozygote VDAC1 knockout (VDAC1+/- ) mice with TAU mice and generated double mutant (VDAC1+/- /TAU) mice. We assessed phenotypic behavior, protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial reduction of VDAC1 rescued the TAU-induced behavioral impairments such as motor coordination and exploratory behavioral changes, and learning and spatial memory impairments in VDAC1+/- /TAU mice. Protein levels of mitophagy, autophagy, and synaptic proteins were significantly increased in double mutant mice compared with TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial number was significantly reduced, and mitochondrial length was increased in double mutant mice. Based on these observations, we conclude that reduced VDAC1 is beneficial in symptomatic-transgenic TAU mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Rainier Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Razelle Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
22
|
Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4243210. [PMID: 35782063 PMCID: PMC9242816 DOI: 10.1155/2022/4243210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Amyloid-beta (Aβ) peptide induces neurotoxicity through oxidative stress and inflammatory response. Brain deposition of a large amount of amyloid-beta (Aβ), in particular Aβ42, promotes the development of Alzheimer’s disease (AD). Maackiain is extracted from traditional Chinese medicine peony root and possesses antioxidative, antiosteoporosis, antitumor, and immunoregulatory effects. Whether Maackiain can reduce neurotoxicity caused by Aβ accumulation remains elusive. Herein, we found that Maackiain downregulated Aβ42-induced cell injury and apoptosis in PC12 cells. Moreover, Maackiain prevented Aβ42 stimulation-induced generation of oxidative stress and reduced Aβ42-caused impairment of mitochondrial membrane potential in PC12 cells. Maackiain increased the superoxide dismutase activity and decreased malondialdehyde content that was induced by Aβ42. Mechanistic studies showed that Maackiain increased intranuclear Nrf2 expression. Consistently, Nrf2 silencing by RNA interference weakened the protective role of Maackiain against Aβ exposure. In addition, calphostin C, a specific antagonist of protein kinase C, attenuated the promoting effects of Maackiain on Nrf2 nuclear translocation. Moreover, calphostin C attenuated the antioxidant and anti-inflammatory capabilities of Maackiain in PC12 cells. Collectively, Maackiain promoted Nrf2 activation through the PKC signaling pathway, thus preventing PC12 cells from Aβ-induced oxidative stress and cell injury, suggesting that Maackiain is a potential drug for AD treatment.
Collapse
|
23
|
Khatoon R, Kaushik P, Parvez S. Mitochondria-Related Apoptosis Regulation by Minocycline: A Study on a Transgenic Drosophila Model of Alzheimer's Disease. ACS OMEGA 2022; 7:19106-19112. [PMID: 35721948 PMCID: PMC9202010 DOI: 10.1021/acsomega.1c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a very complicated and multifactorial neurological disorder having limited therapeutic interventions illustrated by the impairment in memory and cognitive function. Several lines of confirmation are stoutly connected with mitochondrial function perturbation as a significant causative factor in AD, while the molecular mechanisms involved in AD pathogenesis are still poorly understood. Minocycline, a well-known antibiotic, has confirmed efficacy against mitochondrial defects and oxidative stress as a neuroprotective effect. In view of this property, we examined the remedial effect of minocycline on AD. To attain insight into the molecular machinery responsible for AD pathogenesis, we preferred the UAS/GAL4 scheme for the development of AD in flies that overexpress the Aβ42 protein in the brain of Drosophila. The warning signs like the declined lifespan, locomotion deficit and memory loss, impaired mitochondrial membrane potential, and increased caspase 3 expression with mitogen-associated protein kinases linked with AD pathogenesis were examined in the existence of minocycline. Minocycline halted the Aβ42-induced symptoms including behavioral changes and altered the mitochondrial membrane potential along with apoptotic factors' protein expression (JNK/p-JNK and caspase 3). Thus, the current study could be functional to find out the role of minocycline in human Aβ42-overexpressed transgenic AD flies.
Collapse
Affiliation(s)
| | | | - Suhel Parvez
- . Tel.: +91 11 26059688x5573. Fax: +91 11 26059663
| |
Collapse
|
24
|
Tarasiuk O, Ballarini E, Donzelli E, Rodriguez-Menendez V, Bossi M, Cavaletti G, Scuteri A. Making Connections: Mesenchymal Stem Cells Manifold Ways to Interact with Neurons. Int J Mol Sci 2022; 23:ijms23105791. [PMID: 35628600 PMCID: PMC9146463 DOI: 10.3390/ijms23105791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.
Collapse
|
25
|
Hasan N, Zameer S, Najmi AK, Parvez S, Akhtar M. Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway. Neurotox Res 2022; 40:432-448. [PMID: 35192144 DOI: 10.1007/s12640-022-00482-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurological disease that gradually causes memory loss and cognitive impairment. The intracellular secondary messenger cyclic nucleotide cAMP helps in memory acquisition and consolidation. In several models of AD, increasing their levels using phosphodiesterase (PDE) inhibitors improved cognitive performance and prevent memory loss. Thus, the current investigation was undertaken to investigate the therapeutic potential of the PDE-4 inhibitor roflumilast (RFM) against intracerebroventricular (ICV) streptozotocin (STZ)-induced sporadic AD in rats. STZ (3 mg/kg) was given to rats via the ICV route on the stereotaxic apparatus, followed by RFM (0.51 mg/kg/oral) treatment for 15 days, and donepezil (5 mg/kg/oral) was employed as a reference standard drug. Subsequently, we observed that RFM dramatically increased rats learning and memory capacities as measured by the Morris water maze and a novel object recognition task. RFM enhanced the levels of cAMP and brain-derived neurotrophic factors (BDNFs) while decreasing the expression of nuclear factor kappa B (NF-κB) and glial fibrillary acidic protein (GFAP) in the hippocampus of ICV-STZ-infused rats. RFM was found to significantly reduce ICV-STZ-induced neuroinflammation, amyloidogenesis, oxidative stress cholinergic impairments, GSK-3β, and phosphorylated tau levels in the rat hippocampus. Supporting these, histopathological study using Cresyl violet and Congo red demonstrated that RFM reduced neuronal alterations and Aβ deposition in the hippocampus of AD rats. These findings suggest that RFM could be a promising candidate for the management of AD by inhibiting NF-κB/BACE-1 mediated Aβ production in the hippocampus and activating the cAMP/BDNF signalling pathway.
Collapse
Affiliation(s)
- Noorul Hasan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New DelhI, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
26
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Cocchi M, Mondo E, Romeo M, Traina G. The Inflammatory Conspiracy in Multiple Sclerosis: A Crossroads of Clues and Insights through Mast Cells, Platelets, Inflammation, Gut Microbiota, Mood Disorders and Stem Cells. Int J Mol Sci 2022; 23:ijms23063253. [PMID: 35328673 PMCID: PMC8950240 DOI: 10.3390/ijms23063253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple Sclerosis is a chronic neurological disease characterized by demyelination and axonal loss. This pathology, still largely of unknown etiology, carries within it a complex series of etiopathogenetic components of which it is difficult to trace the origin. An inflammatory state is likely to be the basis of the pathology. Crucial elements of the inflammatory process are the interactions between platelets and mast cells as well as the bacterial component of the intestinal microbiota. In addition, the involvement of mast cells in autoimmune demyelinating diseases has been shown. The present work tries to hang up on that Ariadne’s thread which, in the molecular complexity of the interactions between mast cells, platelets, microbiota and inflammation, characterizes Multiple Sclerosis and attempts to bring the pathology back to the causal determinism of psychopathological phenomenology. Therefore, we consider the possibility that the original error of Multiple Sclerosis can be investigated in the genetic origin of the depressive pathology.
Collapse
Affiliation(s)
- Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| |
Collapse
|
28
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
29
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
30
|
Behof WJ, Whitmore CA, Haynes JR, Rosenberg AJ, Tantawy MN, Peterson TE, Harrison FE, Beelman RB, Wijesinghe P, Matsubara JA, Wellington P. Improved synthesis of an ergothioneine PET radioligand for imaging oxidative stress in Alzheimer's disease. FEBS Lett 2022; 596:1279-1289. [PMID: 35100442 PMCID: PMC9167250 DOI: 10.1002/1873-3468.14303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
L-ergothioneine (ERGO) is a potent antioxidant with cytoprotective effects. To study ERGO biodistribution and detect oxidative stress in vivo, we report an efficient and reproducible preparation of [11 C]-labeled ERGO PET radioligand based on protecting the histidine carboxylic group with a methyl ester. Overall, this new protection approach using methyl ester improved the chemical yield of a 4-step reaction from 14% to 24% compared to the previous report using t-butyl ester. The [11 C]CH3 methylation of the precursor provided the desired product with 55 ± 10% radiochemical purity and a molar activity of 450 ± 200 TBq/mmol. The [11 C]ERGO radioligand was able to detect threshold levels of oxidative stress in a preclinical animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- William J Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Clayton A Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Adam J Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fiona E Harrison
- Department of Medicine, Endocrinology & Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Robert B Beelman
- Department of Food Science, Center for Plant and Mushroom Foods for Health, Penn State University, University Park, PA, 16802, USA
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pham Wellington
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
31
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
32
|
Mohammadi N, Asle-Rousta M, Rahnema M, Amini R. Morin attenuates memory deficits in a rat model of Alzheimer's disease by ameliorating oxidative stress and neuroinflammation. Eur J Pharmacol 2021; 910:174506. [PMID: 34534533 DOI: 10.1016/j.ejphar.2021.174506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
This study aimed to investigate the effect of flavonoid morin on oxidative/nitrosative stress, neuroinflammation, and histological, molecular, and behavioral changes caused by amyloid-beta (Aβ)1-42 in male Wistar rats (Alzheimer's disease model). Rats received morin (20 mg/kg, oral gavage) for 14 consecutive days after intrahippocampal injection of Aβ1-42. Morin decreased the levels of malondialdehyde and nitric oxide, increased glutathione content, and enhanced catalase activity in the hippocampus of animals receiving Aβ1-42. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-D-aspartate receptor subunits 2A and 2B and increased the expression of brain-derived neurotrophic factor and α7 nicotinic acetylcholine receptor in the hippocampus of Aβ1-42-injected rats. Besides, morin modified neuronal loss and histological changes in the CA1 region of the hippocampus. Morin allowed Aβ1-42-infused rats to swim more time in the target quadrant in the Morris water maze test. It is concluded that morin may be suitable for the prevention and treatment of Alzheimer's disease by strengthening the antioxidant system, inhibiting neuroinflammation, preventing neuronal death, and enhancing memory function.
Collapse
Affiliation(s)
- Negin Mohammadi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
33
|
Lazarova M, Tancheva L, Alexandrova A, Tsvetanova E, Georgieva A, Stefanova M, Tsekova D, Vezenkov L, Kalfin R, Uzunova D, Petkova-Kirova P. Effects of New Galantamine Derivatives in a Scopolamine Model of Dementia in Mice. J Alzheimers Dis 2021; 84:671-690. [PMID: 34569967 DOI: 10.3233/jad-215165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive functions decline, is a leading cause for dementia and currently ranked as the sixth foremost cause of death. As of present, treatment of AD is symptomatic without convincing therapeutic benefits and new, effective, therapeutic agents are pursued. Due to massive loss of cholinergic neurons and decreased acetylcholine levels, cholinesterase inhibitors like galantamine, remain the backbone of pharmacological treatment of the disease. In the present study, using behavioral and biochemical methods, four newly synthesized galantamine derivatives, Gal 34, Gal 43, Gal 44, and Gal 46, were evaluated for a beneficial effect in a scopolamine model of dementia in mice. They were designed to have all the advantages of galantamine and additionally to inhibit β-secretase and exert favorable effects on plasma lipids. Behavioral tests included step-through inhibitory avoidance, T-maze, and the hole-board test, whereas biochemical evaluations involved assessment of acetylcholinesterase activity, brain monoamines levels, lipid peroxidation, catalase, glutathione peroxidase, and superoxide dismutase activities along with measurement of total glutathione. Results show that Gal 43, Gal 44, and, in particular, Gal 46 are especially effective in improving both short- and long-term memory and in the case of Gal 46 having a significant effect on exploratory activity as well. Although Gal 34 did not show behavioral effects as convincing as those of the other three galantamine derivatives, it demonstrated persuasive antioxidant and restorative capacities, making all four galantamine derivatives promising AD treatment agents and prompting further research, especially that in many of our studies they performed better than galantamine.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Sports Academy, Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Daniela Tsekova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Lyubomir Vezenkov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
34
|
Zhi Z, Tang X, Wang Y, Chen R, Ji H. Sinensetin Attenuates Amyloid Beta 25-35-Induced Oxidative Stress, Inflammation, and Apoptosis in SH-SY5Y Cells Through the TLR4/NF-κB Signaling Pathway. Neurochem Res 2021; 46:3012-3024. [PMID: 34309775 DOI: 10.1007/s11064-021-03406-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Sinensetin (SIN) is an important active compound that exists widely in citrus plants, and has been reported to exhibit various pharmacological properties, including anti-oxidative, anti-inflammatory, and anti-tumor. This study was designed to examine whether SIN can protect against amyloid beta (Aβ)-induced neurotoxicity and to elucidate the underlying mechanism. Our results showed that pretreatment with SIN for 1 h, followed by co-treatment with Aβ plus SIN for 24 h, attenuated Aβ25-35-induced cell viability reduction, oxidative stress, inflammation, and apoptosis in a dose-dependent manner. Aβ25-35-induced upregulation of Toll-like receptor 4 (TLR4) expression and nuclear translocation of nuclear factor-kappaB (NF-κB) p65 subunit were inhibited by pretreatment with SIN. Furthermore, the protective effect of SIN was abrogated by TLR4 overexpression. Hence, our data suggested that SIN attenuated Aβ25-35-induced neurotoxicity through the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Zhongwen Zhi
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Xiaohong Tang
- Department of Neurology, Hongze Huai'an District People's Hospital, Huai'an, 223100, Jiangsu, People's Republic of China
| | - Yuqian Wang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Rui Chen
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Hu Ji
- Department of Neurology, Kangda College of Nanjing Medical University Affiliated Lianshui County People's Hospital, 6 Hongri Avenue East, Lianshui County, Huai'an, 223400, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Yang Y, Chen W, Wang X, Ge W. Impact of mitochondrial aldehyde dehydrogenase 2 on cognitive impairment in the AD model mouse. Acta Biochim Biophys Sin (Shanghai) 2021; 53:837-847. [PMID: 33954430 DOI: 10.1093/abbs/gmab057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major life-threatening diseases for the elderly because neither pathogenesis nor effective treatment is available. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) has been shown to reduce the cell-damaging aldehydes in response to reactive oxygen species (ROS). However, whether it plays a role in AD remains elusive. In the present study, we found that ALDH2 overexpression significantly improved the cognitive function of the AD mouse. Behavioral analyses of ALDH2-overexpressing APP/PS1 AD mice showed that the learning and cognitive abilities were significantly higher in these mice than in the control group APP/PS1 mice. Further open-field behavior experiments showed the same results. At the cellular level, ALDH2 protects nerve cells. HT22 cells were challenged with Aβ to establish an AD cell model, in the presence or absence of the ALDH2 activator Alda-1 and ALDH2 inhibitor Daidzin. Incubation with 50 μM Aβ for 24 h significantly reduced HT22 cell survival and cell viability, the effects of which were attenuated by the ALDH2 activator Alda-1 (50 μM). Aβ challenge promoted apoptosis and upregulated caspase3 level but suppressed Bcl-2 level, and the upregulated caspase3 level was reversed by the ALDH-2 agonist Alda-1. Aβ-induced clonal ball abnormal was reversed by Alda-1. Aβ altered the mitochondria geometry evidenced by vacuolar degeneration and membrane rupture, whereas Alda-1 changed the Aβ-induced mitochondria geometry anomalies. Moreover, superoxide anion and toxic 4-hydroxy-nonanal (4-HNE) and ROS increased by Aβ challenge were reversed by Alda-1. Meanwhile, Aβ-induced ATP reduction was reversed by Alda-1. Taken together, ALDH2 overexpression significantly improves the cognitive function of the AD mice. Furthermore, our results suggested that ALDH2 protects against Aβ hippocampal neuronal toxicity possibly through alleviating toxic aldehydes and ROS, as well as increasing ATP production to preserve mitochondrial integrity and reduce neuronal apoptosis.
Collapse
Affiliation(s)
- Ying Yang
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Chen
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
36
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
37
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
38
|
Wang J, Ding Y, Zhuang L, Wang Z, Xiao W, Zhu J. Ginkgolide B‑induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1‑42. Mol Med Rep 2021; 23:457. [PMID: 33880582 PMCID: PMC8072312 DOI: 10.3892/mmr.2021.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ginkgolide B (GB), the diterpenoid lactone compound isolated from the extracts of Ginkgo biloba leaves, significantly improves cognitive impairment, but its potential pharmacological effect on astrocytes induced by β-amyloid (Aβ)1-42 remains to be elucidated. The present study aimed to investigate the protective effect and mechanism of GB on astrocytes with Aβ1-42-induced apoptosis in Alzheimer's disease (AD). Astrocytes obtained from Sprague Dawley rats were randomly divided into control, Aβ, GB and GB + compound C groups. Cell viability and apoptosis were analyzed using Cell Counting Kit-8 and flow cytometry assays, respectively. Protein and mRNA expression levels were analyzed using western blotting and reverse transcription-quantitative PCR, respectively. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and ATP were determined using the corresponding commercial kits. The findings revealed that GB attenuated Aβ1-42-induced apoptosis and the 5′ adenosine monophosphate- activated protein kinase (AMPK) inhibitor compound C reversed the protective effects of GB. In addition, GB reversed Aβ1-42-induced oxidative damage and energy metabolism disorders, including decreases in the levels of SOD, GSH-Px and ATP and increased the levels of MDA and ROS in astrocytes, while compound C reversed the anti-oxidative effect and the involvement of GB in maintaining energy metabolism in astrocytes. Finally, GB decreased the expression levels of the endoplasmic reticulum stress (ERS) proteins and the apoptotic protein CHOP and increased both mRNA and protein expression of the components of the energy metabolism-related AMPK/peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor α and anti-oxidation-related nuclear respiratory factor 2/heme oxygenase 1/NAD(P)H dehydrogenase (quinone 1) pathways and downregulated the expression of β-secretase 1. However, compound C could antagonize these effects. In conclusion, the findings demonstrated that GB protected against Aβ1-42-induced apoptosis by inhibiting ERS, oxidative stress, energy metabolism disorders and Aβ1-42 production probably by activating AMPK signaling pathways. The findings provided an innovative insight into the treatment using GB as a therapeutic in Aβ1-42-related AD.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| |
Collapse
|
39
|
Dragić M, Milićević K, Adžić M, Stevanović I, Ninković M, Grković I, Andjus P, Nedeljković N. Trimethyltin Increases Intracellular Ca 2+ Via L-Type Voltage-Gated Calcium Channels and Promotes Inflammatory Phenotype in Rat Astrocytes In Vitro. Mol Neurobiol 2021; 58:1792-1805. [PMID: 33394334 DOI: 10.1007/s12035-020-02273-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
Astrocytes are the first responders to noxious stimuli by undergoing cellular and functional transition referred as reactive gliosis. Every acute or chronic disorder is accompanied by reactive gliosis, which could be categorized as detrimental (A1) of beneficial (A2) for nervous tissue. Another signature of pathological astrocyte activation is disturbed Ca2+ homeostasis, a common denominator of neurodegenerative diseases. Deregulation of Ca+ signaling further contributes to production of pro-inflammatory cytokines and reactive oxygen species. Trimethyltin (TMT) intoxication is a widely used model of hippocampal degeneration, sharing behavioral and molecular hallmarks of Alzheimer's disease (AD), thus representing a useful model of AD-like pathology. However, the role of astrocyte in the etiopathology of TMT-induced degeneration as well as in AD is not fully understood. In an effort to elucidate the role of astrocytes in such pathological processes, we examined in vitro effects of TMT on primary cortical astrocytes. The application of a range of TMT concentrations (5, 10, 50, and 100 μM) revealed changes in [Ca2+]i in a dose-dependent manner. Specifically, TMT-induced Ca2+ transients were due to L-type voltage-gated calcium channels (VGCC). Additionally, TMT induced mitochondrial depolarization independent of extracellular Ca2+ and disturbed antioxidative defense of astrocyte in several time points (4, 6, and 24 h) after 10 μM TMT intoxication, inducing oxidative and nitrosative stress. Chronic exposure (24 h) to 10 μM TMT induced strong upregulation of main pro-inflammatory factors, components of signaling pathways in astrocyte activation, A1 markers, and VGCC. Taken together, our results provide an insight into cellular and molecular events of astrocyte activation in chronic neuroinflammation.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia.
| | - Katarina Milićević
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanović
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Ninković
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| |
Collapse
|
40
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
41
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
42
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
43
|
Donatienne d'Hose, Danhier P, Northshield H, Isenborghs P, Jordan BF, Gallez B. A versatile EPR toolbox for the simultaneous measurement of oxygen consumption and superoxide production. Redox Biol 2020; 40:101852. [PMID: 33418140 PMCID: PMC7804984 DOI: 10.1016/j.redox.2020.101852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
In this paper, we describe an assay to analyze simultaneously the oxygen consumption rate (OCR) and superoxide production in a biological system. The analytical set-up uses electron paramagnetic resonance (EPR) spectroscopy with two different isotopically-labelled sensors: 15N-PDT (4-oxo-2,2,6,6-tetramethylpiperidine-d16-15N-1-oxyl) as oxygen-sensing probe and 14N-CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine, a cyclic hydroxylamine, as sensor of reactive oxygen species (ROS). The superoxide contribution to CMH oxidation is assessed using SOD or PEGSOD as controls. Because the EPR spectra are not superimposable, the variation of EPR linewidth of 15N-PDT (linked to OCR) and the formation of the nitroxide from 14N-CMH (linked to superoxide production) can be recorded simultaneously over time on a single preparation. The EPR toolbox was qualified in biological systems of increasing complexity. First, we used an enzymatic assay based on the hypoxanthine (HX)/xanthine oxidase (XO) which is a well described model of oxygen consumption and superoxide production. Second, we used a cellular model of superoxide production using macrophages exposed to phorbol 12-myristate 13-acetate (PMA) which stimulates the NADPH oxidase (NOX) to consume oxygen and produce superoxide. Finally, we exposed isolated mitochondria to established inhibitors of the electron transport chain (rotenone and metformin) in order to assess their impact on OCR and superoxide production. This EPR toolbox has the potential to screen the effect of intoxicants or drugs targeting the mitochondrial function. OCR and superoxide production are crucial to assess mitochondrial (dys)function. The EPR toolbox analyzes simultaneously the OCR and superoxide production. The EPR toolbox was validated in enzymatic system, cells and isolated mitochondria. The EPR toolbox has the potential to screen compounds altering mitochondrial function.
Collapse
Affiliation(s)
- Donatienne d'Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Danhier
- Nuclear and Electron Spin Technologies (NEST) Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Heidi Northshield
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pauline Isenborghs
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
44
|
Ung MC, Garrett L, Dalke C, Leitner V, Dragosa D, Hladik D, Neff F, Wagner F, Zitzelsberger H, Miller G, de Angelis MH, Rößler U, Vogt Weisenhorn D, Wurst W, Graw J, Hölter SM. Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. Int J Radiat Biol 2020; 97:156-169. [PMID: 33264576 DOI: 10.1080/09553002.2021.1857455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.
Collapse
Affiliation(s)
- Marie-Claire Ung
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | | | - Daniel Dragosa
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Daniela Hladik
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ute Rößler
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Neuherberg, Germany
| | - Daniela Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, Faculty of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
45
|
Park J, Won J, Seo J, Yeo HG, Kim K, Kim YG, Jeon CY, Kam MK, Kim YH, Huh JW, Lee SR, Lee DS, Lee Y. Streptozotocin Induces Alzheimer's Disease-Like Pathology in Hippocampal Neuronal Cells via CDK5/Drp1-Mediated Mitochondrial Fragmentation. Front Cell Neurosci 2020; 14:235. [PMID: 32903692 PMCID: PMC7438738 DOI: 10.3389/fncel.2020.00235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant brain insulin signaling plays a critical role in the pathology of Alzheimer’s disease (AD). Mitochondrial dysfunction plays a role in the progression of AD, with excessive mitochondrial fission in the hippocampus being one of the pathological mechanisms of AD. However, the molecular mechanisms underlying the progression of AD and mitochondrial fragmentation induced by aberrant brain insulin signaling in the hippocampal neurons are poorly understood. Therefore, we investigated the molecular mechanistic signaling associated with mitochondrial dynamics using streptozotocin (STZ), a diabetogenic compound, in the hippocampus cell line, HT-22 cells. In this metabolic dysfunctional cellular model, hallmarks of AD such as neuronal apoptosis, synaptic loss, and tau hyper-phosphorylation are induced by STZ. We found that in the mitochondrial fission protein Drp1, phosphorylation is increased in STZ-treated HT-22 cells. We also determined that inhibition of mitochondrial fragmentation suppresses STZ-induced AD-like pathology. Furthermore, we found that phosphorylation of Drp1 was induced by CDK5, and inhibition of CDK5 suppresses STZ-induced mitochondrial fragmentation and AD-like pathology. Therefore, these findings indicate that mitochondrial morphology and functional regulation may be a strategy of potential therapeutic for treating abnormal metabolic functions associated with the pathogenesis of AD.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
46
|
Hannan MA, Dash R, Haque MN, Mohibbullah M, Sohag AAM, Rahman MA, Uddin MJ, Alam M, Moon IS. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar Drugs 2020; 18:E347. [PMID: 32630301 PMCID: PMC7401253 DOI: 10.3390/md18070347] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Beyond their significant contribution to the dietary and industrial supplies, marine algae are considered to be a potential source of some unique metabolites with diverse health benefits. The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis, protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders and the associated complications after cerebral ischemia and brain injuries. As was evident in various preclinical studies, algal compounds conferred neuroprotection against a wide range of neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid β, or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders. While a significant number of algal compounds with promising neuroprotective capacity have been identified over the last decades, a few of them have had access to clinical trials. However, the recent approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer's disease enlightened the future of marine algae-based drug discovery. In this review, we briefly outline the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of pharmacological intervention, and then review the literature on the neuroprotective potentials of algal compounds along with the underlying pharmacological mechanism, and present an appraisal on the recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based drug development.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| |
Collapse
|
47
|
Mini Nutritional Assessment May Identify a Dual Pattern of Perturbed Plasma Amino Acids in Patients with Alzheimer's Disease: A Window to Metabolic and Physical Rehabilitation? Nutrients 2020; 12:nu12061845. [PMID: 32575805 PMCID: PMC7353235 DOI: 10.3390/nu12061845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Conflicting results about alterations of plasma amino acid (AA) levels are reported in subjects with Alzheimer’s disease (AD). The current study aimed to provide more homogeneous AA profiles and correlations between AAs and cognitive tests. Venous plasma AAs were measured in 54 fasting patients with AD (37 males, 17 females; 74.63 ± 8.03 yrs; 3.2 ± 1.9 yrs from symptom onset). Seventeen matched subjects without neurodegenerative symptoms (NNDS) served as a control group (C-NNDS). Patients were tested for short-term verbal memory and attention capacity and stratified for nutritional state (Mini Nutritional Assessment, MNA). Compared to C-NNDS, patients exhibited lower plasma levels of aspartic acid and taurine (p < 0.0001) and higher 3-methylhistidine (p < 0.0001), which were independent of patients’ MNA. In comparison to normonourished AD, the patients at risk of and with malnutrition showed a tendency towards lower ratios of Essential AAs/Total AAs, Branched-chain AAs/Total AAs, and Branched-chain AAs/Essential AAs. Serine and histidine were positively correlated with verbal memory and attention capacity deficits, respectively. Total AAs negatively correlated with attention capacity deficits. Stratifying patients with AD for MNA may identify a dual pattern of altered AAs, one due to AD per se and the other linked to nutritional state. Significant correlations were observed between several AAs and cognitive tests.
Collapse
|
48
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
49
|
Sun Y, Liang L, Dong M, Li C, Liu Z, Gao H. Cofilin 2 in Serum as a Novel Biomarker for Alzheimer's Disease in Han Chinese. Front Aging Neurosci 2019; 11:214. [PMID: 31447667 PMCID: PMC6696795 DOI: 10.3389/fnagi.2019.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
The identification of biomarkers of Alzheimer’s disease (AD) is an important and urgent area of study, not only to aid in the early diagnosis of AD, but also to evaluate potentially new anti-AD drugs. The aim of this study was to explore cofilin 2 in serum as a novel biomarker for AD. The upregulation was observed in AD patients and different AD animal models compared to the controls, as well as in AD cell models. Memantine and donepezil can attenuate the upregulation of cofilin 2 expression in APP/PS1 mice. The serum levels of cofilin 2 in AD or mild cognitive impairment (MCI) patients were significantly higher compared to controls (AD: 167.9 ± 35.3 pg/mL; MCI: 115.9 ± 15.4 pg/mL; Control: 90.5 ± 27.1 pg/mL; p < 0.01). A significant correlation between cofilin 2 levels and cognitive decline was observed (r = –0.792; p < 0.001). The receiver operating characteristic curve (ROC) analysis showed the area under the curve (AUC) of cofilin 2 was 0.957, and the diagnostic accuracy was 80%, with 93% sensitivity and 87% specificity. The optimal cut-off value was 130.4 pg/ml. Our results indicate the possibility of serum cofilin 2 as a novel and non-invasive biomarker for AD. In addition, the expression of cofilin 2 was found to be significantly increased in AD compared to vascular dementia (VaD), and only an increased trend but not significant was detected in VaD compared to the controls. ROC analysis between AD and VaD showed that the AUC was 0.824, which could indicate a role of cofilin 2 as a biomarker in the differential diagnosis between AD and VaD.
Collapse
Affiliation(s)
- Yingni Sun
- School of Life Sciences, Ludong University, Yantai, China
| | - Lisheng Liang
- Department of Pain, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Meili Dong
- Central Sterile Supply Department, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhenzhen Liu
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Jinan, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
50
|
Soluble epoxide hydrolase modulates immune responses in activated astrocytes involving regulation of STAT3 activity. J Neuroinflammation 2019; 16:123. [PMID: 31176371 PMCID: PMC6555999 DOI: 10.1186/s12974-019-1508-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Astrocyte activation is a common pathological feature in many brain diseases with neuroinflammation, and revealing the underlying mechanisms might shed light on the regulatory processes of the diseases. Recently, soluble epoxide hydrolase (sEH) has been proposed to affect neuroinflammation in brain injuries. However, the roles of astrocytic sEH in brains with neurodegeneration remain unclear. METHODS The expression of astrocytic sEH in the brains of APPswe/PSEN1dE9 (APP/PS1) mice developing Alzheimer's disease (AD)-like pathology was evaluated by confocal imaging. LPS-activated primary astrocytes with mRNA silencing or overexpression of sEH were used to investigate its regulatory roles in astrocyte activation and the induction of pro-inflammatory markers. Primary astrocytes isolated from a sEH knockout (sEH-/-) background were also applied. RESULTS The immunoreactivity of sEH was increased in activated astrocytes in parallel with the progression of AD in APP/PS1 mice. Our data from primary astrocyte cultures further demonstrate that the overexpression of sEH ameliorated, while the silencing of sEH mRNA enhanced, the lipopolysaccharides (LPS)-induced expression of pro-inflammatory markers, such as inducible nitric oxide, cyclooxygenase 2 (COX-2), and pro-inflammatory cytokines. These findings suggest that sEH negatively regulates astrocyte immune responses. Enhanced immune responses found in LPS-activated sEH-/- astrocytes also support the notion that the expression of sEH could suppress the immune responses during astrocyte activation. Similarly, sEH-/- mice that received intraperitoneal injection of LPS showed exacerbated astrocyte activation in the brain, as observed by the elevated expression of glial fibrillary acidic protein (GFAP) and pro-inflammatory markers. Moreover, our data show that the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was upregulated in activated astrocytes from sEH mouse brains, and the pharmacological blockade of STAT3 activity alleviated the pro-inflammatory effects of sEH deletion in LPS-activated primary astrocytes. CONCLUSIONS Our results provide evidence, for the first time, showing that sEH negatively regulates astrocytic immune responses and GFAP expression, while the underlying mechanism at least partly involves the downregulation of STAT3 phosphorylation. The discovery of a novel function for sEH in the negative control of astrocytic immune responses involving STAT3 activation confers further insights into the regulatory machinery of astrocyte activation during the development of neurodegeneration.
Collapse
|