1
|
Hosseini SB, Azizi M, Nojoumi SA, Valizadeh V. An up-to-date review of biomedical applications of serratiopeptidase and its biobetter derivatives as a multi-potential metalloprotease. Arch Microbiol 2024; 206:180. [PMID: 38502196 DOI: 10.1007/s00203-024-03889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Serratiopeptidase is a bacterial metalloprotease used in a variety of medical applications. The multidimensional properties of serratiopeptidase make it noticeable as a miraculous enzyme. Anti-coagulant, anti-inflammatory and anti-biofilm activity of serratiopeptidase making it useful in reducing pain and swelling associated with various conditions including arthritis, diabetes, cancer, swelling, pain and also thrombolytic disorders. It breaks down fibrin, thins the fluids formed during inflammation and due to its anti-biofilm activity, can be used in the combination of antibiotics to reduce development of antibiotic resistance. However, some drawbacks like sensitivity to environmental conditions and low penetration into cells due to its large size have limited its usage as a potent pharmaceutical agent. To overcome such limitations, improved versions of the enzyme were introduced using protein engineering in our previous studies. Novel functional serratiopeptidases with shorter length and higher stability have seemingly created a hope for using this enzyme as a more effective therapeutic enzyme. This review explains the structural properties and functional aspects of serratiopeptidase, its main characteristics and properties, pre-clinical and clinical applications of the enzyme, improved qualities of the modified forms, different formulations of the enzyme, and the potential future developments.
Collapse
Affiliation(s)
- Seyedeh Bahareh Hosseini
- New Technologies Research Group, Nanobiotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Azizi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- New Technologies Research Group, Nanobiotechnology Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Katsipis G, Avgoulas DI, Geromichalos GD, Petala M, Pantazaki AA. In vitro and in silico evaluation of the serrapeptase effect on biofilm and amyloids of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2023; 107:7269-7285. [PMID: 37741938 PMCID: PMC10638192 DOI: 10.1007/s00253-023-12772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
| | - Dimitrios I Avgoulas
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Laboratory of Chemical and Environmental Technology, Deparment of Chemistry, Aristotle University of Thessaloniki, 54 124, 54124, Thessaloniki, Greece
| | - George D Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
3
|
Cai Y, Chen X, Huang C, Chen Y, Zhang C, Huang Z, Zhang W, Tang Y, Fang X. Alteration of m 6A-Tagged RNA Profiles in Bone Originated from Periprosthetic Joint Infection. J Clin Med 2023; 12:jcm12082863. [PMID: 37109200 PMCID: PMC10146075 DOI: 10.3390/jcm12082863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Periprosthetic joint infection (PJI) is a devastating complication. This study aimed to unravel the veil of the N6-methyladenine (m6A) modification in PJI. Synovium, synovial fluid, sonication fluid and bone samples were collected intraoperatively from Staphylococcus aureus PJI and aseptic failure (AF) patients. The overall m6A level was detected by the m6A RNA methylation quantification kit, and the expression of m6A-related genes was quantified by real-time PCR and Western blot. Finally, an epitranscriptomic microarray and bioinformatics analysis were performed. We showed that there was a significant difference in overall m6A level between the PJI group and the AF group (PJI group had a higher overall m6A level). The expression level of METTL3 was higher in the PJI group than that in the AF group. There were 2802 differential m6A-modified mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential m6A-modified mRNAs were significantly enriched in the NOD-like receptor signaling pathway, Th17 cell differentiation and the IL-17 signaling pathway, which indicates that the m6A modification might be involved in the processes of infection and immune response, bone metabolism and programmed cell death in PJI. In summary, the present work demonstrated that m6A modification plays a role in PJI and might be a therapeutic target for developing effective treatment strategies.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363000, China
| | - Xiaoqing Chen
- Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Changyu Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yang Chen
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chaofan Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zida Huang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Wenming Zhang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yusen Tang
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363000, China
| | - Xinyu Fang
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
4
|
Yadav V, Sharma S, Kumar A, Singh S, Ravichandiran V. Serratiopeptidase Attenuates Lipopolysaccharide-Induced Vascular Inflammation by Inhibiting the Expression of Monocyte Chemoattractant Protein-1. Curr Issues Mol Biol 2023; 45:2201-2212. [PMID: 36975512 PMCID: PMC10047379 DOI: 10.3390/cimb45030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023] Open
Abstract
Lipopolysaccharide (LPS) has potent pro-inflammatory properties and acts on many cell types including vascular endothelial cells. The secretion of the cytokines MCP-1 (CCL2), interleukins, and the elevation of oxidative stress by LPS-activated vascular endothelial cells contribute substantially to the pathogenesis of vascular inflammation. However, the mechanism involving LPS-induced MCP-1, interleukins, and oxidative stress together is not well demonstrated. Serratiopeptidase (SRP) has been widely used for its anti-inflammatory effects. In this research study, our intention is to establish a potential drug candidate for vascular inflammation in cardiovascular disorder conditions. We used BALB/c mice because this is the most successful model of vascular inflammation, suggested and validated by previous research findings. Our present investigation examined the involvement of SRP in vascular inflammation caused by lipopolysaccharides (LPSs) in a BALB/c mice model. We analyzed the inflammation and changes in the aorta by H&E staining. SOD, MDA, and GPx levels were determined as per the instructions of the kit protocols. ELISA was used to measure the levels of interleukins, whereas immunohistochemistry was carried out for the evaluation of MCP-1 expression. SRP treatment significantly suppressed vascular inflammation in BALB/c mice. Mechanistic studies demonstrated that SRP significantly inhibited the LPS-induced production of proinflammatory cytokines such as IL-2, IL-1, IL-6, and TNF-α in aortic tissue. Furthermore, it also inhibited LPS-induced oxidative stress in the aortas of mice, whereas the expression and activity of monocyte chemoattractant protein-1 (MCP-1) decreased after SRP treatment. In conclusion, SRP has the ability to reduce LPS-induced vascular inflammation and damage by modulating MCP-1.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata 700054, West Bengal, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar 160062, Punjab, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
5
|
Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Appl Microbiol Biotechnol 2023; 107:1373-1389. [PMID: 36635396 PMCID: PMC9898353 DOI: 10.1007/s00253-022-12356-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 μg/mL and 7.70 μg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 μg/mL and ≥ 8 μg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 μg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.
Collapse
|
6
|
Artini M, Vrenna G, Trecca M, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Serratiopeptidase Affects the Physiology of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:12645. [PMID: 36293502 PMCID: PMC9604282 DOI: 10.3390/ijms232012645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/25/2023] Open
Abstract
Pseudomonas aeruginosa is frequently involved in cystic fibrosis (CF) airway infections. Biofilm, motility, production of toxins and the invasion of host cells are different factors that increase P. aeruginosa's virulence. The sessile phenotype offers protection to bacterial cells and resistance to antimicrobials and host immune attacks. Motility also contributes to bacterial colonization of surfaces and, consequently, to biofilm formation. Furthermore, the ability to adhere is the prelude for the internalization into lung cells, a common immune evasion mechanism used by most intracellular bacteria, such as P. aeruginosa. In previous studies we evaluated the activity of metalloprotease serratiopeptidase (SPEP) in impairing virulence-related properties in Gram-positive bacteria. This work aimed to investigate SPEP's effects on different physiological aspects related to the virulence of P. aeruginosa isolated from CF patients, such as biofilm production, pyoverdine and pyocyanin production and invasion in alveolar epithelial cells. Obtained results showed that SPEP was able to impair the attachment to inert surfaces as well as adhesion/invasion of eukaryotic cells. Conversely, SPEP's effect on pyocyanin and pyoverdine production was strongly strain-dependent, with an increase and/or a decrease of their production. Moreover, SPEP seemed to increase swarming motility and staphylolytic protease production. Our results suggest that a large number of clinical strains should be studied in-depth before drawing definitive conclusions. Why different strains sometimes react in opposing ways to a specific treatment is of great interest and will be the object of future studies. Therefore, SPEP affects P. aeruginosa's physiology by differently acting on several bacterial factors related to its virulence.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Li J, Wen Q, Gu F, An L, Yu T. Non-antibiotic strategies for prevention and treatment of internalized Staphylococcus aureus. Front Microbiol 2022; 13:974984. [PMID: 36118198 PMCID: PMC9471010 DOI: 10.3389/fmicb.2022.974984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are often difficult to cure completely. One of the main reasons for this difficulty is that S. aureus can be internalized into cells after infecting tissue. Because conventional antibiotics and immune cells have difficulty entering cells, the bacteria can survive long enough to cause recurrent infections, which poses a serious burden in healthcare settings because repeated infections drastically increase treatment costs. Therefore, preventing and treating S. aureus internalization is becoming a research hotspot. S. aureus internalization can essentially be divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM), (2) fibronectin (Fn) receptors mediate S. aureus internalization into cells, and (3) intracellular S. aureus and persistence into cells. Different phases require different treatments. Many studies have reported on different treatments at different phases of bacterial infection. In the first and second phases, the latest research results show that the cell wall-anchored protein vaccine and some microbial agents can inhibit the adhesion of S. aureus to host cells. In the third phase, nanoparticles, photochemical internalization (PCI), cell-penetrating peptides (CPPs), antimicrobial peptides (AMPs), and bacteriophage therapy can effectively eliminate bacteria from cells. In this paper, the recent progress in the infection process and the prevention and treatment of S. aureus internalization is summarized by reviewing a large number of studies.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Qiangqiang Wen
- Department of Orthopedics, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Lijuan An
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Tiecheng Yu,
| |
Collapse
|
8
|
Sharma C, Jha NK, Meeran MFN, Patil CR, Goyal SN, Ojha S. Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19. Front Pharmacol 2021; 12:603997. [PMID: 34248612 PMCID: PMC8265778 DOI: 10.3389/fphar.2021.603997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
- Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
10
|
Different Modulatory Effects of Four Methicillin-Resistant Staphylococcus aureus Clones on MG-63 Osteoblast-Like Cells. Biomolecules 2021; 11:biom11010072. [PMID: 33430251 PMCID: PMC7825699 DOI: 10.3390/biom11010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for a variety of mild to life-threatening infections including bone infections such as osteomyelitis. This bacterium is able to invade and persist within non-professional phagocytic cells such as osteoblasts. In the present study, four different S. aureus strains, namely, 2SA-ST239-III (ST239), 5SA-ST5-II (ST5), 10SA-ST228-I (ST228), and 14SA-ST22-IVh (ST22), were tested for their ability to modulate cell viability in MG-63 osteoblast-like cells following successful invasion and persistence. Methicillin-sensitive S. aureus (MSSA) ATCC-12598-ST30 (ST30) was used as control strain. Despite being proven that ST30, ST239, and ST22 have a similar ability to internalize and persist in MG-63 osteoblast-like cells under our experimental conditions, we demonstrated that the observed decrease in cell viability was due to the different behavior of the considered strains, rather than the number of intracellular bacteria. We focused our attention on different biochemical cell functions related to inflammation, cell metabolism, and oxidative stress during osteoblast infections. We were able to show the following: (1) ST30 and ST239 were the only two clones able to persist and maintain their number in the hostile environment of the cell during the entire period of infection; (2) ST239 was the only clone able to significantly increase gene expression (3 and 24 h post-infection (p.i.)) and protein secretion (24 h p.i.) of both interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in MG-63 osteoblast-like cells; (3) the same clone determined a significant up-regulation of the transforming growth factorbeta 1 (TGF-β1) and of the metabolic marker glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNAs at 24 h p.i.; and (4) neither the MSSA nor the four methicillin-resistant S. aureus (MRSA) strains induced oxidative stress phenomena in MG-63 cells, although a high degree of variability was observed for the different clones with regard to the expression pattern of nuclear factor E2-related factor 2 (Nrf2) and its downstream gene heme oxygenase 1 (HO-1) activation. Our results may pave the way for an approach to S. aureus-induced damage, moving towards individualized therapeutic strategies that take into account the differences between MSSA and MRSA as well as the distinctive features of the different clones. This approach is based on a change of paradigm in antibiotic therapy involving a case-based use of molecules able to counteract pro-inflammatory cytokines activity such as selective cytokine signaling inhibitors (IL-6, TNF-α).
Collapse
|
11
|
Jadhav SB, Shah N, Rathi A, Rathi V, Rathi A. Serratiopeptidase: Insights into the therapeutic applications. ACTA ACUST UNITED AC 2020; 28:e00544. [PMID: 33134103 PMCID: PMC7585045 DOI: 10.1016/j.btre.2020.e00544] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
Abstract
Therapeutic applications of enzymes have been widely accepted in clinical practices for decades. Proteolytic enzymes in particular, have been used for the treatment of diseases and disorders. Serratiopeptidase is a proteolytic enzyme having immense applications in therapeutic areas which have been validated by several in vitro, in vivo, and clinical studies as well as through anecdotal evidences. These applications are attributable to its versatile properties including anti-inflammatory, anti-biofilm, analgesic, anti-edemic, and fibrinolytic effects. The significant impact of serratiopeptidase reported needs to be backed by more scientific data. This review encompasses the details of therapeutic applications of serratiopeptidase based on available in vitro, in vivo, and clinical studies. We found some strong evidences regarding the efficacy of serratiopeptidase. However data on safety, tolerability, and its mechanism of action need detailing. This review aims to further explore the available literature on serratiopeptidase as well as provide scientific details for existing applications.
Collapse
Affiliation(s)
- Swati B. Jadhav
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, (w)-400604, India
- Corresponding author.
| | - Neha Shah
- Pulmonary Fibrosis Now! Chino, CA, 91710, United States
| | - Ankit Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, (w)-400604, India
- Specialty Enzymes and Probiotics, Yorba Ave, Chino, CA, 91710, United States
| | - Vic Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, (w)-400604, India
- Specialty Enzymes and Probiotics, Yorba Ave, Chino, CA, 91710, United States
| | - Abhijit Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, (w)-400604, India
| |
Collapse
|
12
|
Leite EL, Gautron A, Deplanche M, Nicolas A, Ossemond J, Nguyen MT, do Carmo FLR, Gilot D, Azevedo V, Goetz F, Le Loir Y, Otto M, Berkova N. Involvement of caspase-1 in inflammasomes activation and bacterial clearance in S. aureus-infected osteoblast-like MG-63 cells. Cell Microbiol 2020; 22:e13204. [PMID: 32176433 PMCID: PMC10988652 DOI: 10.1111/cmi.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus, a versatile Gram-positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase-1 that proteolytically matures and promotes the secretion of mature IL-1β and IL-18. The role of inflammasomes and caspase-1 in the secretion of mature IL-1β and in the defence of S. aureus-infected osteoblasts has not yet been fully investigated. We show here that S. aureus-infected osteoblast-like MG-63 but not caspase-1 knock-out CASP1 -/- MG-63 cells, which were generated using CRISPR-Cas9 technology, activate the inflammasome as monitored by the release of mature IL-1β. The effect was strain-dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes-related IL-1β production. Furthermore, we found that the lack of caspase-1 in CASP1 -/- MG-63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 -/- MG-63 compared to wild-type cells. Our results demonstrate that osteoblast-like MG-63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase-1 in bacterial clearance.
Collapse
Affiliation(s)
- Elma Lima Leite
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Arthur Gautron
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Martine Deplanche
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Aurelie Nicolas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Jordane Ossemond
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Minh Thu Nguyen
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen 63225, Germany
| | - Fillipe L. R. do Carmo
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - David Gilot
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Friedrich Goetz
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | - Yves Le Loir
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nadia Berkova
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| |
Collapse
|
13
|
Baude J, Bastien S, Gillet Y, Leblanc P, Itzek A, Tristan A, Bes M, Duguez S, Moreau K, Diep BA, Norrby-Teglund A, Henry T, Vandenesch F. Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. J Infect Dis 2020; 220:710-719. [PMID: 31001627 DOI: 10.1093/infdis/jiz167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Necrotizing soft tissue infections (NSTIs) caused by group A Streptococcus (GAS) and occasionally by Staphylococcus aureus (SA) frequently involve the deep fascia and often lead to muscle necrosis. METHODS To assess the pathogenicity of GAS and S. aureus for muscles in comparison to keratinocytes, adhesion and invasion of NSTI-GAS and NSTI-SA isolates were assessed in these cells. Bloodstream infections (BSI-SA) and noninvasive coagulase-negative staphylococci (CNS) isolates were used as controls. RESULTS NSTI-SA and BSI-SA exhibited stronger internalization into human keratinocytes and myoblasts than NSTI-GAS or CNS. S. aureus internalization reached over 30% in human myoblasts due to a higher percentage of infected myoblasts (>11%) as compared to keratinocytes (<3%). Higher cytotoxicity for myoblasts of NSTI-SA as compared to BSI-SA was attributed to higher levels of psmα and RNAIII transcripts in NSTI-SA. However, the 2 groups were not discriminated at the genomic level. The cellular basis of high internalization rate in myoblasts was attributed to higher expression of α5β1 integrin in myoblasts. Major contribution of FnbpAB-integrin α5β1 pathway to internalization was confirmed by isogenic mutants. CONCLUSIONS Our findings suggest a factor in NSTI-SA severity is the strong invasiveness of S. aureus in muscle cells, a property not shared by NSTI-GAS isolates.
Collapse
Affiliation(s)
- Jessica Baude
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Sylvère Bastien
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Yves Gillet
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Pascal Leblanc
- NeuroMyoGene Institute, Université de Lyon, CNRS UMR5310, INSERM U1217, France
| | - Andreas Itzek
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anne Tristan
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Michèle Bes
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | - Stephanie Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Université de Lyon; Inserm U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, CNRS, UMR5308; Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, France
| | | |
Collapse
|
14
|
Wen Q, Gu F, Sui Z, Su Z, Yu T. The Process of Osteoblastic Infection by Staphylococcus Aureus. Int J Med Sci 2020; 17:1327-1332. [PMID: 32624688 PMCID: PMC7330672 DOI: 10.7150/ijms.45960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Bone infection is difficult to cure, and relapse frequently occurs, which is a major treatment problem. One of the main reasons for the refractory and recurrent nature of bone infection is that bacteria, such as Staphylococcus aureus (S. aureus), can be internalized into osteoblasts after infecting bone tissue, thereby avoiding attack by the immune system and antibiotics. Understanding how bacteria (such as S. aureus) are internalized into osteoblasts is key to effective treatment. S. aureus is the most common pathogenic bacterium that causes bone infection. This paper reviews the literature, analyzes the specific process of osteoblastic S. aureus infection, and summarizes specific treatment strategies to improve bone infection treatment.
Collapse
Affiliation(s)
- Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
15
|
Deplanche M, Mouhali N, Nguyen MT, Cauty C, Ezan F, Diot A, Raulin L, Dutertre S, Langouet S, Legembre P, Taieb F, Otto M, Laurent F, Götz F, Le Loir Y, Berkova N. Staphylococcus aureus induces DNA damage in host cell. Sci Rep 2019; 9:7694. [PMID: 31118484 PMCID: PMC6531466 DOI: 10.1038/s41598-019-44213-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus causes serious medical problems in human and animals. Here we show that S. aureus can compromise host genomic integrity as indicated by bacteria-induced histone H2AX phosphorylation, a marker of DNA double strand breaks (DSBs), in human cervix cancer HeLa and osteoblast-like MG-63 cells. This DNA damage is mediated by alpha phenol-soluble modulins (PSMα1–4), while a specific class of lipoproteins (Lpls), encoded on a pathogenicity island in S. aureus, dampens the H2AX phosphorylation thus counteracting the DNA damage. This DNA damage is mediated by reactive oxygen species (ROS), which promotes oxidation of guanine forming 7,8-dihydro-8-oxoguanine (8-oxoG). DNA damage is followed by the induction of DNA repair that involves the ATM kinase-signaling pathway. An examination of S. aureus strains, isolated from the same patient during acute initial and recurrent bone and joint infections (BJI), showed that recurrent strains produce lower amounts of Lpls, induce stronger DNA-damage and prompt the G2/M transition delay to a greater extent that suggest an involvement of these mechanisms in adaptive processes of bacteria during chronicization. Our findings redefine our understanding of mechanisms of S. aureus-host interaction and suggest that the balance between the levels of PSMα and Lpls expression impacts the persistence of the infection.
Collapse
Affiliation(s)
| | | | - Minh-Thu Nguyen
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset UMR_S 1085, F-35000, Rennes, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, Université Lyon 1, Lyon, France.,Centre National de Référence des Staphylocoques, Lyon, France
| | - Lesly Raulin
- CNRS, Inserm, BIOSIT-UMS 3480, MRic, Université de Rennes, Rennes, France
| | - Stephanie Dutertre
- CNRS, Inserm, BIOSIT-UMS 3480, MRic, Université de Rennes, Rennes, France
| | - Sophie Langouet
- Univ Rennes, Inserm, EHESP, Irset UMR_S 1085, F-35000, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, Université Lyon 1, Lyon, France.,Centre National de Référence des Staphylocoques, Lyon, France
| | - Friedrich Götz
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|