1
|
Afkhami Fathabad A, Shekarforoush S, Hoseini M, Ebrahimi Z. Attenuation of Sulfite-Induced Testicular Injury in Rats by Zingiber officinale Roscoe. J Diet Suppl 2018; 15:398-409. [PMID: 28820276 DOI: 10.1080/19390211.2017.1349233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sulfite salts, including sodium metabisulfte, are widely used as preservatives in foods and pharmaceutical agents. Previous studies suggest that oxidative stress may be an important mediator of testicular injury. The present study was designed to elucidate the effect of exposure to sodium metabisulfite by gavage without or with Zingiber officinale (ginger) extract on the rat testes. Thirty-two male Wistar rats were randomly divided into control, ginger-treated (500 mg/kg/day), sodium metabisulfite- (SMB-) treated (260 mg/kg/day), and SMB + ginger- (SZ-) treated groups. After 28 days, the rats were anesthetized by ether and, after laparotomy, blood was collected from the heart to determine testosterone level by the enzyme-linked immunosorbent assay (ELISA) kit. Then left testes and cauda epididymis of all animals were removed for histological examination and sperm analysis, and right testes were removed for assessing lipid peroxidation (indexed by malondialdehyde [MDA]) and antioxidant enzymes. The results showed that spermatogenesis, epididymal morphometry, and sperm parameters were affected by SMB. There was a significant increase in MDA level and a significant reduction in the activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) in the SMB-treated rats compared to the control. Ginger treatment of SMB-exposed rats significantly increased testosterone level and the number of different spermatogenic cells. The level of MDA reversed to the control levels and the activities of GPx and GR were significantly increased when SMB was coadministered with ginger extract. It is concluded that coadministration of ginger, through its antioxidant and androgenic properties, exerts a protective effect against SMB-induced testicular oxidative stress.
Collapse
Affiliation(s)
| | - Shahnaz Shekarforoush
- a Department of Physiology , Islamic Azad University , Arsanjan Branch, Shiraz , Iran
| | - Maryam Hoseini
- a Department of Physiology , Islamic Azad University , Arsanjan Branch, Shiraz , Iran
| | - Zahra Ebrahimi
- a Department of Physiology , Islamic Azad University , Arsanjan Branch, Shiraz , Iran
| |
Collapse
|
2
|
Lai MC, Hung TY, Lin KM, Sung PS, Wu SJ, Yang CS, Wu YJ, Tsai JJ, Wu SN, Huang CW. Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity. Neurotox Res 2017; 34:1-15. [PMID: 29188487 DOI: 10.1007/s12640-017-9844-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
How sodium metabisulfite (SMB; Na2S2O5), a popular food preservative and antioxidant, interacts with excitable membrane and induces excitotoxicity is incompletely understood. In this study, the patch-clamp technique was used to investigate and record the electrophysiological effect of SMB on electrically excitable HL-1 cardiomyocytes and NSC-34 neurons, as well as its relationship to pilocarpine-induced seizures and neuronal excitotoxicity in rats. We used Western blotting, to analyze sodium channel expression on hippocampi after chronic SMB treatment. It was found that voltage-gated Na+ current (I Na) was stimulated, and current inactivation and deactivation were slowed in SMB-treated (30 μM) HL-1 cardiomyocytes. SMB-induced increases of I Na were attenuated in cells treated with ranolazine (10 μM) or eugenol (30 μM). The current-voltage relationship of I Na shifted to slightly more negative potentials in SMB-treated cells, the peak I Na with an EC50 value of 18 μM increased, and the steady-state inactivation curve of I Na shifted to a more positive potential. However, the tail component of the rapidly activating delayed-rectifier K+ current (I Kr) was dose-dependently inhibited. Cell-attached voltage-clamp recordings in SMB-treated cells showed that the frequency of action currents and prolonged action potential were higher. In SMB-treated NSC-34 neurons, the peak I Na was higher; however, neither the time to peak nor the inactivation time constant (I Na) changed. Pilocarpine-induced seizures were exacerbated, and acute neuronal damage and chronic mossy fiber sprouting increased in SMB-treated rats. Western blotting showed higher expression of the sodium channel in cells after chronic SMB treatment. We conclude that SMB contributes to the sodium channel-activating mechanism through which it alters cellular excitability and excitotoxicity in wide-spectrum excitable cells.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Te-Yu Hung
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kao-Min Lin
- Department of Pediatric Neurology, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shyh-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jane Tsai
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Noorafshan A, Vafabin M, Karbalay-Doust S, Asadi-Golshan R. Efficacy of Curcumin in the Modulation of Anxiety Provoked by Sulfite, a Food Preservative, in Rats. Prev Nutr Food Sci 2017; 22:144-148. [PMID: 28702432 PMCID: PMC5503424 DOI: 10.3746/pnf.2017.22.2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 01/09/2023] Open
Abstract
Sulfites are used as food preservatives and excessive sulfite might disturb the body systems including the brain. Curcumin shows protective effects on the nervous system toxicity. The present study aimed to evaluate the protective role of curcumin in sulfite-induced anxiety in rats. Male rats were divided into five groups. The rats in groups I to V received distilled water (vehicle of sulfite, 1 mL/d), olive oil (vehicle of curcumin, 1 mL/d), curcumin (100 mg/kg/d), sulfite (25 mg/kg/d), and sulfite+curcumin, respectively, by daily gastric gavage for 8 weeks. At the end of 8 weeks the rats were tested in the elevated plus-maze for anxiety. The results showed that concomitant treatment of curcumin during sulfite consumption prevented the reduction of the time spent in the open arm and entrance to the open arm (the indexes of anxiety). Besides, an increase was found in motor activity of the rats in the sulfite+curcumin group compared to the sulfite-treated animals. Exposure of sulfite in rats can induce anxiety, and curcumin can act as an anti-anxiety agent.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Vafabin
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Reza Asadi-Golshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
4
|
Scientific Opinion on the re‐evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Noorafshan A, Rashidiani-Rashidabadi A, Karbalay-Doust S, Poostpasand A, Abdollahifar MA, Asadi-Golshan R. Curcumin can prevent the changes in cerebellar structure and function induced by sodium metabisulfite in rat. Exp Neurobiol 2014; 22:258-67. [PMID: 24465141 PMCID: PMC3897687 DOI: 10.5607/en.2013.22.4.258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023] Open
Abstract
Sulfites are used as anti-microbial and anti-oxidant agents in the food and pharmaceutical industries. Curcumin, a flavonoid, is an Asian spice that shows neuroprotective activities. The current study aimed to stereologically assess the rats' cerebellar cortex and rotarod performance following sulfite exposure and determine the possible neuroprotective potential of curcumin. The rats were divided into five groups: distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sodium metabisulfite+curcumin. At 56 days after treatment, rotarod performance was tested, and then the cerebellum was removed for stereological analysis. The study results revealed 31%, 36%, 19% and 24% decrease in the total volume of the cerebellum, cortex, the total number of the Purkinje cells and length of the nerve fibers in the cortex per Purkinje, respectively in the sodium metabisulfite-treated rats compared to the distilled water group (p<0.01). The pre-trained animals on the rotarod apparatus were tested first on the fixed speed rotarod protocol followed by the accelerating rotarod protocol two days later. The results showed a significant decrease in the latency to fall in both test in sulfite-treated rats. The sulfite effects on the structural parameters and rotarod performance were significantly protected by the concomitant curcumin treatment (p<0.001). Sulfite can induce structural and functional changes in the rats' cerebellum and concomitant curcumin prescription plays a neuroprotective role.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Ali Rashidiani-Rashidabadi
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Aghdas Poostpasand
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Mohammad-Amin Abdollahifar
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Reza Asadi-Golshan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| |
Collapse
|
6
|
Noorafshan A, Asadi-Golshan R, Karbalay-Doust S, Abdollahifar MA, Rashidiani-Rashidabadi A. Curcumin, the main part of turmeric, prevents learning and memory changes induced by sodium metabisulfite, a preservative agent, in rats. Exp Neurobiol 2013; 22:23-30. [PMID: 23585719 PMCID: PMC3620455 DOI: 10.5607/en.2013.22.1.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 01/07/2023] Open
Abstract
Sodium metabisulfite is used as a disinfectant, antioxidant, and preservative agent in the food, beverage, and drug industries. Neurons are highly sensitive to sulfite toxicity. Curcumin is the main part of turmeric and has neuroprotective effects on a variety of nervous system damages. The present study aimed to investigate the possible protective role of curcumin in learning and memory after exposure to sulfite in rats. The rats were divided into five groups receiving distilled water (solvent of the sulfite), olive oil (solvent of the curcumin), sodium metabisulfite (25 mg/kg/day), curcumin (100 mg/kg/day), and sulfite + curcumin. All the animals received daily gavages for 8 weeks. At the end of the 8(th) week, learning and memory were assessed in a partially-baited eight arm radial maze. The animals treated with sulfite showed fewer correct choices and more reference and working memory errors during the learning phase, at the end of the learning phase, and during the retention testing (p<0.001). The study results demonstrated that sulfite-exposure was associated with impaired learning and memory in rats. Adding curcumin to the rat nutrition plays a protective role in learning and memory after exposure to sulfite.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
7
|
Akdogan I, Kocamaz E, Kucukatay V, Yonguc NG, Ozdemir MB, Murk W. Hippocampal neuron number loss in rats exposed to ingested sulfite. Toxicol Ind Health 2011; 27:771-8. [DOI: 10.1177/0748233710397418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfite, which is continuously formed in the body during metabolism of sulfur-containing amino acids, is commonly used in preservatives. It has been shown that there are toxic effects of sulfite on many cellular components. The aim of this study was to investigate the possible toxic effects of sulfite on pyramidal neurons by counting cell numbers in CA1 and CA2-CA3 subdivisions of the rat hippocampus. For this purpose, male albino rats were divided into a control group and a sulfite group (25 mg/kg). Sulfite was administered to the animals via drinking water for 8 weeks. At the end of the experimental period, brains were removed and neurons were estimated in total and in a known fraction of CA1 and CA2-CA3 subdivisions of the left hippocampus by using the optical fractionator method—a stereological method. Results showed that sulfite treatment caused a significant decrease in the total number of pyramidal neurons in three subdivisions of the hippocampus (CA1 and CA2-CA3) in the sulfite group compared with the control group (p < 0.05, Mann Whitney U test). It was concluded that exogenous administration of sulfite causes loss of pyramidal neurons in CA1 and CA2-CA3 subdivisions of the rat hippocampus.
Collapse
Affiliation(s)
- Ilgaz Akdogan
- Department of Anatomy, Pamukkale University, School of Medicine, Denizli, Turkey,
| | - Erdogan Kocamaz
- Department of Histology and Embryology, Pamukkale University, School of Medicine, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Pamukkale University, Denizli, Turkey
| | | | | | - William Murk
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|