1
|
Dorado-Martínez C, Montiel-Flores E, Ordoñez-Librado JL, Gutierrez-Valdez AL, Garcia-Caballero CA, Sanchez-Betancourt J, Reynoso-Erazo L, Tron-Alvarez R, Rodríguez-Lara V, Avila-Costa MR. Histological and Memory Alterations in an Innovative Alzheimer's Disease Animal Model by Vanadium Pentoxide Inhalation. J Alzheimers Dis 2024; 99:121-143. [PMID: 38640149 DOI: 10.3233/jad-230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-β (Aβ) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aβ plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.
Collapse
Affiliation(s)
- Claudia Dorado-Martínez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Enrique Montiel-Flores
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Jose Luis Ordoñez-Librado
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Ana Luisa Gutierrez-Valdez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Cesar Alfonso Garcia-Caballero
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | | | - Leonardo Reynoso-Erazo
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Rocio Tron-Alvarez
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Vianey Rodríguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| |
Collapse
|
2
|
Barbosa MDM, de Lima LMA, Alves WADS, de Lima EKB, da Silva LA, da Silva TD, Postal K, Ramadan M, Kostenkova K, Gomes DA, Nunes GG, Pereira MC, da Silva WE, Belian MF, Crans DC, Lira EC. In Vitro, Oral Acute, and Repeated 28-Day Oral Dose Toxicity of a Mixed-Valence Polyoxovanadate Cluster. Pharmaceuticals (Basel) 2023; 16:1232. [PMID: 37765040 PMCID: PMC10536805 DOI: 10.3390/ph16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Polyoxovanadates (POV) are a subgroup of polyoxometalates (POM), which are nanosized clusters with reported biological activities. This manuscript describes the first toxicity evaluation of a mixed-valence polyoxovanadate, pentadecavanadate, (Me4N)6[V15O36Cl], abbreviated as V15. Cytotoxicity experiments using peripheral blood mononuclear cells (PBMC), larvae of Artemia salina Leach, and in vivo oral acute and repeated 28-day doses in mice was carried out. The LC50 values in PBMC cells and A. salina were 17.5 ± 5.8 μmol L-1, and 17.9 µg L-1, respectively, which indicates high cytotoxic activity. The toxicity in mice was not observed upon acute exposure in a single dose, however, the V15 repeated 28-day oral administration demonstrated high toxicity using 25 mg/kg, 50 mg/kg and, 300 mg/kg doses. The biochemical and hematological analyses during the 28-day administration of V15 showed significant alteration of the metabolic parameters related to the kidney and liver, suggesting moderate toxicity. The V15 toxicity was attributed to the oxidative stress and lipid peroxidation, once thiobarbituric acid (TBAR) levels significantly increased in both males and females treated with high doses of the POV and also in males treated with a lower dose of the POV. This is the first study reporting a treatment-related mortality in animals acutely administrated with a mixed-valence POV, contrasting with the well-known, less toxic decavanadate. These results document the toxicity of this mixed-valence POV, which may not be suitable for biomedical applications.
Collapse
Affiliation(s)
- Mariana de M. Barbosa
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Widarlane A. da S. Alves
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Eucilene K. B. de Lima
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Luzia A. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Thiago D. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Kahoana Postal
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Mohammad Ramadan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Dayane A. Gomes
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Giovana G. Nunes
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Michelly C. Pereira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Wagner E. da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Eduardo C. Lira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| |
Collapse
|
3
|
Karabulut S, Korkmaz S, Güneş E, Kabil E, Keskin İ, Usta M, Omurtag GZ. Seminal trace elements and their relationship with sperm parameters. Andrologia 2022; 54:e14610. [PMID: 36175375 DOI: 10.1111/and.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Male reproductive problems may derive from many reasons including the environmental toxicants which may either intaken by occupational exposure, nutrition or bad air quality. The increased exposure to these substances due to rapid industrial development and technology has raised the questions: Is there a relationship between sperm parameters and these substances, and if so, in what extent? Results of studies on the subject reported conflicting results, many of which were not investigated in the seminal plasma. The aim of the current study was to evaluate the relationship between 23 metals and trace elements in human seminal plasma and semen parameters many of which were not investigated before. Levels of 23 metals in human seminal plasma were assessed by inductively coupled plasma mass spectrometry (ICP-MS). We examined the differences between subjects with normal ejaculate (normozoospermia) and pathologic ejaculate (with at least one abnormal semen parameter) according to the WHO criteria. The only significant difference was detected for Se while the other element's difference was not statistically significant. Se was statistically significantly increased in normal semen group suggesting the positive effect of this element on semen parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Serol Korkmaz
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Ertuğrul Güneş
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Erol Kabil
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Melek Usta
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Gülden Zehra Omurtag
- Department of Pharmaceutical Toxicology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P. Environmental and occupational exposure of metals and female reproductive health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62067-62092. [PMID: 34558053 DOI: 10.1007/s11356-021-16581-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Untainted environment promotes health, but the last few decades experienced steep upsurge in environmental contaminants posing detrimental physiological impact. The responsible factors mainly include the exponential growth of human population, havoc rise in industrialization, poorly planned urbanization, and slapdash environment management. Environmental degradation can increase the likelihood of human exposure to heavy metals, resulting in health consequences such as reproductive problems. As a result, research into metal-induced causes of reproductive impairment at the genetic, epigenetic, and biochemical levels must be strengthened further. These metals impact upon the female reproduction at all strata of its regulation and functions, be it development, maturation, or endocrine functions, and are linked to an increase in the causes of infertility in women. Chronic exposures to the heavy metals may lead to breast cancer, endometriosis, endometrial cancer, menstrual disorders, and spontaneous abortions, as well as pre-term deliveries, stillbirths. For example, endometriosis, endometrial cancer, and spontaneous abortions are all caused by the metalloestrogen cadmium (Cd); lead (Pb) levels over a certain threshold can cause spontaneous abortion and have a teratogenic impact; toxic amounts of mercury (Hg) have an influence on the menstrual cycle, which can lead to infertility. Impact of environmental exposure to heavy metals on female fertility is therefore a well-known fact. Thus, the underlying mechanisms must be explained and periodically updated, given the growing evidence on the influence of increasing environmental heavy metal load on female fertility. The purpose of this review is to give a concise overview of how heavy metal affects female reproductive health.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hira Choudhury
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia.
| |
Collapse
|
5
|
Jia X, Dong T, Han Y, Yue Z, Zhang P, Ren J, Wang Y, Wu W, Yang H, Guo H, Zhang GH, Cao J. Identifying the dose response relationship between seminal metal at low levels and semen quality using restricted cubic spline function. CHEMOSPHERE 2022; 295:133805. [PMID: 35134404 DOI: 10.1016/j.chemosphere.2022.133805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Environmental exposure to metals, including essential and nonessential elements, may be related to semen quality. Our goal was to explore the continuous relationship between seminal metals and sperm parameters. A restricted cubic spline (RCS) was applied to automatic selection criteria to ascertain the optimal smoothing degree. We recruited 841 male volunteers from Henan Province, China. Eighteen seminal metals, namely Al, Cr, Mn, Cu, Zn, Se, As, Ni, Cd, Pb, Co, V, Rb, Ag, Ba, TI, Fe, and Li, and 21 semen parameters were detected. Seminal malondialdehyde (MDA) was also detected to express oxidative stress. We revealed a non-linear relationship of the vanadium and chromium exposure to semen parameters. There were inverse 'U' shapes found between seminal Cr and sperm concentrations, total sperm count, and semen quality. The best semen quality was observed when the seminal Cr concentration was 5.05 ppb, and an increase or decrease in chromium concentration led to decreased semen quality. The V concentration was associated with reduced sperm concentration, total sperm count, normal morphology, and progressive motility at high doses (V > 0.58 ppb). Seminal MDA had a strong adverse association with sperm motility parameters, such as curve line velocity (VCL) (P < 0.001), straight line velocity (VSL) (P = 0.004), velocity of average path (VAP) (P < 0.001), and lateral head movement (ALH) (P = 0.001), whereas it was adversely associated with seminal Zn (β [95% confidence interval (CI)], -0.28(-0.41-0.16), P < 0.001) after adjusting for confounding factors. Our findings represent the curves of the dose-response relationship between seminal Cr, seminal V, and semen quality, in which seminal MDA was a good indicator of sperm movement. These models provide new insight into the dose-relationship between metal exposure and semen quality, and further investigation is needed to validate this.
Collapse
Affiliation(s)
- Xueshan Jia
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China; Reproductive Center, Henan Provincial Peoples Hospital, Zhengzhou, 450003, China
| | - Tingting Dong
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Yufen Han
- Puyang Maternity and Child Care Centers, 59 South Section of Kaizhou Road, Puyang, 457000, China
| | - Zhongyi Yue
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Pingyang Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Yongbin Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Haibin Guo
- Reproductive Center, Henan Provincial Peoples Hospital, Zhengzhou, 450003, China.
| | - Guang-Hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China; Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Jia Cao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China; Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
A Dioxidovanadium Complex cis-[VO2 (obz) py] Attenuates Hyperglycemia in Streptozotocin (STZ)-Induced Diabetic Male Sprague-Dawley Rats via Increased GLUT4 and Glycogen Synthase Expression in the Skeletal Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5372103. [PMID: 35140800 PMCID: PMC8820858 DOI: 10.1155/2022/5372103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Vanadium has demonstrated antihyperglycemic effects in diabetes mellitus (DM) but is, however, associated with toxicity. Therefore, new vanadium complexes envisaged to possess heightened therapeutic potency while rendering less toxicity are being explored. Accordingly, the aim of the study was to investigate the effects of a dioxidovanadium (V) complex, cis-[VO2 (obz) py], on selected glucose metabolism markers in streptozotocin (STZ)-induced diabetic rats. STZ-induced diabetic rats were treated orally with cis-[VO2 (obz) py] (10, 20, and 40 mg/kg) twice every 3rd day for 5 weeks. Blood glucose concentrations, body weight, and food and water intake were monitored weekly, for 5 weeks. Rats were then euthanized after which blood, liver, and muscle tissues were collected for biochemical analysis. The administration of dioxidovanadium complex significantly decreased blood glucose concentrations throughout the 5-week period in comparison with the diabetic control (DC). The attenuation of hyperglycemia was accompanied by an increased glycogen concentration in both liver and muscle tissues in the treated groups. Furthermore, a significant increase was observed in the expression of glucose transporter type 4 (GLUT4) in the skeletal muscle tissues and glycogen synthase in the liver tissues. These findings indicate that our vanadium complex cis-[VO2 (obz) py] may exert antihyperglycemic effects through increased glucose uptake, glycogen synthesis, and increased GLUT4 and glycogen synthase expression.
Collapse
|
7
|
Alzheimer-like cell death after vanadium pentoxide inhalation. Heliyon 2021; 7:e07856. [PMID: 34471719 PMCID: PMC8387914 DOI: 10.1016/j.heliyon.2021.e07856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Vanadium (V) toxicity depends on its oxidation state; it seems that vanadium pentoxide (V2O5) is the most toxic to the living cells. It has been reported that oral administration induces changes in motor activity and learning; in rats, I.P. administration increases lipid peroxidation levels in the cerebellum and the concentration of free radicals in the hippocampus and cerebellum. Mice that inhaled V2O5 presented a reduced number of tubulin+ in Leydig and Sertoli cells; it has also been reported that inhaled V2O5 induces loss of dendritic spines, necrosis, and hippocampus neuropil alterations; considering the direct consequence of the interaction of V with cytoskeletal components, makes us believe that V2O5 exposure could cause neuronal death in the hippocampus similar to that seen in Alzheimer disease. This work aimed to determine pyramidal hippocampal CA1 cytoskeletal alterations with Bielschowsky stain in rats exposed to V2O5. Male Wistar rats inhaled 0.02 M of V2O5 one h two times a week for two and six months. We found that rats, which inhaled V2O5 reached 56,57% of dead neurons after six months of inhalation; we recognize strong argyrophilic and collapsed somas and typical flame-shaped in all V-exposed rats hippocampus CA1 compared to controls. We also observe somatodendritic distortions. Axons and dendrites displayed thick dark bands replaced by noticeable thickening and nodosities and the cytoskeleton fibrillary proteins' linear traces. Our findings suggest that V2O5 inhalation induces Alzheimer-like cell death with evident cytoskeletal alterations.
Collapse
|
8
|
Rojas-Lemus M, López-Valdez N, Bizarro-Nevares P, González-Villalva A, Ustarroz-Cano M, Zepeda-Rodríguez A, Pasos-Nájera F, García-Peláez I, Rivera-Fernández N, Fortoul TI. Toxic Effects of Inhaled Vanadium Attached to Particulate Matter: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168457. [PMID: 34444206 PMCID: PMC8391836 DOI: 10.3390/ijerph18168457] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Environmental pollution is a worldwide problem recognized by the World Health Organization as a major health risk factor that affects low-, middle- and high-income countries. Suspended particulate matter is among the most dangerous pollutants, since it contains toxicologically relevant agents, such as metals, including vanadium. Vanadium is a transition metal that is emitted into the atmosphere especially by the burning of fossil fuels to which dwellers are exposed. The objective of this literature review is to describe the toxic effects of vanadium and its compounds when they enter the body by inhalation, based especially on the results of a murine experimental model that elucidates the systemic effects that vanadium has on living organisms. To achieve this goal, we reviewed 85 articles on the relevance of vanadium as a component of particulate matter and its toxic effects. Throughout several years of research with the murine experimental model, we have shown that this element generates adverse effects in all the systems evaluated, because it causes immunotoxicity, hematotoxicity, neurotoxicity, nephrotoxicity and reprotoxicity, among other noxious effects. The results with this experimental model add evidence of the effects generated by environmental pollutants and increase the body of evidence that can lead us to make more intelligent environmental decisions for the welfare of all living beings.
Collapse
Affiliation(s)
- Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Martha Ustarroz-Cano
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Francisco Pasos-Nájera
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
- Correspondence:
| |
Collapse
|
9
|
Hanus-Fajerska E, Wiszniewska A, Kamińska I. A Dual Role of Vanadium in Environmental Systems-Beneficial and Detrimental Effects on Terrestrial Plants and Humans. PLANTS (BASEL, SWITZERLAND) 2021; 10:1110. [PMID: 34072768 PMCID: PMC8227766 DOI: 10.3390/plants10061110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
The importance of vanadium (V) in the functioning of land systems is extremely diverse, as this element may exert both positive and harmful effects on terrestrial organisms. It recently become considered an element of beneficial character with a range of applications for human welfare. The health-ameliorative properties of this transition element depend on its degree of oxidation and on optimal concentration in the target cells. It was found that a similar relationship applies to vascular plants. However, excessive amounts of vanadium in the environment contaminate the soil and negatively affect the majority of living organisms. A significantly elevated level of V results in the destabilization of plant physiological balance, slowing down the growth of biomass which significantly reduces yield. In turn, low doses of the appropriate vanadium ions can stimulate plant growth and development, exert cytoprotective effects, and effectively enhance the synthesis of some biologically active compounds. We present the scientific achievements of research teams dealing with such topics. The issues discussed concern the role of vanadium in the environment, particular organisms, and highlight its dualistic influence on plants. Achievements in the field of V bioremediation, with the use of appropriately selected microorganisms and plant species, are emphasized.
Collapse
Affiliation(s)
- Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland; (A.W.); (I.K.)
| | | | | |
Collapse
|
10
|
Ajeya KV, Sadhasivam T, Kurkuri MD, Kang UI, Park IS, Park WS, Kim SC, Jung HY. Recovery of spent VOSO 4 using an organic ligand for vanadium redox flow battery applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123047. [PMID: 32937711 DOI: 10.1016/j.jhazmat.2020.123047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
To recover the spent vanadium compound, Rhodamine-B-based Schiff's base ligand (L1) was synthesized via ultrasonication process and was evaluated with vanadyl sulfate (VOSO4), which has shown considerable selectivity towards V(IV). The change of the solution color from colorless to pink is attributed to L1 after the reaction with vanadium ion owing to the successful formation of the vanadium complex and the opening of the spirolactam ring in the L1 structure. In FT-IR spectra, the vanadyl peaks are co-existed with the L1 structure, which confirmed the complex formation of the L1 with vanadium. Similarly, the binding energy of V(IV) was identified at 516.2 eV for V2p3/2 in XPS spectra. The new strategy for VOSO4 recovery was established through solvent extraction and acid leaching. After recovery process, the absence of vanadium peak in the XPS confirmed the complete removal of V(IV) from the complex. The recovered VOSO4 solution used as an electrolyte in vanadium redox flow battery (VRFB) systems, where the unit cell performance is comparable with the conventional electrolyte solution. The advantage of study is reuse of VOSO4 as a resource for energy storage applications.
Collapse
Affiliation(s)
- Kanalli V Ajeya
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - T Sadhasivam
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Ung-Il Kang
- Depertment of the Fire Service Administration, Honam University, #417, Eodeung-daero, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - In-Su Park
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM),124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Won-Shik Park
- Energy Valley R&D Center, Korea Electric Power Research Institute, 55 Jeollyeok-ro, Naju-si, Jeollanam-do, 58217, Republic of Korea
| | - Sang-Chai Kim
- Department of Environmental Education, Mokpo National University, 1666 Youngsan Ro, Cheonggye Myeon, Muan, 58554, Republic of Korea.
| | - Ho-Young Jung
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Usende IL, Olopade JO, Emikpe BO, Nafady AAHM. Biochemical and ultrastructural changes in kidney and liver of African Giant Rats (Cricetomysgambianus, Waterhouse, 1840) exposed to intraperitoneal sodium metavanadate (vanadium) intoxication. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103414. [PMID: 32442722 DOI: 10.1016/j.etap.2020.103414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
We studied the hepatic and renal impact of sodium metavanadate (SMV) exposure in African giant rats (AGR). Twelve male AGR were used and divided into two groups. The control group received sterile water while the SMV-exposed group received 3 mg/kg SMV intraperitoneally for 14 days. SMV exposed AGR groups showed significantly decreased activities of serum AST, ALT, ALP and creatinine concentration but increased blood urea nitrogen (BUN), albumin and globulin concentrations. Kidney ultrastructure examination revealed atrophy of the glomerular tuft, loss of podocytes, distortions of the endothelium and glomerular basement membrane. The liver sinusoids fenestration phenotypes were abnormal. Hepatocytes exhibited hypertrophy with uneven, crenated and dentate nuclei. SMV exposure induced activation of monocytes, as well as Kupffer and fibrous cells. Alterations in glomerular podocytes and cell-cell and cell matrix contact and inflammatory liver fibrosis are key events in progressive glomerular failure and hepatic damage due to SMV intoxication.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Nigeria; Department of Veterinary Anatomy, University of Ibadan, Nigeria
| | | | | | | |
Collapse
|
12
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
13
|
Bae JW, Im H, Hwang JM, Kim SH, Ma L, Kwon HJ, Kim E, Kim MO, Kwon WS. Vanadium adversely affects sperm motility and capacitation status via protein kinase A activity and tyrosine phosphorylation. Reprod Toxicol 2020; 96:195-201. [PMID: 32659260 DOI: 10.1016/j.reprotox.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022]
Abstract
Vanadium is a chemical element that enters the atmosphere via anthropogenic pollution. Exposure to vanadium affects cancer development and can result in toxic effects. Multiple studies have focused on vanadium's detrimental effect on male reproduction using conventional sperm analysis techniques. This study focused on vanadium's effect on spermatozoa following capacitation at the molecular level, in order to provide a more detailed assessment of vanadium's reproductive toxicity. We observed a decrease in germ cell density and a structural collapse of the testicular organ in seminiferous tubules during vanadium treatment. In addition, various sperm motion parameters were significantly decreased regardless of capacitation status, including sperm motility, rapid sperm motility, and progressive sperm motility. Curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency, and mean amplitude of head lateral displacement were also decreased after capacitation. Capacitation status was altered after capacitation. Vanadium dramatically enhanced protein kinase A (PKA) activity and tyrosine phosphorylation. Taken together, our results suggest that vanadium is detrimental to male fertility by negatively influencing sperm motility, motion kinematics, and capacitation status via abnormal PKA activity and tyrosine phosphorylation before and after capacitation.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Hobin Im
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - So-Hye Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Lei Ma
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Hong Ju Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
14
|
Meléndez-García N, García-Ibarra F, Bizarro-Nevares P, Rojas-Lemus M, López-Valdez N, González-Villalva A, Ayala-Escobar ME, García-Vázquez F, Fortoul TI. Changes in Ovarian and Uterine Morphology and Estrous Cycle in CD-1 Mice After Vanadium Inhalation. Int J Toxicol 2019; 39:20-29. [PMID: 31884850 DOI: 10.1177/1091581819894529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vanadium is a metal present in particulate matter and its reprotoxic effects have been demonstrated in males and pregnant females in animal models. However, the effects of this metal on the reproductive organs of nonpregnant females have not been sufficiently studied. In a vanadium inhalation model in nonpregnant female mice, we found anestrous and estrous cycle irregularity, as well as low serum concentrations of 17β-estradiol and progesterone. A decrease in the diameter of secondary and preovulatory follicles, as well as a thickening of the myometrium and endometrial stroma, was observed in the vanadium-treated mice. There was no difference against the control group with respect to the presence of the estrogen receptor α in the uterus of the animals during the estrous stage. Our results indicate that when vanadium is administered by inhalation, effects are observed on the female reproductive organs and the production of female sex hormones.
Collapse
Affiliation(s)
- Nayeli Meléndez-García
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fátima García-Ibarra
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Elena Ayala-Escobar
- Laboratorio 5 Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco García-Vázquez
- Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Kalniņa D, Levina A, Pei A, Gross KA, Lay PA. Synthesis, characterization and in vitro anti-cancer activity of vanadium-doped nanocrystalline hydroxyapatite. NEW J CHEM 2019. [DOI: 10.1039/c9nj03406d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocrystalline V(v)-doped hydroxyapatite and its reduced analogue (V(v) and V(iv) mixture) show promising in vitro cytotoxicity against cultured human bone cancer cells.
Collapse
Affiliation(s)
- Daina Kalniņa
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
- School of Chemistry
| | - Aviva Levina
- School of Chemistry
- University of Sydney
- Sydney
- Australia
| | - Alexander Pei
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Exchange Student from Boston University
| | - Kārlis Agris Gross
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
| | - Peter A. Lay
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Sydney Analytical
| |
Collapse
|
16
|
Colín‐Barenque L, Bizarro‐Nevares P, González Villalva A, Pedraza‐Chaverri J, Medina‐Campos ON, Jimenez‐Martínez R, Rodríguez‐Rangel DS, Reséndiz S, Fortoul TI. Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model. Int J Exp Pathol 2018; 99:180-188. [PMID: 30198103 PMCID: PMC6157302 DOI: 10.1111/iep.12285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/07/2018] [Indexed: 12/25/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is synthesized in the olfactory system, has antioxidant activity as a scavenger of free radicals and has been reported to have neuroprotective action in diseases which have been attributed to oxidative damage. In neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, impairment of olfactory function has been described. Vanadium derivatives are environmental pollutants, and its toxicity has been associated with oxidative stress. Vanadium toxicity on the olfactory bulb was reported previously. This study investigates the neuroprotective effect of carnosine on the olfactory bulb in a mice model of vanadium inhalation. Male mice were divided into four groups: vanadium pentoxide (V2 O5 ) [0.02 mol/L] inhalation for one hour twice a week; V2 O5 inhalation plus 1 mg/kg of carnosine administered daily; carnosine only, and the control group that inhaled saline. The olfactory function was evaluated using the odorant test. Animals were sacrificed four weeks after exposure. The olfactory bulbs were dissected and processed using the rapid Golgi method; cytological and ultrastructural analysis was performed and malondialdehyde (MDA) concentrations were measured. The results showed evidence of olfactory dysfunction caused by vanadium exposure and also an increase in MDA levels, loss of dendritic spines and necrotic neuronal death in the granule cells. But, in contrast, vanadium-exposed mice treated with carnosine showed an increase in dendritic spines and a decrease in neuronal death and in MDA levels when compared with the group exposed to vanadium without carnosine. These results suggest that dendritic spine loss and ultrastructural alterations in the granule cells induced by vanadium are mediated by oxidative stress and that carnosine may modulate the neurotoxic vanadium action, improving the olfactory function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefanie Reséndiz
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| | - Teresa I. Fortoul
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| |
Collapse
|
17
|
Espinosa-Zurutuza M, González-Villalva A, Albarrán-Alonso JC, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, López-Valdéz N, Fortoul TI. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model. Int J Toxicol 2017; 37:45-52. [PMID: 29254395 DOI: 10.1177/1091581817745504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.
Collapse
Affiliation(s)
- Maribel Espinosa-Zurutuza
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Adriana González-Villalva
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Juan Carlos Albarrán-Alonso
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | - Patricia Bizarro-Nevares
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Marcela Rojas-Lemus
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Nelly López-Valdéz
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Teresa I Fortoul
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
18
|
Cervantes-Yépez S, López-Zepeda LS, Fortoul TI. Vanadium inhalation induces retinal Müller glial cell (MGC) alterations in a murine model. Cutan Ocul Toxicol 2017; 37:200-206. [PMID: 29157004 DOI: 10.1080/15569527.2017.1392560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vanadium (V) is a transition metal adhered to suspended particles. Previous studies demonstrated that V inhalation causes oxidative stress in the ependymal epithelium, the choroid plexus on brain lateral ventricles and in the retina. Inhaled-V reaches the eye´s retina through the systemic circulation; however, its effect on the retina has not been widely studied. The Müller glial cell provides support and structure to the retina, facilitates synapses and regulates the microenvironment and neuronal metabolism. Hence, it is of great interest to study the effect of V exposure on the expression and localization of specific biomarkers on this cell. METHODS Male CD-1 mice were exposed to V inhalation 1 h/twice/week for 4 and 8-Wk. Expression changes in the retina of Glial fibrillary acidic protein, highly expressed in Müller glial cell when retina is damaged, and Glutamine synthetase, important in preventing excitotoxicity in the retina, were analysed by immunohistochemistry. RESULTS Glial fibrillary acidic protein expression increased at 4-Wk of V inhalation compared to the control and decreased at 8-Wk of exposure. A time-dependent gradual reduction in glutamine synthetase expression was observed. CONCLUSION Changes in glial fibrillary acidic protein expression induced by V suggest retinal damage, whereas glutamine synthetase gradual reduction might indicate that photoreceptors, which produce most of the glutamine synthetase substrate in the retina, are degenerating, probably as a consequence of the oxidative stress induced by V.
Collapse
Affiliation(s)
- Silvana Cervantes-Yépez
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Lorena Sofía López-Zepeda
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Teresa I Fortoul
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| |
Collapse
|
19
|
Marques MPM, Gianolio D, Ramos S, Batista de Carvalho LAE, Aureliano M. An EXAFS Approach to the Study of Polyoxometalate-Protein Interactions: The Case of Decavanadate-Actin. Inorg Chem 2017; 56:10893-10903. [PMID: 28858484 DOI: 10.1021/acs.inorgchem.7b01018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
EXAFS and XANES experiments were used to assess decavanadate interplay with actin, in both the globular and polymerized forms, under different conditions of pH, temperature, ionic strength, and presence of ATP. This approach allowed us to simultaneously probe, for the first time, all vanadium species present in the system. It was established that decavanadate interacts with G-actin, triggering a protein conformational reorientation that induces oxidation of the cysteine core residues and oxidovanadium (VIV) formation. The local environment of vanadium's absorbing center in the [decavanadate-protein] adducts was determined, a V-SCys coordination having been verified experimentally. The variations induced in decavanadate's EXAFS profile by the presence of actin were found to be almost totally reversed by the addition of ATP, which constitutes a solid proof of decavanadate interaction with the protein at its ATP binding site. Additionally, a weak decavanadate interplay with F-actin was suggested to take place, through a mechanism different from that inferred for globular actin. These findings have important consequences for the understanding, at a molecular level, of the significant biological activities of decavanadate and similar polyoxometalates, aiming at potential pharmacological applications.
Collapse
Affiliation(s)
- M Paula M Marques
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra , 3000-456 Coimbra, Portugal
| | - Diego Gianolio
- Diamond Light Source, Harwell Science & Innovation Campus , Didcot OX11 0DE, United Kingdom
| | - Susana Ramos
- UCIBIO, REQUIMTE, Departamento de Química, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Luís A E Batista de Carvalho
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Manuel Aureliano
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- FCT and CCmar, University of Algarve , 8005-139 Faro, Portugal
| |
Collapse
|
20
|
Rodriguez-Lara V, Muñiz-Rivera Cambas A, González Villalva A, Fortoul TI. Sex-based differences in lymphocyte proliferation in the spleen after vanadium inhalation. J Immunotoxicol 2016; 13:498-508. [DOI: 10.3109/1547691x.2015.1134731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, C.U., México City, México
| | - Angelica Muñiz-Rivera Cambas
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, C.U., México City, México
| | - Adriana González Villalva
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, C.U., México City, México
| | - Teresa I. Fortoul
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, C.U., México City, México
| |
Collapse
|
21
|
Aureliano M. Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6103457. [PMID: 26904166 PMCID: PMC4745863 DOI: 10.1155/2016/6103457] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca(2+)-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.
Collapse
Affiliation(s)
- M. Aureliano
- 1Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- 2CCMar (Centre of Marine Sciences), University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- *M. Aureliano:
| |
Collapse
|