1
|
Liu J, Tian M, Qin H, Chen D, Mzava SM, Wang X, Bigambo FM. Maternal bisphenols exposure and thyroid function in children: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1420540. [PMID: 39010904 PMCID: PMC11246848 DOI: 10.3389/fendo.2024.1420540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background Evidence from animal experiments and epidemiological studies has reported controversial results about the effects of prenatal bisphenols (BPs) exposure on childhood thyroid function. This study aims to explore the associations of prenatal exposure to BPs with thyroid-related hormones (THs) in newborns and early childhood, with a particular focus on the sex-dependent and exposure level effects. Methods Correlated studies were systematically searched from PubMed, Web of Science, Medline, Cochrane, and Embase until February 21, 2024. The exposures assessed include bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF), and tetrachlorobisphenol A (TCBPA). THs measured were thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), free tri-iothyronine (FT3), and free thyroxine (FT4). Effect estimates were quantified using coefficients from multivariable regression models. Statistical analyses were completed using Stata 16.0. The methodological quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). Results Eleven cohort studies comprising 5,363 children were included in our meta-analysis. Prenatal bisphenol concentrations were statistically significant related to alterations in thyroid hormones in children, exclusively in female offspring, including reduced TSH (β = -0.020, 95% CI: -0.036, -0.005) and increased TT3 levels (β = 0.011, 95% CI: 0.001, 0.021), and exposure to high concentration of bisphenols (>1.5 ug/g creatinine) significantly reduced FT3 levels in children (β = -0.011, 95% CI: -0.020, -0.003). Conclusion Prenatal bisphenol exposure is linked to alterations in thyroid hormone levels in girls, necessitating enhanced measures to control bisphenol exposure levels during pregnancy for child health protection. Systematic Review Registration https://inplasy.com, identifier INPLASY202450129.
Collapse
Affiliation(s)
- Jiani Liu
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Tian
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyue Qin
- Nanjing Foreign Language School, Nanjing, China
| | - Danrong Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Francis Manyori Bigambo
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
3
|
Boudalia S, Bousbia A, Boumaaza B, Oudir M, Canivenc Lavier MC. Relationship between endocrine disruptors and obesity with a focus on bisphenol A: a narrative review. BIOIMPACTS 2021; 11:289-300. [PMID: 34631491 PMCID: PMC8494257 DOI: 10.34172/bi.2021.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Scientific data suggest that early exposure to endocrine-disrupting chemicals (EDCs) affect -repro, -neuro, -metabolic systems, to which are added other notions such as mixtures, window and duration of exposure, trans-generational effects, and epigenetic mechanisms. Methods: In the present narrative review, we studied the relationship between exposure to EDCs with the appearance and development of obesity. Results: Exposure to EDCs like Bisphenol A during the early stages of development has been shown to lead to weight gain and obesity. EDCs can interfere with endocrine signaling, affect adipocytes differentiation and endocrine function and disrupt metabolic processes, especially if exposure occurs at very low doses, in the mixture, during early development stages for several generations. Conclusion: Exposure to EDCs is positively associated with obesity development. Moreover, the use of integrative approaches which mimicking environmental conditions are necessary and recommended to evaluate EDCs' effects in future studies.
Collapse
Affiliation(s)
- Sofiane Boudalia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Aissam Bousbia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Boualem Boumaaza
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Département des Sciences Agronomiques, Faculté des Sciences de la Nature et de la Vie, Université Ibn Khaldoun, Tiaret 14000, Algérie
| | - Malha Oudir
- Laboratoire de Génie Chimique, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab, USDB. BP 270, Route de Soumâa, 09000 Blida, Algérie
| | - Marie Chantal Canivenc Lavier
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| |
Collapse
|
4
|
Mohammed DAE, Ahmed RR, R G A. Maternal LiCl exposure disrupts thyroid-cerebral axis in neonatal albino rats. Int J Dev Neurosci 2021; 81:741-758. [PMID: 34528732 DOI: 10.1002/jdn.10151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
This work aimed to elucidate whether maternal lithium chloride (LiCl) exposure disturbs the thyroid-cerebral axis in neonatal albino rats. 50 mg of LiCl/kg b.wt. is orally given for pregnant Wistar rats from gestational day (GD) 1 to lactation day (LD) 28. The maternal administration of LiCl induced follicular dilatation and degeneration, hyperplasia, lumen obliteration and colloid vacuolation in the maternal and neonatal thyroid gland at postnatal days (PNDs) 14, 21 and 28. Neuronal degeneration (spongiform), gliosis, nuclear pyknosis, perivascular oedema, and meningeal hyperaemia were observed in the neonatal cerebral cortex of the maternal LiCl-treated group at examined PNDs. This disturbance appears to depend on intensification in the neonatal cerebral malondialdehyde (MDA), nitric oxide (NO), and hydrogen peroxide (H2 O2 ) levels, and attenuation in the glutathione (GSH), total thiol (t-SH), catalase (CAT), and superoxide dismutase (SOD) levels. In the neonatal cerebrum, the fold change in the relative mRNA expression of deiodinases (DII and DIII) increased significantly at PNDs 21 and 14, respectively, in the maternal LiCl-treated group. These data suggest that maternal LiCl may perturb the thyroid-cerebrum axis generating neonatal neurodevelopmental disorder.
Collapse
Affiliation(s)
- Dena A E Mohammed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Division of Histology and Cytology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Zoeller RT. Endocrine disrupting chemicals and thyroid hormone action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:401-417. [PMID: 34452692 DOI: 10.1016/bs.apha.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid hormones (predominantly thyroxine, T4, and triiodothyronine, T3) are essential for normal development and for adult physiology. There are several challenges, however, that make identifying chemicals that produce adverse effects by interfering with the thyroid system difficult. First, individual variability in serum concentrations of thyroid hormones represent only about 10% of the population reference range that is considered to be "normal." This means that populations studies evaluating the relationship between chemical exposure and serum thyroid hormones must be large enough to overcome this internal variance. In addition, we know that there are chemicals that do not produce changes in thyroid hormone levels, but nevertheless impact thyroid signaling in target tissues. A good example is that of polychlorinated biphenyls (PCBs). PCB exposure during development are clearly associated with cognitive deficits in humans. But PCB exposure isn't uniformly associated with a reduction in serum thyroid hormone in human populations despite mechanistic studies showing that PCBs reduce serum T4 in animals. In contrast, perchlorate is a chemical that inhibits iodide uptake, thereby reducing thyroid hormone synthesis and serum hormone levels. Human studies have been variable in identifying a relationship between thyroid hormone and perchlorate exposure, but studies also show that dietary iodine, cigarette smoking and other factors can modify this relationship. The conclusion is that identifying chemicals that interfere with thyroid hormone could depend on in vitro analysis of chemicals that interact with different proteins important for thyroid hormone to function properly.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, University of Massachusetts Amherst, Amherst, MA, United States; School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
6
|
Kobayashi Y, Oguro A, Yagi E, Mitani A, Kudoh SN, Imaoka S. Bisphenol A and rotenone induce S-nitrosylation of protein disulfide isomerase (PDI) and inhibit neurite outgrowth of primary cultured cells of the rat hippocampus and PC12 cells. J Toxicol Sci 2021; 45:783-794. [PMID: 33268678 DOI: 10.2131/jts.45.783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) interferes the function and development of the central nervous system (CNS), resulting in behavioral abnormalities and memory loss. S-nitrosylation of protein disulfide isomerase (PDI) is increased in brains with sporadic Alzheimer's disease and Parkinson's disease. The aim of the present study was to clarify the role of nitric oxide (NO) in BPA-induced neurotoxicity. Since rotenone induces NO-mediated neurodegeneration through S-nitrosylation of PDI, it was used as a positive control. First, rats were treated with BPA and rotenone, and S-nitrosylation of PDI was detected in rat brain microsomes. BPA and rotenone decreased RNase oxidation activity of PDI concomitant with S-nitrosylation of PDI. Next, to clarify S-nitrosylation of PDI by BPA and rotenone in rat brains, we treated the rat pheochromocytoma cell line PC12 and primary cultured neuron cells from the rat hippocampus with BPA (5 and 10 μM) and rotenone (100 or 200 nM). BPA induced S-nitrosylation of PDI, while NG-monomethyl-L-arginine (L-NMMA), a NOS inhibitor, exerted the opposite effects. Finally, to evaluate the toxicity of BPA in the CNS, we investigated its effects on neurite outgrowth of PC12 and primary cultured neuron cells. BPA inhibited neurite outgrowth of these cells, while L-NMMA reversed this inhibition. The involvement of PDI activity in neurite outgrowth was also examined, and bacitracin, a PDI inhibitor, is shown to decrease neurite outgrowth. Furthermore, the overexpression of PDI, but not a catalytically inactive PDI mutant, enhanced neurite outgrowth. These results suggested that S-nitrosylation of PDI induced by excessive NO caused BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Erina Yagi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Akira Mitani
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Suguru N Kudoh
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
7
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Frankfurt M, Luine V, Bowman RE. A potential role for dendritic spines in bisphenol-A induced memory impairments during adolescence and adulthood. VITAMINS AND HORMONES 2020; 114:307-329. [PMID: 32723549 DOI: 10.1016/bs.vh.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Collapse
Affiliation(s)
- Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | | | | |
Collapse
|
9
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|
10
|
Wang X, Tang N, Nakayama SF, Fan P, Liu Z, Zhang J, Ouyang F. Maternal urinary bisphenol A concentration and thyroid hormone levels of Chinese mothers and newborns by maternal body mass index. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10939-10949. [PMID: 31953761 DOI: 10.1007/s11356-020-07705-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Animal studies indicated that bisphenol A (BPA) exposure during pregnancy may disrupt thyroid function which is critical for fetal development. However, few epidemiological studies have examined this topic and the results were inconsistent. We aimed to evaluate whether prenatal BPA exposure is associated with thyroid hormone levels in Chinese mothers and newborns with stratification by maternal body mass index (BMI). BPA concentration were measured in urine samples collected from 555 women at late pregnancy. Maternal serum free thyroxin (FT4), thyroid-stimulating hormone (TSH) and thyroid peroxidase antibody (TPO-Ab) concentrations at the third trimester were abstracted from medical records. Cord serum-free triiodothyronine (FT3), FT4, TSH, and TPO-Ab levels were measured in 398 newborns. Prenatal urinary BPA was detected in 98.5% of mothers with a geometric mean of 1.32 ng/mL (95% CI 1.17-1.49 ng/mL). With each 10-fold increase in BPA concentrations, maternal log10_(TSH) mIU/L was 0.10 lowered (95% CI - 0.20, - 0.005, p < 0.05) among pre-pregnancy BMI > 23 kg/m2, with adjustment for maternal age, maternal education, gestation diabetes mellitus (GDM), husband smoking during pregnancy, parity, and gestational age at thyroid parameters measured, but no association was observed in pre-pregnancy BMI < 18.5, or 18.5-22.9 kg/m2 stratum. No BPA-associated changes were observed in maternal FT4 level or odds of positive TPO-Ab in all BMI stratum. Also, no associations were observed between prenatal urinary BPA concentration and cord serum FT4, FT3, TSH levels, and odds of positive TPO-Ab in both male and female newborns among pre-pregnancy BMI < 18.5, 18.5-22.9 or > 23 kg/m2 stratum. In this study, prenatal urinary BPA concentration was associated with lower maternal TSH among women with overweight, but not associated with other maternal thyroid parameters or cord serum thyroid parameters across maternal BMI categories. More research on pregnant women and newborns cohort with BPA exposure are warranted.
Collapse
Affiliation(s)
- Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Ning Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Shoji F Nakayama
- Exposure Dynamics Research Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhiwei Liu
- Department of Neonatology, International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Heng Shan Road, Shanghai, 200030, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Kwon JA, Shin B, Kim B. Urinary bisphenol A and thyroid function by BMI in the Korean National Environmental Health Survey (KoNEHS) 2012-2014. CHEMOSPHERE 2020; 240:124918. [PMID: 31563717 DOI: 10.1016/j.chemosphere.2019.124918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is one of the largest amounts of chemicals in daily life and source of polycarbonate plastics, epoxy resins, medical equipment, plastic consumer products. Recent studies reported that the effects of BPA on human health in the thyroid hormone. Therefore, this study aimed to indicate the association between urinary BPA concentration and thyroid function in total triiodothyronine (T3), thyroxine (T4), thyroidal stimulating hormone (TSH) and stratified the population by body mass index (BMI). This study was performed on 6478 adults aged 19 years and older based on the Second Korean National Environmental Health Survey (KoNEHS, 2012-2014). We measured BPA in urine and total T3, T4 and TSH in serum from the 2nd KoNEHS study. The multiple regression analysis was performed to assess the association of urinary BPA concentrations with thyroid hormone after BMI stratification. Urinary BPA associated with thyroid hormone. Especially, BPA is related to T3 (-0.627) in all group, and T4 (-0.060, -0.098) in all group and the group of BMI 25.0kg/m2 or more negatively. When stratified by BPA, T3 and T4 were significantly decreased with the high BPA exposure compared with the low BPA exposure for BMI more than 25.0kg/m2 (adjusted β = -3.402, 95% CI: 4.942, -1.862, adjusted β = -0.209, 95% CI: 0.328, -0.090). However, no obvious associations were found between BPA concentration and TSH. The results of urinary BPA decrease with T3 and T4 levels increase in the higher BMI group is a new finding which does not exist in recent studies of Korea.
Collapse
Affiliation(s)
- Jeoung A Kwon
- Graduate School of Public Health, Yonsei University, 03722, Seoul, Republic of Korea
| | - Bohye Shin
- Department of Occupational and Environmental Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea
| | - Byungmi Kim
- Carcinogenic Hazards Branch, Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, 10408, Gyeonggi, Goyang, Republic of Korea.
| |
Collapse
|
12
|
Mohammed DAE, Ahmed RR, Ahmed RG. Maternal lithium chloride exposure alters the neuroendocrine-cytokine axis in neonatal albino rats. Int J Dev Neurosci 2020; 80:123-138. [PMID: 31994228 DOI: 10.1002/jdn.10010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
The aim of this work was to clarify whether maternal lithium chloride (LiCl) exposure disrupts the neonatal neuroendocrine-cytokine axis. Pregnant Wistar rats were orally administrated 50 mg LiCl/kg b.wt. from gestational day (GD) 1 to postpartum day 28. Maternal administration of LiCl induced a hypothyroid state in both dams and their neonates compared to the control dams and neonates at lactation days (LDs) 14, 21 and 28, where the levels of serum free triiodothyronine (FT3) and free thyroxin (FT4) were decreased and the level of serum thyrotropin (TSH) level was increased. A noticeable depression in maternal body weight gain, neonatal body weight and neonatal serum growth hormone (GH) was observed on all examined postnatal days (PNDs; 14, 21 and 28). A single abortion case was recorded at GD 17, and three dead neonates were noted at birth in the LiCl-treated group. Maternal administration of LiCl disturbed the levels of neonatal serum tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), interferon-gamma (INF-γ), leptin, adiponectin and resistin at all tested PNDs compared to the control group. This administration produced a stimulatory action on the level of neonatal cerebral serotonin (5-HT) at PND 14 and on the level of neonatal cerebral norepinephrine (NE) at PNDs 21 and 28. However, this administration produced an inhibitory action on the level of neonatal cerebral dopamine (DA) at all examined PNDs and on the level of neonatal cerebral NE at PND 14 and the level of neonatal cerebral 5-HT at PNDs 21 and 28 compared to the corresponding control group. Thus, maternal LiCl exposure-induced hypothyroidism disrupts the neonatal neuroendocrine-cytokine system, which delay cerebral development.
Collapse
Affiliation(s)
- Dena A-E Mohammed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Division of Histology and Cytology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Mikrochim Acta 2020; 187:145. [DOI: 10.1007/s00604-020-4124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
|
14
|
Ahmed RG. Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:705-714. [PMID: 30760194 DOI: 10.2174/1871530319666190212165603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of the study was to examine the impact of neonatal acetaminophen (APAP; paracetamol) administrations on the thyroid-liver axis in male Wistar rats. METHODS APAP (100 or 350mg/kg) was orally administered to neonates from Postnatal Day (PND) 20 to 40. RESULTS Both APAP doses elicited a substantial increase in serum TSH, albumin, AST, ALT, and ALP values, and a profound decrease in serum FT4 and FT3 values at PND 40 relative to those in the control group. Additionally, the hypothyroid state in both APAP-treated groups may increase the histopathological variations in the neonatal liver, such as destructive degeneration, fibrosis, fatty degeneration, fibroblast proliferation, haemorrhage, oedema, and vacuolar degeneration, at PND 40. Moreover, in the APAP groups, a marked depression was recorded in the t-SH and GSH levels and GPx and CAT activities at PND 40 in the neonatal liver compared to those in the control group. However, the levels of hepatic LPO, H2O2, and NO were increased in both APAP-treated groups at PND 40. All previous alterations were dose- dependent. CONCLUSION Neonatal APAP caused a hypothyroidism and disturbed hepatic cellular components by increasing prooxidant markers and decreasing antioxidant markers, causing hepatotoxicity. Thus, neonatal administrations of APAP may act as a neonatal thyroid-liver disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Zoology Department, Division of Anatomy and Embryology, Faculty of Science; Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Jubril AJ, Obasa AA, Mohammed SA, Olopade JO, Taiwo VO. Neuropathological lesions in the brains of goats in North-Western Nigeria: possible impact of artisanal mining. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36589-36597. [PMID: 31732952 DOI: 10.1007/s11356-019-06611-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Indiscriminate small-scale artisanal gold mining activities were reported to have caused anthropogenic heavy metal environmental pollution in Zamfara State, north-western Nigeria. There is little or no information on the neurotoxic effects and related neuropathological lesions due to environmental pollution in the animal population. Therefore, this work investigated the concentration of heavy metal and associated lesions in the brain of goats around an artisanal mining site in Zamfara. Brain samples were collected from 40 goats at slaughter slabs in Bagega (Zamfara State) while 15 goats with the same demography but without a history of environmental exposure at the time of this study served as controls. The concentration of lead and cadmium in brain tissue and histopathologic changes were assessed using atomic absorption spectrophotometry, histology and immunohistochemistry. The metal concentrations were significantly higher in exposed goats than in the unexposed animals. Cresyl violet staining and glial fibrillary acidic protein (GFAP) immunohistochemistry indicated chromatolysis and increased astrocytic activity respectively in the exposed goats. This study is of epidemiological importance as it shows a generalised increase of the metal concentrations in the brain of goats exposed to artisanal mining in Zamfara, north-western Nigeria. This could have health effects on the animals associated with nervous co-ordination, growth and development and as a good sentinel for pathogenesis of the heavy metal exposure.
Collapse
Affiliation(s)
- Afusat J Jubril
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | | | - Shehu A Mohammed
- Department of Environment, State Ministry of Environment, Gusau, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| | - Victor O Taiwo
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Yao J, Chen M, Li N, Liu C, Yang M. Experimental and theoretical studies of a novel electrochemical sensor based on molecularly imprinted polymer and B, N, F-CQDs/AgNPs for enhanced specific identification and dual signal amplification in highly selective and ultra-trace bisphenol S determination in plastic products. Anal Chim Acta 2019; 1066:36-48. [DOI: 10.1016/j.aca.2019.03.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
|
17
|
Bansal R, Zoeller RT. CLARITY-BPA: Bisphenol A or Propylthiouracil on Thyroid Function and Effects in the Developing Male and Female Rat Brain. Endocrinology 2019; 160:1771-1785. [PMID: 31135896 PMCID: PMC6937519 DOI: 10.1210/en.2019-00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
The CLARITY-BPA experiment, a large collaboration between the National Institute of Environmental Health Sciences, the National Toxicology Program, and the US Food and Drug Administration, is designed to test the effects of bisphenol A (BPA) on a variety of endocrine systems and end points. The specific aim of this subproject was to test the effect of BPA exposure on thyroid functions and thyroid hormone action in the developing brain. Timed-pregnant National Center for Toxicological Research Sprague-Dawley rats (strain code 23) were dosed by gavage with vehicle control (0.3% carboxymethylcellulose) or one of five doses of BPA [2.5, 25, 250, 2500, or 25,000 µg/kg body weight (bw) per day] or ethinyl estradiol (EE) at 0.05 or 0.50 µg/kg bw/d (n = 8 for each group) beginning on gestational day 6. Beginning on postnatal day (PND) 1 (day of birth is PND 0), the pups were directly gavaged with the same dose of vehicle, BPA, or EE. We also obtained a group of animals treated with 3 ppm propylthiouracil in the drinking water and an equal number of concordant controls. Neither BPA nor EE affected serum thyroid hormones or thyroid hormone‒sensitive end points in the developing brain at PND 15. In contrast, propylthiouracil (PTU) reduced serum T4 to the expected degree (80% reduction) and elevated serum TSH. Few effects of PTU were observed in the male brain and none in the female brain. As a result, it is difficult to interpret the negative effects of BPA on the thyroid in this rat strain because the thyroid system appears to respond differently from that of other rat strains.
Collapse
Affiliation(s)
- Ruby Bansal
- Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts
| | - R Thomas Zoeller
- Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts
- Correspondence: R. Thomas Zoeller, PhD, Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| |
Collapse
|
18
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
19
|
R G A. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicol Res (Camb) 2019; 8:196-205. [PMID: 30997021 PMCID: PMC6415617 DOI: 10.1039/c8tx00227d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
The objective of this examination was to explore the impact of gestational caffeine (1,3,7-trimethylxanthine) exposure on the maternofetal thyroid axis and fetal thyroid-cytokine communications during gestation. Pregnant rats (Rattus norvegicus) were intraperitoneally administered caffeine (120 or 150 mg kg-1) from gestation day (GD) 1 to 20. Both doses of caffeine resulted in maternal hyperthyroidism, whereas the elevation in the concentration of serum free triiodothyronine (FT3) and free thyroxine (FT4) was related to a depletion in the level of TSH at GD 20. Maternal body weight gain and food consumption were markedly increased, while fetal body weight was significantly reduced. These alterations caused fetal hypothyroidism and several pathological lesions in the fetal thyroid gland including a vacuolar colloid, destructive degeneration, atrophy and hyperplasia at embryonic day (ED) 20. The abnormalities in the fetal thyroid gland seemed to depend on the activation of caspase-3, Bcl-2, BAX, Cox2, and NF-κB mRNA expression. Both maternal caffeine doses caused a marked attenuation in the values of fetal serum GH, IGF-II, VEGF, TGF-β, TNF-α, IL-1β, IL-6, leptin and MCP-1, and a noticeable elevation in the value of fetal serum adiponectin at ED 20. Thus, gestational caffeine exposure might disrupt the fetal thyroid-cytokine axis.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology , Zoology Department , Faculty of Science , Beni-Suef University , Beni-Suef , Egypt . ;
| |
Collapse
|
20
|
Silva B, Bertasso I, Pietrobon C, Lopes B, Santos T, Peixoto-Silva N, Carvalho J, Claudio-Neto S, Manhães A, Cabral S, Kluck G, Atella G, Oliveira E, Moura E, Lisboa P. Effects of maternal bisphenol A on behavior, sex steroid and thyroid hormones levels in the adult rat offspring. Life Sci 2019; 218:253-264. [DOI: 10.1016/j.lfs.2018.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
|
21
|
Bowman RE, Hagedorn J, Madden E, Frankfurt M. Effects of adolescent Bisphenol-A exposure on memory and spine density in ovariectomized female rats: Adolescence vs adulthood. Horm Behav 2019; 107:26-34. [PMID: 30465772 DOI: 10.1016/j.yhbeh.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/25/2023]
Abstract
The endocrine disruptor, Bisphenol-A (BPA), alters many behavioral and neural parameters in rodents. BPA administration to gonadally intact adolescent rats increases anxiety, impairs spatial memory, and decreases dendritic spine density when measured in adulthood. Since BPA's action seems to be mediated through gonadal steroid receptors, the current experiments were done in ovariectomized (OVX) female rats to examine the effects on behavior and spine density of adolescent BPA exposure under controlled hormone conditions. OVX (postnatal day, PND, 21) female Sprague-Dawley rats (n = 66) received subcutaneous injections of BPA (40 μg/kg/bodyweight), 17β-Estradiol (E2, 50 μg/kg/bodyweight), or saline during adolescence (PND 38-49). Following the last injection brains were processed for Golgi impregnation (Exp1), behavioral and spine density in adolescence (Exp2), or in adulthood (Exp3). In Exp1, E2 increased spine density in CA1 pyramidal cells and BPA decreased spine density in granule cells of the dentate gyrus (DG). In Exp2, BPA impaired spatial memory on the object placement (OP) task, E2 increased spine density in CA1, BPA decreased spine density in the DG and the medial prefrontal cortex (mPFC). When measured in adulthood (Exp3), BPA impaired OP and object recognition (OR) performance, E2 increased spine density in CA1, and BPA decreased spine density in CA1, the mPFC and the DG. Results provide novel data on the effects of adolescent BPA in an OVX model and are compared to data in intact animals and within the context of understanding the importance of the profound neuronal alterations occurring during adolescent development.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America.
| | - Jennifer Hagedorn
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Emma Madden
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America
| |
Collapse
|
22
|
Aljadeff G, Longhi E, Shoenfeld Y. Bisphenol A: A notorious player in the mosaic of autoimmunity. Autoimmunity 2018; 51:370-377. [DOI: 10.1080/08916934.2018.1551374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gali Aljadeff
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eleonora Longhi
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- University of Bologna School of Medicine, Bologna, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
23
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|