1
|
Rivera-González KS, Reynolds PM, Lipinski RJ. Examination of piperonyl butoxide developmental toxicity as a Sonic hedgehog pathway inhibitor targeting limb and palate morphogenesis. Reprod Toxicol 2024; 130:108716. [PMID: 39255949 DOI: 10.1016/j.reprotox.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Piperonyl butoxide (PBO) is a pesticide synergist with widespread use and human exposure that was discovered to inhibit Sonic hedgehog (Shh) signaling, a pathway required for numerous developmental processes. Previous examinations of PBO's potential for developmental toxicity have generated seemingly conflicting results. We investigated the impact of acute PBO exposure targeting Shh pathway activity during palate and limb morphogenesis. Timed-pregnant C57BL/6 J mice were exposed to a single PBO dose (67-1800 mg/kg) at gestational day (GD) 9.75, and litters were collected at GD10.25 and GD10.75 to examine Shh pathway activity or GD17 for phenotypic assessment. PBO exposure induced dose-dependent limb malformations and cleft palate in the highest dose group. Following PBO exposure, reduced expression of the Shh pathway activity markers Gli1 and Ptch1 was observed in the embryonic limb buds and craniofacial processes. These findings provide additional evidence that prenatal PBO exposure targeting Shh pathway activity can result in malformations in mice that parallel common etiologically complex human birth defects.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Porsha M Reynolds
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Jenkins AE, Scarlett CO, Beames TG, Rivera-González KS, Martin AA, Sun MR, Hutson PR, Lipinski RJ. Pharmacokinetic analysis of acute and dietary exposure to piperonyl butoxide in the mouse. Toxicol Rep 2023; 11:310-317. [PMID: 37789951 PMCID: PMC10543969 DOI: 10.1016/j.toxrep.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Piperonyl butoxide (PBO) is a popular insecticide synergist present in thousands of commercial, agricultural, and household products. PBO inhibits cytochrome P450 activity, impairing the ability of insects to detoxify insecticides. PBO was recently discovered to also inhibit Sonic hedgehog signaling, a pathway required for embryonic development, and rodent studies have demonstrated the potential for in utero PBO exposure to cause structural malformations of the brain, face, and limbs, or more subtle neurodevelopmental abnormalities. The current understanding of the pharmacokinetics of PBO in mice is limited, particularly with respect to dosing paradigms associated with developmental toxicity. To establish a pharmacokinetic (PK) model for oral exposure, PBO was administered to female C57BL/6J mice acutely by oral gavage (22-1800 mg/kg) or via diet (0.09 % PBO in chow). Serum and adipose samples were collected, and PBO concentrations were determined by HPLC-MS/MS. The serum concentrations of PBO were best fit by a linear one-compartment model. PBO concentrations in visceral adipose tissue greatly exceeded those in serum. PBO concentrations in both serum and adipose tissue decreased quickly after cessation of dietary exposure. The elimination half-life of PBO in the mouse after gavage dosing was 6.5 h (90 % CI 4.7-9.5 h), and systemic oral clearance was 83.3 ± 20.5 mL/h. The bioavailability of PBO in chow was 41 % that of PBO delivered in olive oil by gavage. Establishment of this PK model provides a foundation for relating PBO concentrations that cause developmental toxicity in the rodent models to Sonic hedgehog signaling pathway inhibition.
Collapse
Affiliation(s)
- Alyssa E. Jenkins
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Tyler G. Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth S. Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul R. Hutson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Rivera-González KS, Beames TG, Lipinski RJ. Examining the developmental toxicity of piperonyl butoxide as a Sonic hedgehog pathway inhibitor. CHEMOSPHERE 2021; 264:128414. [PMID: 33007564 PMCID: PMC9158378 DOI: 10.1016/j.chemosphere.2020.128414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 05/05/2023]
Abstract
Piperonyl butoxide (PBO) is a semisynthetic chemical present in hundreds of pesticide formulations used in agricultural, commercial, and residential settings. PBO acts as a pesticide synergist by inhibiting insect cytochrome P450 enzymes and is often present at much higher concentrations than active insecticidal ingredients. PBO was recently discovered to also inhibit Sonic hedgehog (Shh) signaling, a key molecular pathway in embryonic development and in brain and face morphogenesis. Recent animal model studies have shown that in utero PBO exposure can cause overt craniofacial malformations or more subtle neurodevelopmental abnormalities. Related adverse developmental outcomes in humans are etiologically heterogeneous, and, while studies are limited, PBO exposure during pregnancy has been linked to neurodevelopmental deficits. Contextualized in PBO's newly recognized mechanism as a Shh signaling inhibitor, these findings support more rigorous examination of the developmental toxicity of PBO and its potential contribution to etiologically complex human birth defects. In this review, we highlight environmental sources of human PBO exposure and summarize existing animal studies examining the developmental impact of prenatal PBO exposure. Also presented are critical knowledge gaps in our understanding of PBO's pharmacokinetics and potential role in gene-environment and environment-environment interactions that should be addressed to better understand the human health impact of environmental PBO exposure.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Dalibor M. Stanković
- Innovation center of the Faculty of Chemistry; University of Belgrade; Studentski trg 12-16 Belgrade
| |
Collapse
|
5
|
Komada M, Fujiyama F, Yamada S, Shiota K, Nagao T. Methylnitrosourea induces neural progenitor cell apoptosis and microcephaly in mouse embryos. ACTA ACUST UNITED AC 2010; 89:213-22. [PMID: 20549696 DOI: 10.1002/bdrb.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prenatal exposure to methylnitrosourea (MNU), an alkylating agent, induces microcephaly in mice. However, its pathogenetic mechanism has not been clarified, especially that in the development of the cerebral cortex. METHODS ICR mice were treated with MNU at 10 mg/kg intraperitoneally on day 13.5 or 15.5 of gestation, and the embryos were observed histologically 24 hr after treatment with MNU or at term. To clarify the pathogenesis of microcephaly and histological changes, especially apoptosis, neurogenesis, and neural migration/positioning, we performed histological analysis employing a cell-specific labeling experiment using thymidine-like substances (BrdU, CldU, and IdU) and markers of neurons/neural stem cells. RESULTS Histological abnormalities of the dorsal telencephalon, and the excessive cell death of proliferative neural progenitor/stem cells were noted in the MNU-treated embryos. The highest frequencies of cell death occurred at 36 hr after MNU treatment, and little or no neurogenesis was observed in the ventricular zone of the dorsal telencephalon. Abnormality of the radial migration was caused by the reduction of radial fibers in the radial glias. Birth-date analysis revealed the abnormal positioning of neurons and aberrant lamination of the cerebral cortex. CONCLUSIONS Our data suggest that prenatal exposure to MNU induces the excessive cell death of neural precursor/stem cells, and the defective development of the cerebral cortex, resulting in microcephalic abnormalities.
Collapse
Affiliation(s)
- Munekazu Komada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
6
|
Macedo PA, Peterson RKD, Davis RS. Risk assessments for exposure of deployed military personnel to insecticides and personal protective measures used for disease-vector management. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1758-71. [PMID: 17885933 DOI: 10.1080/15287390701459049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Infectious diseases are problematic for deployed military forces throughout the world, and, historically, more military service days have been lost to insect-vectored diseases than to combat. Because of the limitations in efficacy and availability of both vaccines and therapeutic drugs, vector management often is the best tool that military personnel have against most vector-borne pathogens. However, the use of insecticides may raise concerns about the safety of their effects on the health of the military personnel exposed to them. Therefore, our objective was to use risk assessment methodologies to evaluate health risks to deployed U.S. military personnel from vector management tactics. Our conservative tier-1, quantitative risk assessment focused on acute, subchronic, and chronic exposures and cancer risks to military personnel after insecticide application and use of personal protective measures in different scenarios. Exposures were estimated for every scenario, chemical, and pathway. Acute, subchronic, and chronic risks were assessed using a margin of exposure (MOE) approach. Our MOE was the ratio of a no-observed-adverse-effect level (NOAEL) to an estimated exposure. MOEs were greater than the levels of concern (LOCs) for all surface residual and indoor space spraying exposures, except acute dermal exposure to lambda-cyhalothrin. MOEs were greater than the LOCs for all chemicals in the truck-mounted ultra-low-volume (ULV) exposure scenario. The aggregate cancer risk for permethrin exceeded 1 x 10(-6), but more realistic exposure refinements would reduce the cancer risk below that value. Overall, results indicate that health risks from exposures to insecticides and personal protective measures used by military personnel are low.
Collapse
Affiliation(s)
- Paula A Macedo
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, California, USA
| | | | | |
Collapse
|
7
|
Prater MR, Zimmerman KL, Ward DL, Holladay SD. Reduced birth defects caused by maternal immune stimulation in methylnitrosourea-exposed mice: association with placental improvement. ACTA ACUST UNITED AC 2005; 70:862-9. [PMID: 15526292 DOI: 10.1002/bdra.20082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Methylnitrosourea (MNU) is a potent carcinogen and teratogen that is associated with central nervous system, craniofacial, skeletal, ocular, and appendicular birth defects following transplacental exposure at critical time points during development, and preliminary studies have suggested that nonspecific maternal immunostimulation may offer protection against development of these birth defects. METHODS Our study examined morphologic alterations in fetal limb and digital development and placental integrity following maternal exposure to MNU on GD 9 in CD-1 mice, and characterized the improvement in placental integrity and abrogation of fetal defects following maternal immune stimulation with interferon-gamma (IFN-gamma) on GD 7. RESULTS Fetal limbs were significantly shortened (p < 0.0001) and incidence of limb and digital defects (syndactyly, polydactyly, oligodactyly, clubbing, and webbing) was dramatically increased following mid-gestational maternal MNU exposure. Maternal immune stimulation with IFN-gamma on GD 7 lessened incidence of fetal limb shortening and maldevelopment on GD 12 and 14. Further, disruption of placental spongiotrophoblast integrity, increased cell death in placental trophoblasts with increased intercellular spaces in the spongiotrophoblast layer and minimal inflammation, and increased loss of fetal labyrinthine endothelial cells from MNU-exposed dams suggested that MNU-induced placental breakdown may contribute to fetal limb and digital maldevelopment. MNU + IFN-gamma was associated with diminished cell death within all layers of the placenta, especially in the labyrinthine layer. CONCLUSIONS These data verify improved distal limb development in MNU-exposed mice as a result of maternal IFN-gamma administration, and suggest a link between placental integrity and proper fetal development.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/immunology
- Abnormalities, Drug-Induced/prevention & control
- Alkylating Agents/toxicity
- Animals
- Drug Therapy, Combination
- Ear, Inner/drug effects
- Ear, Inner/immunology
- Ear, Inner/pathology
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Female
- Immune System/drug effects
- Interferon-gamma/pharmacology
- Limb Deformities, Congenital/chemically induced
- Limb Deformities, Congenital/immunology
- Limb Deformities, Congenital/prevention & control
- Male
- Maternal-Fetal Exchange
- Methylnitrosourea/toxicity
- Mice
- Placenta/immunology
- Pregnancy
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/pathology
Collapse
Affiliation(s)
- Mary Renee Prater
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
8
|
Tanaka T. Reproductive and neurobehavioural effects of piperonyl butoxide administered to mice in the diet. FOOD ADDITIVES AND CONTAMINANTS 2003; 20:207-14. [PMID: 12623643 DOI: 10.1080/0265203021000050617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Piperonyl butoxide was given in the diet to mice to provide levels of 0 (control), 0.01, 0.03 and 0.09% from 5 weeks of age of the F(0) generation to 9 weeks of age of the F(1) generation, and selected reproductive and neurobehavioural parameters were measured. There were no adverse effects of piperonyl butoxide on either litter size, litter weight or sex ratio at birth. The average body weight of male offspring was significantly increased in the middle-dose group at post-natal days 4 and 7 during lactation. That of female offspring was significantly increased in the middle-dose group at post-natal days 7 and 14 during lactation. In behavioural developmental parameters, surface righting at post-natal day 7 was significantly delayed in the higher-dose groups in male offspring, and those effects were significantly dose related (p < 0.01). Olfactory orientation at post-natal day 14 was significantly depressed in the higher-dose groups in male offspring, and those effects were significantly dose related (p < 0.01). For movement activity of exploratory behaviour at 9 weeks of age of the F(1) generation, the total distance of males was significantly increased in the higher-dose groups, and those effects showed a dose-related manner (p < 0.01). Average distance and speed were significantly increased in the high-dose group, and those effects showed a dose-related manner (p < 0.01 in each). The dose levels of piperonyl butoxide in the present study produced some adverse effects in reproductive and neurobehavioural parameters in mice.
Collapse
Affiliation(s)
- T Tanaka
- Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, 3-24-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan.
| |
Collapse
|
9
|
Guven K, Deveci E, Akba O, Onen A, de Pomerai D. The accumulation and histological effects of organometallic fungicides Propineb and Maneb in the kidneys of fetus and female rats during pregnancy. Toxicol Lett 1998; 99:91-8. [PMID: 9817080 DOI: 10.1016/s0378-4274(98)00128-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dithiocarbamate propineb and maneb are organometal fungicides, which are widely used for the control of diseases in plants. Female Wistar rats were exposed orally to 200 and 400 ppm propineb and 250 ppm maneb, from the sixth day of gestation up to birth. We found that the body weights of both one-day old litters and their fungicide-treated mothers were lower than those of controls. Histological examination of the kidneys of fetus and fungicide-treated pregnant females showed a variety of histopathological effects. Moreover, the analysis of zinc (Zn) and manganese (Mn) concentrations (using inductively coupled plasma-atomic emission spectrometry) in the kidneys of pregnant females exposed to organometallic fungicides during pregnancy demonstrated that the metal concentrations in the kidney were higher than those of controls. However, the renal metal concentrations were significantly increased in the litters subjected to the fungicides during gestation, indicating that high levels of the trace metals in the organ of fetus may well be due to the fungicides easily passing the placental barrier.
Collapse
Affiliation(s)
- K Guven
- Dicle University, Science Faculty, Biology Department, Diyarbakir, Turkey
| | | | | | | | | |
Collapse
|
10
|
Takahashi O, Oishi S, Fujitani T, Tanaka T, Yoneyama M. Chronic toxicity studies of piperonyl butoxide in CD-1 mice: induction of hepatocellular carcinoma. Toxicology 1997; 124:95-103. [PMID: 9457999 DOI: 10.1016/s0300-483x(97)00136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Male and female CD-1 mice (51-104 mice/group) were administered piperonyl butoxide (alpha-[2-(2-butoxyethoxy)ethoxy-4,5-methylenedioxy-2-propyltol uene) in the diet at levels of 0 (control), 0.6 and 1.2% for 52 weeks (1 year). Hepatocellular carcinomas were induced in treated groups in a dose-dependent manner. The incidences of hepatocellular carcinoma were 11.3 and 52.0% in male mice given 0.6 and 1.2% piperonyl butoxide, and 41.2% in female mice given 1.2%. Piperonyl butoxide is thus a hepatocarcinogen to mice as it is known to be to rats.
Collapse
Affiliation(s)
- O Takahashi
- Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Japan
| | | | | | | | | |
Collapse
|
11
|
Ohsugi K, Gardiner DM, Bryant SV. Cell cycle length affects gene expression and pattern formation in limbs. Dev Biol 1997; 189:13-21. [PMID: 9281333 DOI: 10.1006/dbio.1997.8665] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relationship between growth and pattern specification during development remains elusive. Some molecules known to function as growth factors are also potent agents of pattern formation. This raises the possibility that growth factors could act in pattern formation via an effect on the cell cycle. We have tested the significance of the length of the cell cycle for gene expression and pattern formation in developing chick limb buds by locally slowing the cell cycle. When anterior cell cycles are lengthened by reversible inhibition of DNA replication or by other means, some genes characteristic of the posterior polarizing region are expressed, and digit duplication is observed. Conversely, when posterior cell cycles are slowed, expression of some posterior-specific genes is inhibited, but the pattern is normal. These results indicate that control of the length of the cell cycle could play a primary role in pattern formation by influencing the complement of genes expressed in a particular region of the embryo.
Collapse
Affiliation(s)
- K Ohsugi
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California, 92697, USA
| | | | | |
Collapse
|