1
|
de Souza PE, Souza-Silva M, Ferreira RL. The ticking clock in the dark: Review of biological rhythms in cave invertebrates. Chronobiol Int 2024; 41:738-756. [PMID: 38722073 DOI: 10.1080/07420528.2024.2348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Circadian clocks, internal mechanisms that generate 24-hour rhythms, play a crucial role in coordinating biological events with day-night cycles. In light-deprived environments such as caves, species, particularly isolated obligatory troglobites, may exhibit evolutionary adaptations in biological rhythms due to light exposure. To explore rhythm expression in these settings, we conducted a comprehensive literature review on invertebrate chronobiology in global subterranean ecosystems, analyzing 44 selected studies out of over 480 identified as of September 2023. These studies revealed significant taxonomic diversity, primarily among terrestrial species like Coleoptera, with research concentrated in the United States, Italy, France, Australia, and Brazil, and a notable gap in African records. Troglobite species displayed a higher incidence of aperiodic behavior, while troglophiles showed a robust association with rhythm expression. Locomotor activity was the most studied aspect (>60%). However, approximately 4% of studies lacked information on periodicity or rhythm asynchrony, and limited research under constant light conditions hindered definitive conclusions. This review underscores the need to expand chronobiological research globally, encompassing diverse geographical regions and taxa, to deepen our understanding of biological rhythms in subterranean species. Such insights are crucial for preserving the resilience of subsurface ecosystems facing threats like climate change and habitat loss.
Collapse
Affiliation(s)
| | - Marconi Souza-Silva
- Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
2
|
Differential transcriptomic responses to heat stress in surface and subterranean diving beetles. Sci Rep 2022; 12:16194. [PMID: 36171221 PMCID: PMC9519976 DOI: 10.1038/s41598-022-20229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.
Collapse
|
3
|
Amaral DT, Johnson CH, Viviani VR. RNA-Seq analysis of the blue light-emitting Orfelia fultoni (Diptera: Keroplatidae) suggest photoecological adaptations at the molecular level. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 39:100840. [PMID: 34022525 PMCID: PMC8495875 DOI: 10.1016/j.cbd.2021.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Bioluminescence in Diptera is found in the Keroplatidae family, within Arachnocampininae and Keroplatinae subfamilies, with reported occurrences in Oceania, Eurasia, and Americas. Larvae of Orfelia fultoni, which inhabit stream banks in the Appalachian Mountains, emit the bluest bioluminescence among insects, using it for prey attraction, similarly to Arachnocampa spp. Although bioluminescence has a similar prey attraction function, the systems of Arachonocampininae and Keroplatinae subfamilies are morphologically/biochemically distinct, indicating different evolutionary origins. To identify the possible coding genes associated with physiological control, ecological adaptations, and origin/evolution of bioluminescence in the Keroplatinae subfamily, we performed the RNA-Seq analysis of O. fultoni larvae during day and night and compared it with the transcriptomes of Arachnocampa luminosa, and reanalyzed the previously published proteomic data of O. fultoni against the RNA-Seq dataset. The abundance of chaperones/heat-shock and hexamerin gene products at night and in luciferase enriched fractions supports their possible association and participation in bioluminescence. The low diversity of copies/families of opsins indicate a simpler visual system in O. fultoni. Noteworthy, gene products associated with silk protein biosynthesis in Orfelia were more similar to Lepidoptera than to the Arachnocampa, indicating that, similarly to the bioluminescent systems, at some point, the biochemical apparatus for web construction may have evolved independently in Orfelia and Arachnocampa.
Collapse
Affiliation(s)
- Danilo T Amaral
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil
| | - Carl H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Vadim R Viviani
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil; Graduate School of Evolutive Genetics and Molecular Biology, Federal Univ. São Carlos (UFSCar), São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Biomechanical properties of fishing lines of the glowworm Arachnocampa luminosa (Diptera; Keroplatidae). Sci Rep 2019; 9:3082. [PMID: 30816149 PMCID: PMC6395680 DOI: 10.1038/s41598-019-39098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa. We analysed tensile properties of the fishing lines of the New Zealand glowworm Arachnocampa luminosa under natural and dry conditions and measured their adhesion energy to different surfaces. The capture system of A. luminosa is highly adapted to the prevailing conditions (13-15 °C, relative humidity of 98%) whereby the wet fishing lines only show a bonding ability at high relative humidity (>80%) with a mean adhesive energy from 20-45 N/m and a stronger adhesion to polar surfaces. Wet threads show a slightly higher breaking strain value than dried threads, whereas the tensile strength of wet threads was much lower. The analyses show that breaking stress and strain values in Arachnocampa luminosa were very low in comparison to related Arachnocampa species and spider silk threads but exhibit much higher adhesion energy values. While the mechanical differences between the threads of various Arachnocampa species might be consequence of the different sampling and handling of the threads prior to the tests, differences to spiders could be explained by habitat differences and differences in the material ultrastructure. Orb web spiders produce viscid silk consisting of β-pleated sheets, whereas Arachnocampa has cross-β-sheet crystallites within its silk. As a functional explanation, the low tear strength for A. luminosa comprises a safety mechanism and ensures the entire nest is not pulled down by prey which is too heavy.
Collapse
|
5
|
Lui NM, Schramm S, Naumov P. pH-Dependent fluorescence from firefly oxyluciferin in agarose thin films. NEW J CHEM 2019. [DOI: 10.1039/c8nj05469j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emitter of the firefly bioluminescence, oxyluciferin, and its derivatives were incorporated in agarose matrix to obtain self-supporting, lightweight fluorescent acidochromic thin films. This study demonstrates an alternative approach to investigating environmental effects on bioluminescent molecules.
Collapse
Affiliation(s)
- Nathan M. Lui
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
- Department of Chemistry and Chemical Biology, Baker Laboratory
- Cornell University
| | - Stefan Schramm
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - Panče Naumov
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
6
|
Berry SE, Gilchrist J, Merritt DJ. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:1-9. [PMID: 28899751 DOI: 10.1016/j.jinsphys.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Glowworms, members of the keroplatid fly genus, Arachnocampa, glow to attract prey. Here we describe substantial differences in the bioluminescence regulatory systems of two species; one is a troglophile with populations both in caves and outside of caves in wet forest (Arachnocampa tasmaniensis) and the other has no known cave populations (Arachnocampa flava). We find that A. tasmaniensis is ready to initiate bioluminescence at any time darkness is encountered. In contrast, A. flava shows a homeostatic control of bioluminescence; it is unlikely to initiate bioluminescence when exposed to dark pulses during the photophase and it does so with a long latency. Another difference between the two species is that A. tasmaniensis individuals synchronize their bioluminescence in the dark zone of caves under the control of the circadian system and A. flava individuals do not synchronize to each other, rather their circadian control system entrains to the light:dark cycle to promote nocturnal bioluminescence. Consequently, we produced a phase-response curve in response to photic entrainment under constant darkness for both species. The shape of the phase-response curves differs between the two species as does the overall sensitivity to the identical entrainment conditions. The phase-response curve of A. tasmaniensis facilitates synchronization whereas that of A. flava facilitates nocturnal glowing. The two-species comparison highlights possible pathways of divergence of circadian control of physiological functions that could be associated with the extreme ecological differences experienced in cave and surface habitats.
Collapse
Affiliation(s)
- Sarah E Berry
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia,.
| | - Joshua Gilchrist
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David J Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
7
|
Abhilash L, Shindey R, Sharma VK. To be or not to be rhythmic? A review of studies on organisms inhabiting constant environments. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lakshman Abhilash
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Radhika Shindey
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
8
|
Meyer-Rochow VB, Yamahama Y. A comparison between the larval eyes of the dimly luminescentKeroplatus nipponicusand the brightly luminescentArachnocampa luminosa(Diptera; Keroplatidae). LUMINESCENCE 2017; 32:1072-1076. [DOI: 10.1002/bio.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- V. Benno Meyer-Rochow
- Research Institute of Luminous Organisms; Nakanogo, Hachijojima Tokyo Japan
- Department of Genetics and Physiology; Oulu University; Oulu Finland
| | - Yumi Yamahama
- Department of Biology; Hamamatsu University School of Medicine; Higashiku Hamamatsu Japan
| |
Collapse
|
9
|
|
10
|
von Byern J, Dorrer V, Merritt DJ, Chandler P, Stringer I, Marchetti-Deschmann M, McNaughton A, Cyran N, Thiel K, Noeske M, Grunwald I. Characterization of the Fishing Lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and Australia. PLoS One 2016; 11:e0162687. [PMID: 27973586 PMCID: PMC5156358 DOI: 10.1371/journal.pone.0162687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/27/2016] [Indexed: 11/29/2022] Open
Abstract
Animals use adhesive secretions in a plethora of ways, either for attachment, egg anchorage, mating or as either active or passive defence. The most interesting function, however, is the use of adhesive threads to capture prey, as the bonding must be performed within milliseconds and under unsuitable conditions (movement of prey, variable environmental conditions, unfavourable attack angle, etc.) to be nonetheless successful. In the following study a detailed characterization of the prey capture system of the world-renowned glowworm group Arachnocampa from the macroscopic to the ultrastructural level is performed. The data reveal that the adhesive droplets consist mostly of water and display hygroscopic properties at varying humidity levels. The droplet core of Arachnocampa luminosa includes a certain amount of the elements sodium, sulphur and potassium (beside carbon, oxygen and nitrogen), while a different element composition is found in the two related species A. richardsae and A. tasmaniensis. Evidence for lipids, carbohydrates and proteins was negative on the histochemical level, however X-ray photoelectron spectroscopy confirm the presence of peptides within the droplet content. Different to earlier assumptions, the present study indicates that rather than oxalic acid, urea or uric acid are present in the adhesive droplets, presumably originating from the gut. Comparing the capture system in Arachnocampa with those of orb-spiders, large differences appear not only regarding the silky threads, but also, in the composition, hygroscopic properties and size of the mucous droplets.
Collapse
Affiliation(s)
- Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria
- * E-mail:
| | - Victoria Dorrer
- Technical University Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria
| | - David J. Merritt
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | - Ian Stringer
- Department of Conservation, Wellington, New Zealand
| | | | - Andrew McNaughton
- University of Otago, School of Medical Sciences, Department of Anatomy, Otago Centre for Confocal Microscopy, Otago, New Zealand
| | - Norbert Cyran
- University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| | - Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| | - Ingo Grunwald
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| |
Collapse
|
11
|
Mills R, Popple JA, Veidt M, Merritt DJ. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:313-27. [PMID: 26897608 DOI: 10.1007/s00359-016-1077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/29/2022]
Abstract
Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.
Collapse
Affiliation(s)
- Rebecca Mills
- School Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julie-Anne Popple
- School Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martin Veidt
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David John Merritt
- School Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Friedrich M. Biological Clocks and Visual Systems in Cave-Adapted Animals at the Dawn of Speleogenomics. Integr Comp Biol 2013; 53:50-67. [DOI: 10.1093/icb/ict058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Maynard AJ, Merritt DJ. Synchronization of Circadian Bioluminescence as a Group-Foraging Strategy in Cave Glowworms. Integr Comp Biol 2013; 53:154-64. [DOI: 10.1093/icb/ict011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Merritt DJ, Rodgers EM, Amir AF, Clarke AK. Same Temporal Niche, Opposite Rhythmicity: Two Closely Related Bioluminescent Insects With Opposite Bioluminesce Propensity Rhythms. Chronobiol Int 2012; 29:1336-44. [DOI: 10.3109/07420528.2012.728549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Rigby LM, Merritt DJ. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava. J Exp Biol 2011; 214:3286-93. [DOI: 10.1242/jeb.060509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
The glowworm Arachnocampa flava is a carnivorous fly larva (Diptera) that uses light to attract prey into its web. The light organ is derived from cells of the Malpighian tubules, representing a bioluminescence system that is unique to the genus. Bioluminescence is modulated through the night although light levels change quite slowly compared with the flashing of the better-known fireflies (Coleoptera). The existing model for the neural regulation of bioluminescence in Arachnocampa, based on use of anaesthetics and ligations, is that bioluminescence is actively repressed during the non-glowing phase and the repression is partially released during the bioluminescence phase. The effect of the anaesthetic, carbon dioxide, on the isolated light organ from the present study indicates that the repression is at least partially mediated at the light organ itself rather than less directly through the central nervous system. Blocking of neural signals from the central nervous system through ligation leads to uncontrolled release of bioluminescence but light is emitted at relatively low levels compared with under anaesthesia. Candidate biogenic amines were introduced by several methods: feeding prey items injected with test solution, injecting the whole larva, injecting a ligated section containing the light organ or bathing the isolated light organ in test solution. Using these methods, dopamine, serotonin and tyramine do not affect bioluminescence output. Exposure to elevated levels of octopamine via feeding, injection or bathing of the isolated light organ indicates that it is involved in the regulation of repression. Administration of the octopamine antagonists phentolamine or mianserin results in very high bioluminescence output levels, similar to the effect of anaesthetics, but only mianserin acts directly on the light organ.
Collapse
Affiliation(s)
- Lisa M. Rigby
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|