1
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
2
|
Tan JTM, Price KJ, Fanshaw SR, Bilu C, Pham QT, Pham A, Sandeman L, Nankivell VA, Solly EL, Kronfeld-Schor N, Bursill CA. Exercise Reduces Glucose Intolerance, Cardiac Inflammation and Adipose Tissue Dysfunction in Psammomys obesus Exposed to Short Photoperiod and High Energy Diet. Int J Mol Sci 2024; 25:7756. [PMID: 39062999 PMCID: PMC11277119 DOI: 10.3390/ijms25147756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian disruption causes glucose intolerance, cardiac fibrosis, and adipocyte dysfunction in sand rats (Psammomys obesus). Exercise intervention can improve glucose metabolism, insulin sensitivity, adipose tissue function and protect against inflammation. We investigated the influence of exercise on male P. obesus exposed to a short photoperiod (5 h light:19 h dark) and high-energy diet. Exercise reduced glucose intolerance. Exercise reduced cardiac expression of inflammatory marker Ccl2 and Bax:Bcl2 apoptosis ratio. Exercise increased heart:body weight ratio and hypertrophy marker Myh7:Myh6, yet reduced Gata4 expression. No phenotypic changes were observed in perivascular fibrosis and myocyte area. Exercise reduced visceral adipose expression of inflammatory transcription factor Rela, adipogenesis marker Ppard and browning marker Ppargc1a, but visceral adipocyte size was unaffected. Conversely, exercise reduced subcutaneous adipocyte size but did not affect any molecular mediators. Exercise increased ZT7 Bmal1 and Per2 in the suprachiasmatic nucleus and subcutaneous Per2. Our study provides new molecular insights and histological assessments on the effect of exercise on cardiac inflammation, adipose tissue dysfunction and circadian gene expression in P. obesus exposed to short photoperiod and high-energy diet. These findings have implications for the protective benefits of exercise for shift workers in order to reduce the risk of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Joanne T. M. Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kiara J. Price
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah-Rose Fanshaw
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Quang Tuan Pham
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Anthony Pham
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
| | - Victoria A. Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma L. Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Noga Kronfeld-Schor
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Christina A. Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (K.J.P.); (S.-R.F.); (Q.T.P.); (A.P.); (L.S.); (V.A.N.); (E.L.S.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Tan JTM, Cheney CV, Bamhare NES, Hossin T, Bilu C, Sandeman L, Nankivell VA, Solly EL, Kronfeld-Schor N, Bursill CA. Female Psammomys obesus Are Protected from Circadian Disruption-Induced Glucose Intolerance, Cardiac Fibrosis and Adipocyte Dysfunction. Int J Mol Sci 2024; 25:7265. [PMID: 39000372 PMCID: PMC11242371 DOI: 10.3390/ijms25137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cate V Cheney
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole E S Bamhare
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tasnim Hossin
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Victoria A Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Desmarchelier MR. Behavioral Development of Pediatric Exotic Pets and Practical Applications. Vet Clin North Am Exot Anim Pract 2024; 27:431-448. [PMID: 38103997 DOI: 10.1016/j.cvex.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The discovery of epigenetics and the interaction between genes and the environment have moved our understanding of how animal behavior develops from gestation to adulthood, and even throughout generations, to a new level. Studying the natural biology of exotic pets is key to providing them with a rich social and physical environment that will encourage species-specific behaviors. Combining parent-raising with appropriately timed human handling is likely to result in individuals with more resilience to stress. Using operant conditioning techniques early in life to train the animals' basic behaviors gives them control over their environment, empowering them through their social interactions.
Collapse
Affiliation(s)
- Marion R Desmarchelier
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, J2S 2M2 Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
5
|
Leow SS, Khoo JS, Ng SM, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. Insulin and circadian rhythm genes of the Nile rat (Arvicanthis niloticus) are conserved and orthologous to those in the rat, mouse and human. Genetica 2024; 152:11-29. [PMID: 38099985 DOI: 10.1007/s10709-023-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024]
Abstract
The African grass or Nile rat (NR) (Arvicanthis niloticus) is a herbivorous diurnal rodent which is used as a biological model for research on type 2 diabetes mellitus (T2DM) and the circadian rhythm. Similar to humans, male NRs develop T2DM with high-carbohydrate diets. The NR thus provides a unique opportunity to identify the nutritional and underlying genetic factors that characterise human T2DM, as well as the effects of potential anti-diabetic phytochemicals such as Water-Soluble Palm Fruit Extract. Whole genome sequencing (WGS) could help identify possible genetic causes why NRs spontaneously develop T2DM in captivity. In this study, we performed WGS on a hepatic deoxyribonucleic acid (DNA) sample isolated from a male NR using PacBio high-fidelity long-read sequencing. The WGS data obtained were then de novo assembled and annotated using PacBio HiFi isoform sequencing (Iso-Seq) data as well as previous Illumina RNA sequencing (RNA-Seq) data. Genes related to insulin and circadian rhythm pathways were present in the NR genome, similar to orthologues in the rat, mouse and human genomes. T2DM development in the NR is thus most likely not attributable to structural differences in these genes when compared to other biological models. Further studies are warranted to gain additional insights on the genetic-environmental factors which underlie the genetic permissiveness of NRs to develop T2DM.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Siuk-Mun Ng
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
6
|
Bilu C, Butensky N, Malamud AR, Einat H, Zimmet P, Zloto O, Ziv H, Kronfeld-Schor N, Vishnevskia-Dai V. Effects of photoperiod and food on glucose intolerance and subsequent ocular pathology in the fat sand rat. Sci Rep 2024; 14:403. [PMID: 38172147 PMCID: PMC10764329 DOI: 10.1038/s41598-023-44584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its ocular complications, such as cataract and diabetic retinopathy (DR) have been linked to circadian rhythm-disturbances. Using a unique diurnal animal model, the sand rat (Psammomys obesus) we examined the effect of circadian disruption by short photoperiod acclimation on the development of T2DM and related ocular pathologies. We experimented with 48 male sand rats. Variables were day length (short photoperiod, SP, vs. neutral photoperiod NP) and diet (standard rodent diet vs. low-energy diet). Blood glucose, the presence of cataract and retinal pathology were monitored. Histological slides were examined for lens opacity, retinal cell count and thickness. Animals under SP and fed standard rodent diet (SPSR) for 20 weeks had higher baseline blood glucose levels and lower glucose tolerance compared with animals kept under NP regardless of diet, and under SP with low energy diet (SPLE). Animals under SPSR had less cells in the outer nuclear layer, a lower total number of cells in the retina, and a thickened retina. Higher blood glucose levels correlated with lower number of cells in all cellular layers of the retina and thicker retina. Animals under SPSR had higher occurrence of cataract, and a higher degree of cataract, which correlated with higher blood glucose levels. Sand rats kept under SPSR develop cataract and retinal abnormalities indicative of DR, whereas sand rats kept under NP regardless of diet, or under SPLE, do not. These ocular abnormalities significantly correlate with hyperglycemia.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel.
| | - Neta Butensky
- School of Zoology, Tel-Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
| | | | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Ofira Zloto
- Ocular Oncology, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hana Ziv
- Maurice and Gabriela Goldschleger Eye Research Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Vicktoria Vishnevskia-Dai
- Ocular Oncology, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Gao X, Wei Y, Sun H, Hao S, Ma M, Sun H, Zang D, Qi C, Ge J. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 2023:10.1007/s12035-023-03360-5. [PMID: 37126129 DOI: 10.1007/s12035-023-03360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
8
|
Wen Y, Han X, Sun M, Wang L, Zhu X, Wang X, Wang C. The anxiety and depression status and related influencing factors in patients with type 2 diabetes: Why should we care. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Bilu C, Einat H, Zimmet P, Kronfeld-Schor N. Circadian rhythms-related disorders in diurnal fat sand rats under modern lifestyle conditions: A review. Front Physiol 2022; 13:963449. [PMID: 36160856 PMCID: PMC9489903 DOI: 10.3389/fphys.2022.963449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Modern lifestyle reduces environmental rhythmicity and may lead to circadian desynchrony. We are exposed to poor day-time lighting indoors and excessive night-time artificial light. We use air-conditioning to reduce ambient temperature cycle, and food is regularly available at all times. These disruptions of daily rhythms may lead to type 2 diabetes mellitus (T2DM), obesity, cardiometabolic diseases (CMD), depression and anxiety, all of which impose major public health and economic burden on societies. Therefore, we need appropriate animal models to gain a better understanding of their etiologic mechanisms, prevention, and management.We argue that the fat sand rat (Psammomys obesus), a diurnal animal model, is most suitable for studying the effects of modern-life conditions. Numerous attributes make it an excellent model to study human health disorders including T2DM, CMD, depression and anxiety. Here we review a comprehensive series of studies we and others conducted, utilizing the fat sand rat to study the underlying interactions between biological rhythms and health. Understanding these interactions will help deciphering the biological basis of these diseases, which often occur concurrently. We found that when kept in the laboratory (compared with natural and semi-wild outdoors conditions where they are diurnal), fat sand rats show low amplitude, nocturnal or arrhythmic activity patterns, dampened daily glucose rhythm, glucose intolerance, obesity and decreased survival rates. Short photoperiod acclimation exacerbates these pathologies and further dampens behavioral and molecular daily rhythms, resulting in CMD, T2DM, obesity, adipocyte dysfunction, cataracts, depression and anxiety. Increasing environmental rhythmicity by morning bright light exposure or by access to running wheels strengthens daily rhythms, and results in higher peak-to-trough difference in activity, better rhythmicity in clock genes expression, lower blood glucose and insulin levels, improved glucose tolerance, lower body and heart weight, and lower anxiety and depression. In summary, we have demonstrated that fat sand rats living under the correspondent of “human modern lifestyle” conditions exhibit dampened behavioral and biological rhythms and develop circadian desynchrony, which leads to what we have named “The Circadian Syndrome”. Environmental manipulations that increase rhythmicity result in improvement or prevention of these pathologies. Similar interventions in human subjects could have the same positive results and further research on this should be undertaken.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
- *Correspondence: Carmel Bilu,
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
10
|
Dietary Carbohydrate as Glycemic Load, Not Fat, Coupled with Genetic Permissiveness Favoring Rapid Growth and Extra Calories, Dictate Metabolic Syndrome and Diabetes Induction in Nile Rats ( Arvicanthis niloticus). Nutrients 2022; 14:nu14153064. [PMID: 35893924 PMCID: PMC9331090 DOI: 10.3390/nu14153064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: Whether dietary carbohydrate (CHO) or fat is more involved in type 2 diabetes (T2DM) induction uncomplicated by dietary fiber was addressed in a spontaneous diabetic model, the diurnal Nile rat that mimics the human condition. Methods: A total of 138 male Nile rats were fed plant-based and animal-based saturated fat where 10% energy as CHO and fat were exchanged across 5 diets keeping protein constant, from 70:10:20 to 20:60:20 as CHO:fat:protein %energy. Diabetes induction was analyzed by: 1. diet composition, i.e., CHO:fat ratio, to study the impact of diet; 2. quintiles of average caloric intake per day to study the impact of calories; 3. quintiles of diabetes severity to study the epigenetic impact on diabetes resistance. Results: High glycemic load (GLoad) was most problematic if coupled with high caloric consumption. Diabetes severity highlighted rapid growth and caloric intake as likely epigenetic factors distorting glucose metabolism. The largest weanling rats ate more, grew faster, and developed more diabetes when the dietary GLoad exceeded their gene-based metabolic capacity for glucose disposal. Diabetes risk increased for susceptible rats when energy intake exceeded 26 kcal/day and the GLoad was >175/2000 kcal of diet and when the diet provided >57% energy as CHO. Most resistant rats ate <25 kcal/day independent of the CHO:fat diet ratio or the GLoad adjusted to body size. Conclusion: Beyond the CHO:fat ratio and GLoad, neither the type of fat nor the dietary polyunsaturated/saturated fatty acid (P/S) ratio had a significant impact, suggesting genetic permissiveness affecting caloric and glucose intake and glucose disposition were key to modulating Nile rat diabetes. Fat became protective by limiting GLoad when it contributed >40% energy and displaced CHO to <50% energy, thereby decreasing the number of diabetic rats and diabetes severity.
Collapse
|
11
|
Bilu C, Kronfeld-Schor N, Zimmet P, Einat H. Day and night: A comment on "Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology". Bipolar Disord 2022; 24:211-212. [PMID: 35167169 DOI: 10.1111/bdi.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haim Einat
- Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| |
Collapse
|
12
|
Bilu C, Einat H, Zimmet P, Vishnevskia-Dai V, Schwartz WJ, Kronfeld-Schor N. Beneficial effects of voluntary wheel running on activity rhythms, metabolic state, and affect in a diurnal model of circadian disruption. Sci Rep 2022; 12:2434. [PMID: 35165331 PMCID: PMC8844006 DOI: 10.1038/s41598-022-06408-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that disruption of circadian rhythmicity contributes to development of comorbid depression, cardiovascular diseases (CVD), and type 2 diabetes mellitus (T2DM). Physical exercise synchronizes the circadian system and has ameliorating effects on the depression- and anxiety-like phenotype induced by circadian disruption in mice and sand rats. We explored the beneficial effects of voluntary wheel running on daily rhythms, and the development of depression, T2DM, and CVD in a diurnal animal model, the fat sand rat (Psammomys obesus). Voluntary exercise strengthened general activity rhythms, improved memory and lowered anxiety- and depressive-like behaviors, enhanced oral glucose tolerance, and decreased plasma insulin levels and liver weight. Animals with access to a running wheel had larger heart weight and heart/body weight ratio, and thicker left ventricular wall. Our results demonstrate that exercising ameliorates pathological-like daily rhythms in activity and blood glucose levels, glucose tolerance and depressive- and anxiety-like behaviors in the sand rat model, supporting the important role of physical activity in modulating the “circadian syndrome” and circadian rhythm-related diseases. We suggest that the utilization of a diurnal rodent animal model may offer an effective way to further explore metabolic, cardiovascular, and affective-like behavioral changes related to chronodisruption and their underlying mechanisms.
Collapse
|
13
|
Effects of photoperiod and diet on BDNF daily rhythms in diurnal sand rats. Behav Brain Res 2022; 418:113666. [PMID: 34808195 DOI: 10.1016/j.bbr.2021.113666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), its receptors and epigenetic modulators, are implicated in the pathophysiology of affective disorders, T2DM and the circadian system function. We used diurnal sand rats, which develop type 2 diabetes (T2DM), anxiety and depressive-like behavior under laboratory conditions. The development of these disorders is accelerated when animals are maintained under short photoperiod (5:19L:D, SP) compared to neutral photoperiod (12:12L:D, NP). We compared rhythms in plasma BDNF as well as BDNF and PER2 expression in the frontal cortex and suprachiasmatic nucleus (SCN) of sand rats acclimated to SP and NP. Acclimation to SP resulted in higher insulin levels, significantly higher glucose levels in the glucose tolerance test, and significantly higher anxiety- and depression-like behaviors compared with animals acclimated to NP. NP Animals exhibited a significant daily rhythm in plasma BDNF levels with higher levels during the night, and in BDNF expression levels in the frontal cortex and SCN. No significant BDNF rhythm was found in the plasma, frontal cortex or SCN of SP acclimated animals. We propose that in sand rats, BDNF may, at least in part, mediate the effects of circadian disruption on the development of anxiety and depressive-like behavior and T2DM.
Collapse
|
14
|
Bilu C, Kronfeld-Schor N, Zimmet P, Einat H. Sex differences in the response to circadian disruption in diurnal sand rats. Chronobiol Int 2021; 39:169-185. [PMID: 34711113 DOI: 10.1080/07420528.2021.1989448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most animal model studies on physiological functions and pathologies are conducted in males. However, diseases such as depression, type 2 diabetes (T2DM) and cardiovascular disease, all show different prevalence and characteristics in females and males. Moreover, most mammal studies are conducted in nocturnal mice and rats, while modelling diurnal humans. We therefore used male and female fat sand rats (Psammomys obesus), which are diurnal in the wild, as an animal model for T2DM, to explore the effects of mild circadian disruption on behavior, glucose tolerance, cholesterol and heart weight. We found significant differences between the sexes: on average, in response to short photoperiods (SP) acclimation, males showed higher levels of depression-like behavior, lower glucose tolerance, and increased plasma cholesterol levels compared with females, with no effect on heart/body weight ratio. Females, however did show an increase in heart/body weight ratio in response to SP acclimation. We also found that regardless of sex, arrhythmic animals showed higher blood glucose levels, cholesterol levels, heart/body weight ratio, and depressive-like behavior compared with rhythmic animals. Hence, we suggest that the expression of the Circadian Syndrome could be different between males and females. Additional work with females is required to clearly delineate the specific effects in both sexes, and promote sex-based health care, prevention measures and therapies.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, Australia
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| |
Collapse
|
15
|
Kumari R, Verma V, Kronfeld-Schor N, Singaravel M. Differential response of diurnal and nocturnal mammals to prolonged altered light-dark cycle: a possible role of mood associated endocrine, inflammatory and antioxidant system. Chronobiol Int 2021; 38:1618-1630. [PMID: 34128442 DOI: 10.1080/07420528.2021.1937200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian system maintains internal 24 h oscillation of behavior and physiology, and its misalignment with external light-dark (LD) cycle results in negative health outcomes. In order to elucidate the effect of prolonged constant condition and the differences in the response between nocturnal and diurnal species, we studied the effects of constant light (LL) and constant darkness (DD) on a diurnal (squirrel) and a nocturnal (mouse) rodent species, focusing on the endocrine, inflammatory and antioxidant systems associated with depression-like behavior. Squirrels and mice (n = 10/group) were placed in chronocubicle under 12:12 h LD cycle, LL and DD. After 4 weeks, animals were subjected to sucrose preference test and blood and brain tissues were collected for measuring melatonin, corticosterone, proinflammatory cytokine, tumor necrosis factor-α (TNF-α) and the activity of primary antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). The results show that in diurnal squirrels, prolonged constant darkness reduced sucrose preference, CAT, and SOD, increased corticosterone and TNF-α levels, but caused no significant change in the melatonin compared to LD condition. In contrast, in nocturnal mice constant darkness caused no significant changes in sucrose preference and corticosterone levels, increased melatonin, CAT and SOD levels but decreased TNF-α levels. Chronic LL caused a similar response in both squirrels and mice: it decreased sucrose preference, melatonin, CAT and SOD levels but increased corticosterone and TNF-α levels. Together, the study demonstrates differential effects of altered light-dark cycle in a diurnal and a nocturnal rodent on interrelated endocrine, inflammatory and antioxidant systems associated with depression-like behavior, with constant light having adverse effects on both species but constant darkness having a negative effect mainly in the diurnal squirrels.
Collapse
Affiliation(s)
- Ruchika Kumari
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vivek Verma
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, School of Zoology and Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Nankivell VA, Tan JTM, Wilsdon LA, Morrison KR, Bilu C, Psaltis PJ, Zimmet P, Kronfeld-Schor N, Nicholls SJ, Bursill CA, Brown A. Circadian disruption by short light exposure and a high energy diet impairs glucose tolerance and increases cardiac fibrosis in Psammomys obesus. Sci Rep 2021; 11:9673. [PMID: 33958671 PMCID: PMC8102519 DOI: 10.1038/s41598-021-89191-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases cardiac inflammation which promotes the development of cardiac fibrosis. We sought to determine the impact of circadian disruption on the induction of hyperglycaemia, inflammation and cardiac fibrosis. METHODS Psammomys obesus (P. obesus) were exposed to neutral (12 h light:12 h dark) or short (5 h light:19 h dark) photoperiods and fed a low energy (LE) or high energy (HE) diet for 8 or 20 weeks. To determine daily rhythmicity, P. obesus were euthanised at 2, 8, 14, and 20 h after 'lights on'. RESULTS P. obesus exposed to a short photoperiod for 8 and 20 weeks had impaired glucose tolerance following oral glucose tolerance testing, compared to a neutral photoperiod exposure. This occurred with both LE and HE diets but was more pronounced with the HE diet. Short photoperiod exposure also increased myocardial perivascular fibrosis after 20 weeks on LE (51%, P < 0.05) and HE (44%, P < 0.05) diets, when compared to groups with neutral photoperiod exposure. Short photoperiod exposure caused elevations in mRNA levels of hypertrophy gene Nppa (atrial natriuretic peptide) and hypertrophy transcription factors Gata4 and Mef2c in myocardial tissue after 8 weeks. CONCLUSION Exposure to a short photoperiod causes impaired glucose tolerance in P. obesus that is exacerbated with HE diet and is accompanied by an induction in myocardial perivascular fibrosis.
Collapse
Affiliation(s)
- Victoria A Nankivell
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, Australia
| | - Joanne T M Tan
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| | - Laura A Wilsdon
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kaitlin R Morrison
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Peter J Psaltis
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, Australia
| | | | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Christina A Bursill
- South Australian Health & Medical Research Institute, Adelaide, Australia. .,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, Australia. .,Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
| | - Alex Brown
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
18
|
Beneficial effects of daytime high-intensity light exposure on daily rhythms, metabolic state and affect. Sci Rep 2020; 10:19782. [PMID: 33188227 PMCID: PMC7666121 DOI: 10.1038/s41598-020-76636-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
While the importance of the circadian system to health and well-being is extensively studied, the role of daylight exposure in these interactions is relatively poorly understood. Here we show, using a diurnal animal model naturally exposed to daylight, that daily morning exposure to 3000 lux, full spectrum electric light has beneficial health effects. Compared with controls, sand rats (Psammomys obesus) subjected to morning light treatment demonstrate daily rhythms with high peak to trough difference in activity, blood glucose levels and per2 gene expression in the suprachiasmatic nucleus, pre-frontal cortex, kidney and liver. The treated animals were also healthier, being normoglycemic, having higher glucose tolerance, lower body and heart weight and lower anxiety- and depression-like behavior. Our results suggest that exposure to high intensity light is important for the proper function of the circadian system and well-being, and are important in face of human's low exposure to daylight and extensive use of artificial light at night.
Collapse
|
19
|
Tan JT, Nankivell VA, Bilu C, Shemesh T, Nicholls SJ, Zimmet P, Kronfeld-Schor N, Brown A, Bursill CA. High-Energy Diet and Shorter Light Exposure Drives Markers of Adipocyte Dysfunction in Visceral and Subcutaneous Adipose Depots of Psammomys obesus. Int J Mol Sci 2019; 20:ijms20246291. [PMID: 31847097 PMCID: PMC6940992 DOI: 10.3390/ijms20246291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunctional adipose tissue phenotype underpins type 2 diabetes mellitus (T2DM) development. The disruption of circadian rhythms contributes to T2DM development. We investigated the effects of high-energy diet and photoperiod length on visceral and subcutaneous adipose tissue phenotype. Psammomys obesus sand rats exposed to neutral (12 light:12 dark) or short (5 light:19 dark) photoperiod were fed a low- (LE) or high- (HE) energy diet. The HE diet and/or short photoperiod reduced subcutaneous expression of adipocyte differentiation/function markers C/ebpα, Pparδ, Pparγ and Adipoq. Visceral Pparα levels were elevated in the 5:19HE group; however, the HE diet and/or short photoperiod decreased visceral Pparγ and Adipoq expression. 5:19HE animals had elevated Ucp1 yet lower Pgc-1α levels. The HE diet increased visceral Tgf-β1, Ccl2 and Cd68 levels, suggestive of a pro-inflammatory state. Daily visceral rhythms of these genes were affected by a short photoperiod and/or HE diet. The 12:12HE, 5:19LE or 5:19HE animals had a higher proportion of larger adipocytes, indicating increased adipocyte hypertrophy. Collectively, the HE diet and/or shorter light exposure drives a dysfunctional adipose tissue phenotype. Daily rhythms are affected by a short photoperiod and HE diet in a site-specific manner. These findings provide mechanistic insight on the influence of disrupted circadian rhythms and HE diet on adipose tissue phenotype.
Collapse
Affiliation(s)
- Joanne T.M. Tan
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
- Correspondence: ; Tel.: +61-8-8128-4789
| | - Victoria A. Nankivell
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Tomer Shemesh
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Clayton VIC 3168, Australia;
| | - Paul Zimmet
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Department of Diabetes, Monash University, Clayton VIC 3800, Australia
| | - Noga Kronfeld-Schor
- School of Zoology, Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Alex Brown
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| | - Christina A. Bursill
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
20
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
21
|
Bilu C, Einat H, Barak O, Zimmet P, Vishnevskia-Dai V, Govrin A, Agam G, Kronfeld-Schor N. Linking type 2 diabetes mellitus, cardiac hypertrophy and depression in a diurnal animal model. Sci Rep 2019; 9:11865. [PMID: 31413352 PMCID: PMC6694156 DOI: 10.1038/s41598-019-48326-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
It was recently suggested that the Metabolic Syndrome should be renamed to "Circadian Syndrome". In this context, we explored the effects of living under standard laboratory conditions, where light is the only cycling variable (relevant to human modern life), in a diurnal mammal, on the relationships between affective-like pathology, type 2 diabetes mellitus (T2DM), and cardiac hypertrophy. After 20 weeks, some of the animals spontaneously developed T2DM, depressive and anxiety-like behavior and cardiac hypertrophy. There were significant correlations between levels of anxiety-like behavior and glucose tolerance, and between heart/total body weight ratio and glucose tolerance. Our data suggest a relationship between the development of T2DM, emotional and cardiac pathology as seen in diurnal humans. Furthermore, our data show a possible relationship between reduced daily cycling cues in the laboratory and what has been regularly termed "Metabolic Syndrome" and recently proposed by us to be renamed to "Circadian Syndrome".
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Ramat Aviv, Israel
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Haim Einat
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Orly Barak
- School of Zoology, Tel-Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Vicktoria Vishnevskia-Dai
- Ocular Oncology and Autoimmune service, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amanda Govrin
- School of Zoology, Tel-Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
22
|
Zimmet P, Alberti KGMM, Stern N, Bilu C, El‐Osta A, Einat H, Kronfeld‐Schor N. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med 2019; 286:181-191. [PMID: 31081577 PMCID: PMC6851668 DOI: 10.1111/joim.12924] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Metabolic Syndrome is a cluster of cardio-metabolic risk factors and comorbidities conveying high risk of both cardiovascular disease and type 2 diabetes. It is responsible for huge socio-economic costs with its resulting morbidity and mortality in most countries. The underlying aetiology of this clustering has been the subject of much debate. More recently, significant interest has focussed on the involvement of the circadian system, a major regulator of almost every aspect of human health and metabolism. The Circadian Syndrome has now been implicated in several chronic diseases including type 2 diabetes and cardiovascular disease. There is now increasing evidence connecting disturbances in circadian rhythm with not only the key components of the Metabolic Syndrome but also its main comorbidities including sleep disturbances, depression, steatohepatitis and cognitive dysfunction. Based on this, we now propose that circadian disruption may be an important underlying aetiological factor for the Metabolic Syndrome and we suggest that it be renamed the 'Circadian Syndrome'. With the increased recognition of the 'Circadian Syndrome', circadian medicine, through the timing of exercise, light exposure, food consumption, dispensing of medications and sleep, is likely to play a much greater role in the maintenance of both individual and population health in the future.
Collapse
Affiliation(s)
- P. Zimmet
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | | | - N. Stern
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | - C. Bilu
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - A. El‐Osta
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of PathologyThe University of MelbourneParkvilleVic.Australia
- Hong Kong Institute of Diabetes and ObesityPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SARChina
| | - H. Einat
- School of Behavioral SciencesTel Aviv‐Yaffo Academic CollegeTel AvivIsrael
| | | |
Collapse
|
23
|
Bilu C, Einat H, Tal-Krivisky K, Mizrahi J, Vishnevskia-Dai V, Agam G, Kronfeld-Schor N. Red white and blue - bright light effects in a diurnal rodent model for seasonal affective disorder. Chronobiol Int 2019; 36:919-926. [PMID: 30983429 DOI: 10.1080/07420528.2019.1595638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the common use of bright light exposure for treatment of seasonal affective disorder (SAD), the underlying biology of the therapeutic effect is not clear. Moreover, there is a debate regarding the most efficacious wavelength of light for treatment. Whereas according to the traditional approach full-spectrum light is used, recent studies suggest that the critical wavelengths are within the range of blue light (460 and 484 nm). Our previous work shows that when diurnal rodents are maintained under short photoperiod they develop depression- and anxiety-like behavioral phenotype that is ameliorated by treatment with wide-spectrum bright light exposure (2500 lux at the cage, 5000 K). Our current study compares the effect of bright wide-spectrum (3,000 lux, wavelength 420- 780 nm, 5487 K), blue (1,300 lux, wavelength 420-530 nm) and red light (1,300 lux, wavelength range 600-780 nm) exposure in the fat sand rat (Psammomys Obesus) model of SAD. We report results of experiments with six groups of sand rats that were kept under various photoperiods and light treatments, and subjected to behavioral tests related to emotions: forced swim test, elevated plus maze and social interactions. Exposure to either intense wide-spectrum white light or to blue light equally ameliorated depression-like behavior whereas red light had no effect. Bright wide-spectrum white light treatment had no effect on animals maintained under neutral photoperiod, meaning that light exposure was only effective in the pathological-like state. The resemblance between the effects of bright white light and blue light suggests that intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in the underlying biology of SAD and light therapy.
Collapse
Affiliation(s)
- Carmel Bilu
- a School of Zoology , Tel-Aviv University , Tel Aviv , Israel.,b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Haim Einat
- c School of Behavioral Sciences , Tel Aviv-Yaffo Academic College , Tel-Aviv , Israel
| | | | - Joseph Mizrahi
- d Department of Medicine , Stony Brook University Hospital , Stony Brook , NY , USA
| | - Vicktoria Vishnevskia-Dai
- e Ocular Oncology and Autoimmune service, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine , Tel-Aviv University , Tel Aviv , Israel
| | - Galila Agam
- b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | | |
Collapse
|