1
|
Roguski A, Needham N, MacGillivray T, Martinovic J, Dhillon B, Riha RL, Armstrong L, Campbell IH, Ferguson A, Hilgen G, Lako M, Ritter P, Santhi N, von Schantz M, Spitschan M, Smith DJ. Investigating light sensitivity in bipolar disorder (HELIOS-BD). Wellcome Open Res 2024; 9:64. [PMID: 38716042 PMCID: PMC11074697 DOI: 10.12688/wellcomeopenres.20557.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Many people with bipolar disorder have disrupted circadian rhythms. This means that the timing of sleep and wake activities becomes out-of-sync with the standard 24-hour cycle. Circadian rhythms are strongly influenced by light levels and previous research suggests that people with bipolar disorder might have a heightened sensitivity to light, causing more circadian rhythm disruption, increasing the potential for triggering a mood switch into mania or depression. Lithium has been in clinical use for over 70 years and is acknowledged to be the most effective long-term treatment for bipolar disorder. Lithium has many reported actions in the body but the precise mechanism of action in bipolar disorder remains an active area of research. Central to this project is recent evidence that lithium may work by stabilising circadian rhythms of mood, cognition and rest/activity. Our primary hypothesis is that people with bipolar disorder have some pathophysiological change at the level of the retina which makes them hypersensitive to the visual and non-visual effects of light, and therefore more susceptible to circadian rhythm dysfunction. We additionally hypothesise that the mood-stabilising medication lithium is effective in bipolar disorder because it reduces this hypersensitivity, making individuals less vulnerable to light-induced circadian disruption. We will recruit 180 participants into the HELIOS-BD study. Over an 18-month period, we will assess visual and non-visual responses to light, as well as retinal microstructure, in people with bipolar disorder compared to healthy controls. Further, we will assess whether individuals with bipolar disorder who are being treated with lithium have less pronounced light responses and attenuated retinal changes compared to individuals with bipolar disorder not being treated with lithium. This study represents a comprehensive investigation of visual and non-visual light responses in a large bipolar disorder population, with great translational potential for patient stratification and treatment innovation.
Collapse
Affiliation(s)
- Amber Roguski
- Division of Psychiatry, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Nicole Needham
- Division of Psychiatry, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Jasna Martinovic
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Renata L. Riha
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Department of Sleep Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, Scotland, UK
| | - Lyle Armstrong
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - Iain H. Campbell
- Division of Psychiatry, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Amy Ferguson
- Division of Psychiatry, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Gerrit Hilgen
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, UK
| | - Majlinda Lako
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - Philipp Ritter
- Clinic for Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universitat Dresden, Dresden, Saxony, Germany
| | - Nayantara Santhi
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, UK
| | - Malcolm von Schantz
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, UK
| | - Manuel Spitschan
- TUM School of Medicine & Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Bavaria, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Munich, Bavaria, Germany
- Max Planck Research Group Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Daniel J. Smith
- Division of Psychiatry, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
2
|
Wehr TA. Bipolar mood cycles associated with lunar entrainment of a circadian rhythm. Transl Psychiatry 2018; 8:151. [PMID: 30104658 PMCID: PMC6089884 DOI: 10.1038/s41398-018-0203-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
In bipolar disorder, episodes of depression and mania are associated with dramatic disturbances in sleep, which experiments show are likely to contribute to the pathogenesis of the episodes. A recent finding that 18 patients' manic-depressive cycles oscillated in synchrony with biweekly surges in amplitude of the moon's tides provided a clue to the cause of the sleep-disturbances. Analyses of one of the patients' sleep-wake cycles suggest that his mood cycles arose when a circadian rhythm that normally is entrained to dawn and controls the daily onset of wakefulness became entrained instead to 24.8-h recurrences of every second 12.4-h tidal cycle. The finding provides the basis for a comprehensive description of the pathogenesis and pathophysiology of the mood cycle.
Collapse
Affiliation(s)
- Thomas A. Wehr
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
3
|
Moreira J, Geoffroy PA. Lithium and bipolar disorder: Impacts from molecular to behavioural circadian rhythms. Chronobiol Int 2016; 33:351-73. [DOI: 10.3109/07420528.2016.1151026] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Nascimento NF, Carlson KN, Amaral DN, Logan RW, Seggio JA. Alcohol and lithium have opposing effects on the period and phase of the behavioral free-running activity rhythm. Alcohol 2015; 49:367-76. [PMID: 25850902 DOI: 10.1016/j.alcohol.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Bipolar patients have a high prevalence of comorbid alcohol use and abuse disorders, while chronic alcohol drinking may increase the presence and severity of certain symptoms of bipolar disorder. As such, there may be many individuals that are prescribed lithium to alleviate the manic symptoms of bipolar disorder, but also drink alcohol concurrently. In addition, both alcoholics and individuals with bipolar disorder often exhibit disruptions to their sleep-wake cycles and other circadian rhythms. Interestingly, both ethanol and lithium are known to alter both the period and the phase of free-running rhythms in mammals. While lithium is known to lengthen the period, ethanol seems to shorten the period and attenuate the responses to acute light pulses. Therefore, the present study aimed to determine whether ethanol and lithium have opposing effects on the circadian pacemaker when administered together. C57BL/6J mice were provided drinking solutions containing lithium, alcohol, or both, and their free-running rhythms along with their response to photic phase shifts were investigated. Mice treated with lithium displayed period lengthening, which was almost completely negated when ethanol was added. Moreover, ethanol significantly attenuated light-induced phase delays while the addition of lithium partially restored this response. These results indicate that alcohol and lithium have opposing effects on behavioral circadian rhythms. Individuals with bipolar disorder who are prescribed lithium and who drink alcohol might be inadvertently altering their sleep and circadian cycles, which may exacerbate their symptoms.
Collapse
Affiliation(s)
- Nara F Nascimento
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Karen N Carlson
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Danielle N Amaral
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
5
|
Abstract
The clinical observations of diurnal variation of mood and early morning awakening in depression have been incorporated into established diagnostic systems, as has the seasonal modifier defining winter depression (seasonal affective disorder, SAD). Many circadian rhythms measured in depressive patients are abnormal: earlier in timing, diminished in amplitude, or of greater variability. Whether these disturbances are of etiological significance for the role of circadian rhythms in mood disorders, or a consequence of altered behavior can only be dissected out with stringent protocols (eg, constant routine or forced desynchrony). These protocols quantify contributions of the circadian pacemaker and a homeostatic sleep process impacting on mood, energy, appetite, and sleep. Future studies will elucidate any allelic mutations in “circadian clock” –related or “sleep”-related genes in depression. With respect to treatment, antidepressants and mood stabilizers have no consistent effect on circadian rhythmicity. The most rapid antidepressant modality known so far is nonpharmacological: total or partial sleep deprivation in the second half of the night. The disadvantage of sleep deprivation, that most patients relapse after recovery sleep, can be prevented by coadministration of lithium, pindolol, serotonin (5-HT) reuptake inhibitors, bright light, or a subsequent phase-advance procedure. Phase advance of the sleep-wake cycle alone also has rapid effects on depressed mood, which lasts longer than sleep deprivation. Light is the treatment of choice for SAD and may prove to be useful for nonseasonal depression, alone or as an adjunct to medication. Chronobiological concepts emphasize the important role of zeitgebers to stabilize phase, light being the most important, but dark (and rest) periods, regularity of social schedules and meal times, and use of melatonin or its analogues should also be considered. Advances in chronobiology continue to contribute novel treatments for affective disorders.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric University Clinic, Basel, Switzerland
| |
Collapse
|
6
|
Seggio JA, Fixaris MC, Reed JD, Logan RW, Rosenwasser AM. Chronic ethanol intake alters circadian phase shifting and free-running period in mice. J Biol Rhythms 2009; 24:304-12. [PMID: 19625732 DOI: 10.1177/0748730409338449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.
Collapse
Affiliation(s)
- Joseph A Seggio
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5742, USA
| | | | | | | | | |
Collapse
|
7
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
8
|
Dokucu ME, Yu L, Taghert PH. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 2005; 30:2216-24. [PMID: 15956996 DOI: 10.1038/sj.npp.1300764] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium and valproate are commonly used mood stabilizers, but their action pathways are not clearly understood. They also suffer from multiple toxic effects that limit their utility. Elucidating their action mechanisms could lead to newer agents and better understanding of the etiopathogenesis of bipolar disorder. We have expanded the study of signaling mechanisms of lithium and valproate by using Drosophila circadian locomotor activity as a robust behavioral assay that is amenable to genetic manipulations. We demonstrate that lithium affects the circadian system of Drosophila similarly to what has been reported in the mammalian studies. We show that lithium and valproate share effects on the circadian locomotor activity of Drosophila: they lengthen the period of circadian rhythms and increase arrhythmicity. Valproate exerts these effects in a weaker fashion than does lithium. We also tested the circadian alterations in multiple mutant lines of Drosophila bearing defects in the GSK-3beta gene and other clock genes in response to lithium administration. We show that lithium partially rescues the shortening of circadian period when the GSK-3beta gene is overexpressed only in specific circadian pacemaker neurons, thus implicating GSK-3beta as a component in lithium's effect on the circadian oscillator. Moreover, lithium also lengthens the period in GSK-3beta heterozygous mutants and doubletime long mutants. These results establish a basis for using Drosophila genetics to investigate more fully lithium and valproate action mechanisms.
Collapse
Affiliation(s)
- Mehmet E Dokucu
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
9
|
Yannielli P, Harrington ME. Let there be “more” light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 2004; 74:59-76. [PMID: 15381317 DOI: 10.1016/j.pneurobio.2004.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/18/2004] [Indexed: 11/19/2022]
Abstract
Circadian rhythms are internally generated circa 24 h rhythms. The phase of the circadian pacemaker in mammals can be adjusted by external stimuli such as the daily cycle of light, as well as by internal stimuli such as information related to the physiological and behavioral status of the organism, collectively called "non-photic stimuli". We review a large number of studies regarding photic-non-photic interactions on the circadian system, with special focus on two widely described neurotransmitters associated with non-photic input pathways: neuropeptide Y (NPY) and serotonin 5-HT. Both neurotransmitters are capable of phase advancing the master pacemaker oscillation when applied during the subjective day, as do several behavioral manipulations. Also, both are capable of inhibiting light-induced phase shifts during the subjective night, suggesting a dynamic interaction between photic and non-photic stimuli in the fine-tuning of the pacemaker function. Suppression of the NPYergic and/or serotonergic non-photic input pathways can in turn potentiate the phase-shifting effects of light. These findings pose new questions about the possibility of a physiological role for the dynamic interaction between photic and non-photic inputs. This might be particularly important in the case of circadian system adjustments under certain conditions, such as depression, shift work or jet lag.
Collapse
Affiliation(s)
- P Yannielli
- Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
10
|
Colombo C, Lucca A, Benedetti F, Barbini B, Campori E, Smeraldi E. Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res 2000; 95:43-53. [PMID: 10904122 DOI: 10.1016/s0165-1781(00)00164-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The clinical usefulness of total sleep deprivation (TSD) in the treatment of bipolar depression is hampered by a high-rate short-term relapse. Previous literature has suggested that both long-term lithium treatment and light therapy could successfully prevent relapse. We randomized 115 bipolar depressed inpatients to receive three cycles of TSD, alone or in combination with morning light exposure, given at an intensity of 150 or 2500 lux. Forty-nine patients were undergoing long-term treatment with lithium salts (at least 6 months), while 66 patients were taking no psychotropic medication. Mood was self-rated by the Visual Analogue Scale three times a day during treatment. The results showed that both light therapy and ongoing lithium treatment significantly enhanced the effects of TSD on the perceived mood, with no additional benefit when the two treatments were combined. Subjective sleepiness during TSD, as rated by the self-administered Stanford Sleepiness Scale, was significantly reduced by light exposure, and was correlated with the outcome. This study confirms the possibility of obtaining a sustained antidepressant response to TSD in bipolar patients.
Collapse
Affiliation(s)
- C Colombo
- Istituto Scientifico Ospedale San Raffaele, Department of Neuropsychiatric Sciences, University of Milan, School of Medicine, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The suprachiasmatic nucleus (SCN), the site of the primary mammalian circadian clock, contains one of the densest serotonergic terminal plexes in the brain. Although this fact has been appreciated for some time, only in the last decade has there been substantial approach toward the understanding of the function of serotonin in the circadian rhythm system. The intergeniculate leaflet, which projects to the SCN via the geniculohypothalamic tract, receives serotonergic innervation from the dorsal raphe nucleus, and the SCN receives its serotonergic input from the median raphe nucleus. This separation of serotonergic origins provides the opportunity to investigate the function of the two projections. Loss of serotonergic neurones of the median raphe yields earlier onset and later offset of the nocturnal activity phase, longer duration of the activity phase, and increased sensitivity of circadian rhythm response to light. Despite the simplicity of the origins of serotonergic anatomy with respect to the circadian rhythm system, the actual involvement of serotonin in rhythm modulation is not so obvious. A variety of pharmacological studies have clearly implicated serotonin as a direct regulator of circadian rhythm phase, but others employing different methods suggest that simple elevation of SCN serotonin concentrations does not modify rhythm phase. The most convincing role of serotonin is its apparent ability to modulate sensitivity of the circadian rhythm to light. The putative method for such modulation is via a presynaptic 5-HT1B receptor on the retinohypothalamic tract, the activation of which attenuates photic input to the SCN thereby reducing phase response to light. Serotonin may modulate phase response to benzodiazepines, but does not appear to modify such response to environmentally induced locomotor activity. Current interest in serotonergic modulation of circadian rhythmicity is strong and the research is vigorous. There is an abundance of information about serotonin and circadian rhythm function that lacks a satisfactory framework for its interpretation. The next decade is likely to see the gradual evolution of this framework as the role of serotonin in circadian rhythm regulation is further elucidated.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, Health Sciences Center, State University of New York, Stony Brook 11794, USA.
| |
Collapse
|
12
|
Duncan WC, Johnson KA, Wehr TA. Increase of 5HT and VIP immunoreactivity within the hamster (Mesocricetus auratus) SCN during chronic MAOI treatment. Neurosci Lett 1997; 236:159-62. [PMID: 9406761 DOI: 10.1016/s0304-3940(97)00787-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of chronic treatment with the monoamine oxidase inhibitor (MAOI), clorgyline (CLG; 2 mg/kg per day) on serotonin (5HT) and vasoactive intestinal peptide (VIP) immunoreactivity (IR) within the hamster suprachiasmatic nucleus (SCN) were examined. Optical densities of 5HT IR and VIP IR were increased by MAOI treatment. VIP IR was increased in both the ventrolateral and dorsal regions of the SCN, suggesting that VIP content was increased within both perikarya and terminals of VIP neurons. The results suggest that previously described effects of MAOIs on the mammalian circadian system may be mediated in part, by their effects on serotonergic input to VIP neurons within the SCN.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|