1
|
La Montanara P, Hervera A, Baltussen LL, Hutson TH, Palmisano I, De Virgiliis F, Kong G, Chadwick J, Gao Y, Bartus K, Majid QA, Gorgoraptis N, Wong K, Downs J, Pizzorusso T, Ultanir SK, Leonard H, Yu H, Millar DS, Istvan N, Mazarakis ND, Di Giovanni S. Cyclin-dependent-like kinase 5 is required for pain signaling in human sensory neurons and mouse models. Sci Transl Med 2021; 12:12/551/eaax4846. [PMID: 32641489 DOI: 10.1126/scitranslmed.aax4846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/10/2019] [Accepted: 04/05/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent-like kinase 5 (CDKL5) gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay, and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognized anamnestic deficiency in pain perception. Consistent with a role in nociception, we found that CDKL5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in induced pluripotent stem cell (iPS)-derived human nociceptors. CDKL5-deficient mice display defective epidermal innervation, and conditional deletion of CDKL5 in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, CDKL5 interacts with calcium/calmodulin-dependent protein kinase II α (CaMKIIα) to control outgrowth and transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent signaling, which are disrupted in both CDKL5 mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for CDKL5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Paolo La Montanara
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.
| | - Arnau Hervera
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology & Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lucas L Baltussen
- Kinases and Brain Development Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Thomas H Hutson
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Ilaria Palmisano
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Francesco De Virgiliis
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Guiping Kong
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Jessica Chadwick
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Yunan Gao
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Katalin Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Qasim A Majid
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nikos Gorgoraptis
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Kingsley Wong
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, I-50135 Florence, Italy
| | - Sila K Ultanir
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David S Millar
- Institute of Cancer and Genetics, Cardiff University, Cardiff F14 4ED, UK
| | - Nagy Istvan
- Nociception, Section of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
2
|
Neuronal cytoskeletal gene dysregulation and mechanical hypersensitivity in a rat model of Rett syndrome. Proc Natl Acad Sci U S A 2017; 114:E6952-E6961. [PMID: 28760966 DOI: 10.1073/pnas.1618210114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Children with Rett syndrome show abnormal cutaneous sensitivity. The precise nature of sensory abnormalities and underlying molecular mechanisms remain largely unknown. Rats with methyl-CpG binding protein 2 (MeCP2) mutation, characteristic of Rett syndrome, show hypersensitivity to pressure and cold, but hyposensitivity to heat. They also show cutaneous hyperinnervation by nonpeptidergic sensory axons, which include subpopulations encoding noxious mechanical and cold stimuli, whereas peptidergic thermosensory innervation is reduced. MeCP2 knockdown confined to dorsal root ganglion sensory neurons replicated this phenotype in vivo, and cultured MeCP2-deficient ganglion neurons showed augmented axonogenesis. Transcriptome analysis revealed dysregulation of genes associated with cytoskeletal dynamics, particularly those controlling actin polymerization and focal-adhesion formation necessary for axon growth and mechanosensory transduction. Down-regulation of these genes by topoisomerase inhibition prevented abnormal axon sprouting. We identified eight key affected genes controlling actin signaling and adhesion formation, including members of the Arhgap, Tiam, and cadherin families. Simultaneous virally mediated knockdown of these genes in Rett rats prevented sensory hyperinnervation and reversed mechanical hypersensitivity, indicating a causal role in abnormal outgrowth and sensitivity. Thus, MeCP2 regulates ganglion neuronal genes controlling cytoskeletal dynamics, which in turn determines axon outgrowth and mechanosensory function and may contribute to altered pain sensitivity in Rett syndrome.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review summarises the recent trends in research in the field of self-injurious behaviour in people with intellectual disability and autism spectrum disorder. RECENT FINDINGS New data on incidence, persistence and severity add to studies of prevalence to indicate the large scale of the clinical need. A number of person characteristics have been repeatedly identified in prevalence and cohort studies that: can be considered as risk markers (e.g. stereotyped behaviour, autism spectrum disorder) and indicate possible causal mechanisms (e.g. sleep disorder, anxiety). Studies have started to integrate traditional operant learning paradigms with known person characteristics and reviews and meta-analyses of applied behaviour analytic procedures can now inform practice. SUMMARY Despite these positive developments interventions and appropriate support falls far short of the required need. Expansions in applied research are warranted to develop and evaluate innovative service delivery models that can translate knowledge of risk markers and operant learning paradigms into widespread, low cost routine clinical practice. Alongside this, further pure research is needed to elucidate the direction of causality of implicated risk factors, in order to understand and intervene more effectively in self-injury.
Collapse
|
4
|
Chaney SY, Mukherjee S, Giddabasappa A, Rueda EM, Hamilton WR, Johnson JE, Fox DA. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis 2016; 22:1468-1489. [PMID: 28050121 PMCID: PMC5204453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/22/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. METHODS C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. RESULTS Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl, Nr2e3, and Crx and the rod-specific functional gene Rho, along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene or protein expression, a marker for late-born Müller glial cells, were observed in the developing retinas. In the retinas from the GLE mice, anti-PKCα, -Chx10 (Vsx2) and -secretagogin antibodies revealed a two- to three-day delay in the differentiation of rod and cone BCs, whereas the expression of the proneural and BC genes Otx2 and Chx10, respectively, increased. In addition, confocal studies of proteins associated with functional synapses (e.g., vesicular glutamate transporter 1 [VGluT1], plasma membrane calcium ATPase [PMCA], transient receptor potential channel M1 [TRPM1], and synaptic vesicle glycoprotein 2B [SV2B]) revealed a two-day delay in the formation of the outer and inner plexiform layers of the GLE retinas. Moreover, several markers revealed that the initiation of the differentiation and intensity of the labeling of early-born cells in the retinal ganglion cell and inner plexiform layers were not different in the control retinas. CONCLUSIONS Our combined gene, confocal, and immunoblot findings revealed that the onset of rod and BC differentiation and their subsequent synaptic development is delayed by two to three days in GLE retinas. These results suggest that perturbations during the early proliferative stages of late-born RPCs fated to be rods and BCs ultimately alter the coordinated time-dependent progression of rod and BC differentiation and synaptic development. These GLE effects were selective for late-born neurons. Although the molecular mechanisms are unknown, alterations in soluble neurotrophic factors and/or their receptors are likely to play a role. Since neurodevelopmental delays and altered synaptic connectivity are associated with neuropsychiatric and behavioral disorders as well as cognitive deficits, future work is needed to determine if similar effects occur in the brains of GLE mice and whether children with GLE experience similar delays in retinal and brain neuronal differentiation and synaptic development.
Collapse
Affiliation(s)
- Shawnta Y. Chaney
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Shradha Mukherjee
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Anand Giddabasappa
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Elda M. Rueda
- College of Optometry, University of Houston, Houston, TX
| | - W. Ryan Hamilton
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jerry E. Johnson
- College of Optometry, University of Houston, Houston, TX,Department of Natural Sciences, University of Houston-Downtown; Houston, TX
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX,Department of Pharmacology and Pharmaceutical Science, University of Houston, Houston, TX
| |
Collapse
|
5
|
Aich A, Afrin LB, Gupta K. Mast Cell-Mediated Mechanisms of Nociception. Int J Mol Sci 2015; 16:29069-92. [PMID: 26690128 PMCID: PMC4691098 DOI: 10.3390/ijms161226151] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.
Collapse
Affiliation(s)
- Anupam Aich
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lawrence B Afrin
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|