1
|
Eddin LB, Jha NK, Meeran MFN, Kesari KK, Beiram R, Ojha S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021; 26:4535. [PMID: 34361686 PMCID: PMC8348102 DOI: 10.3390/molecules26154535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflammation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its safety profile, and various mechanisms of action make this monoterpene a favorable molecule to be developed as a nutraceutical for preventive purposes and as an alternative agent or adjuvant to modern therapeutic drugs in curbing the onset and progression of neurodegenerative diseases. This manuscript presents a comprehensive review of the available scientific literature discussing the pharmacological activities of limonene or plant products containing limonene which attribute to the protective and therapeutic ability in neurodegenerative disorders. This review has been compiled based on the existing published articles confined to limonene or limonene-containing natural products investigated for their neurotherapeutic or neuroprotective potential. All the articles available in English or the abstract in English were extracted from different databases that offer an access to diverse journals. These databases are PubMed, Scopus, Google Scholar, and Science Direct. Collectively, this review emphasizes the neuroprotective potential of limonene against neurodegenerative and other neuroinflammatory diseases. The available data are indicative of the nutritional use of products containing limonene and the pharmacological actions and mechanisms of limonene and may direct future preclinical and clinical studies for the development of limonene as an alternative or complementary phytomedicine. The pharmacophore can also provide a blueprint for further drug discovery using numerous drug discovery tools.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India;
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| |
Collapse
|
2
|
Zuflacht JP, Fehnel CR. Delayed Cerebral Abscess Formation After Posterior Cerebral Artery Stroke in a Patient With Opioid Use Disorder. Stroke 2021; 52:e100-e103. [PMID: 33567875 DOI: 10.1161/strokeaha.120.031081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonah P Zuflacht
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.P.Z., C.R.F.)
| | - Corey R Fehnel
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.P.Z., C.R.F.).,Hinda and Arthur Marcus Institute for Aging Research, Boston, MA (C.R.F.)
| |
Collapse
|
3
|
Sapkota D, Lake AM, Yang W, Yang C, Wesseling H, Guise A, Uncu C, Dalal JS, Kraft AW, Lee JM, Sands MS, Steen JA, Dougherty JD. Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Rep 2019; 26:594-607.e7. [PMID: 30650354 PMCID: PMC6392083 DOI: 10.1016/j.celrep.2018.12.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Guise
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren Uncu
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasbir S Dalal
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew W Kraft
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Sands
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Deparment of Medicine, Washington University School of Medicine, St. Louis, MO 63112, USA
| | - Judith A Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: Current uses and future directions. Brain Stimul 2017; 11:3-28. [PMID: 29089234 DOI: 10.1016/j.brs.2017.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Survivors of stroke often experience significant disability and impaired quality of life related to ongoing maladaptive responses and persistent neurologic deficits. Novel therapeutic options are urgently needed to augment current approaches. One way to promote recovery and ameliorate symptoms may be to electrically stimulate the surviving brain. Various forms of brain stimulation have been investigated for use in stroke, including deep brain stimulation (DBS). OBJECTIVE/METHODS We conducted a comprehensive literature review in order to 1) review the use of DBS to treat post-stroke maladaptive responses including pain, dystonia, dyskinesias, and tremor and 2) assess the use and potential utility of DBS for enhancing plasticity and recovery from post-stroke neurologic deficits. RESULTS/CONCLUSIONS A large variety of brain structures have been targeted in post-stroke patients, including motor thalamus, sensory thalamus, basal ganglia nuclei, internal capsule, and periventricular/periaqueductal grey. Overall, the reviewed clinical literature suggests a role for DBS in the management of several post-stroke maladaptive responses. More limited evidence was identified regarding DBS for post-stroke motor deficits, although existing work tentatively suggests DBS-particularly DBS targeting the posterior limb of the internal capsule-may improve paresis in certain circumstances. Substantial future work is required both to establish optimal targets and parameters for treatment of maladapative responses and to further investigate the effectiveness of DBS for post-stroke paresis.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Andrew A Namasivayam
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
5
|
Kim H, Kim GD, Yoon BC, Kim K, Kim BJ, Choi YH, Czosnyka M, Oh BM, Kim DJ. Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study. BMC Med 2014; 12:186. [PMID: 25339549 PMCID: PMC4219082 DOI: 10.1186/s12916-014-0186-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/18/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. METHODS CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were grouped as mild edema patients (n=37) or severe edema patients (n=33). Automated quantitative analysis using unenhanced CT images was applied to eliminate artifacts and identify the difference in HU value distribution across the intracranial area between these groups. RESULTS The proportion of pixels with HU=17 to 24 was highly correlated with the existence of severe cerebral edema (P<0.01). This proportion was also able to differentiate patients who developed delayed cerebral edema from mild TBI patients. A significant difference between deceased patients and surviving patients in terms of the HU distribution came from the proportion of pixels with HU=19 to HU=23 (P<0.01). CONCLUSIONS The proportion of pixels with an HU value of 17 to 24 in the entire cerebral area of a non-enhanced CT image can be an effective basis for evaluating the severity of cerebral edema. Based on this result, we propose a novel approach for the early detection of severe cerebral edema.
Collapse
Affiliation(s)
- Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea.
| | - Gwang-dong Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Byung C Yoon
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA.
| | - Keewon Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Byung-Jo Kim
- Department of Neurology, Korea University College of Medicine, Seoul, South Korea.
| | - Young Hun Choi
- Department of Radiology, Seoul National University Children's Hospital, Seoul, South Korea.
| | - Marek Czosnyka
- Academic Neurosurgical Unit, University of Cambridge Clinical School, Cambridge, UK.
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea. .,Academic Neurosurgical Unit, University of Cambridge Clinical School, Cambridge, UK.
| |
Collapse
|
6
|
P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab 2013; 33:600-11. [PMID: 23321785 PMCID: PMC3618399 DOI: 10.1038/jcbfm.2012.214] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glia-based neuroprotection strategies are emerging as promising new avenues to treat brain damage. We previously reported that activation of the glial-specific purinergic receptor, P2Y(1)R, reduces both astrocyte swelling and brain infarcts in a photothrombotic mouse model of stroke. These restorative effects were dependent on astrocyte mitochondrial metabolism. Here, we extend these findings and report that P2Y(1)R stimulation with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2MeSADP) reduces and partially reverses neuronal damage induced by photothrombosis. In vivo neuronal morphology was confocally imaged in transgenic mice expressing yellow fluorescent protein under the control of the Thy1 promoter. Astrocyte mitochondrial membrane potentials, monitored with the potential sensitive dye tetra-methyl rhodamine methyl ester, were depolarized after photothrombosis and subsequently repolarized when P2Y(1)Rs were stimulated. Mice deficient in the astrocyte-specific type 2 inositol 1,4,5 trisphosphate (IP(3)) receptor exhibited aggravated ischemic dendritic damage after photothrombosis. Treatment of these mice with 2MeSADP did not invoke an intracellular Ca(2+) response, did not repolarize astrocyte mitochondria, and did not reduce or partially reverse neuronal lesions induced by photothrombotic stroke. These results demonstrate that IP(3)-Ca(2+) signaling in astrocytes is not only critical for P2Y(1)R-enhanced protection, but suggest that IP(3)-Ca(2+) signaling is also a key component of endogenous neuroprotection.
Collapse
|
7
|
Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006; 26:1057-83. [PMID: 16710759 DOI: 10.1007/s10571-006-9008-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/23/2006] [Indexed: 12/28/2022]
Abstract
1. Stroke is the neurological evidence of a critical reduction of cerebral blood flow in a circumscribed part of the brain, resulting from the sudden or gradually progressing obstruction of a large brain artery. Treatment of stroke requires the solid understanding of stroke pathophysiology and involves a broad range of hemodynamic and molecular interventions. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. 2. The first chapter deals with the hemodynamics of focal ischemia with particular emphasis on the collateral circulation of the brain, the regulation of blood flow and the microcirculation. In the second chapter the penumbra concept of ischemia is discussed, providing a detailed list of the physiological, biochemical and structural viability thresholds of ischemia and examples of how these thresholds can be applied for imaging the penumbra. The third chapter summarizes the pathophysiology of infarct progression, focusing on the role of peri-infarct depolarisation, the multitude of putative molecular injury pathways, brain edema and inflammation. Finally, the fourth chapter provides an overview of currently discussed therapeutic approaches, notably the effect of mechanical or thrombolytic reperfusion, arteriogenesis, pharmacological neuroprotection, ischemic preconditioning and regeneration. 3. The main emphasis of the review is placed on the balanced differentiation between hemodynamic and molecular factors contributing to the manifestation of ischemic injury in order to provide a rational basis for future therapeutic interventions.
Collapse
|