1
|
Dehshahri A, Sadeghpour H, Mohazzabieh E, Saatchi Avval S, Mohammadinejad R. Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery ofIL‐12 plasmid. Biotechnol Prog 2020; 36:e3002. [DOI: 10.1002/btpr.3002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Hossein Sadeghpour
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Erfaneh Mohazzabieh
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Sara Saatchi Avval
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
2
|
Bansal R, Kumar P. Engineered polymeric amphiphiles self-assembling into nanostructures and acting as efficient gene and drug carriers. J Biomater Appl 2017; 32:40-53. [PMID: 28532300 DOI: 10.1177/0885328217710125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nonviral gene delivery systems are finding widespread use due to their safety, rapid and economical production, and ease of modification. In this work, series of N-alkyl-substituted linear polyethylenimine (CP) polymers have been synthesized, characterized, and investigated about how degree of substitution (hydrophobic-hydrophilic balance) (i.e. N-alkylation) influenced the transfection efficiency. Mobility shift assay demonstrated efficient binding of plasmid DNA (pDNA). Transfection efficiency and cytotoxicity of CP polymers were assessed in vitro, which revealed that all the formulations exhibited higher transfection activity than linear polyethylenimine (lPEI) and commercial transfection reagents, Lipofectamine and Superfect, with negligible toxicity (MTT assay). In the projected series, one of the formulations, CP-3-pDNA complex, displayed the highest transfection efficiency (∼1.6-12 folds vs. lPEI and commercial transfection reagents) and effectively carried GFP-specific siRNA inside the cells as monitored by measuring the suppression in the gene expression of the target gene. Further, flow cytometry experiments confirmed that CP-3-pDNA complex transfected the highest number of cells. Besides, CP-3 was also evaluated in terms of its capability to entrap hydrophobic drug molecules. The results showed that it efficiently encapsulated an anti-cancer drug, etoposide, and released it in a controlled fashion over a period of time. Altogether, the data support that CP-3 is a promising vector for nucleic acid as well as hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ruby Bansal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
3
|
Sarisozen C, Salzano G, Torchilin VP. Recent advances in siRNA delivery. Biomol Concepts 2016; 6:321-41. [PMID: 26609865 DOI: 10.1515/bmc-2015-0019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs.
Collapse
|
4
|
Zhao J, Yang L, Huang P, Wang Z, Tan Y, Liu H, Pan J, He CY, Chen ZY. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA. J Colloid Interface Sci 2015; 463:93-8. [PMID: 26520815 DOI: 10.1016/j.jcis.2015.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Gene therapy has held great promise for treating specific acquired and inherited diseases. However, the lack of safe and efficient gene delivery systems remains as the major challenge. Poly(β-amino ester)s (PBAEs) have attracted much attention due to their outstanding properties in biosafety, DNA delivery efficiency and convenience in synthesis. In this paper, we reported the further enhancement of the PBAE functions by increasing its positive charge through conjugating with low molecular weight polyethylenimine (LPEI). The resulted LPEI-PBAE polymer was able to condense minicircle DNA (mcDNA) forming nanoparticles with a diameter of 50-200nm. Furthermore, as compared to parental PBAE and a commercial transfection reagent very common in laboratory application, the LPEI-PBAE demonstrated significantly higher transfection efficiency with little cytotoxicity. These results suggested LPEI-PBAEs are worthy of further optimization for gene therapy applications.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lei Yang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - ZhiYong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - JiaJia Pan
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Panwar N, Yang C, Yin F, Yoon HS, Chuan TS, Yong KT. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles. NANOTECHNOLOGY 2015; 26:365101. [PMID: 26291710 DOI: 10.1088/0957-4484/26/36/365101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications.
Collapse
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
6
|
Wu Y, Wang M, Sprouse D, Smith AE, Reineke TM. Glucose-containing diblock polycations exhibit molecular weight, charge, and cell-type dependence for pDNA delivery. Biomacromolecules 2014; 15:1716-26. [PMID: 24620753 PMCID: PMC4025584 DOI: 10.1021/bm5001229] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Indexed: 12/21/2022]
Abstract
A series of diblock glycopolycations were created by polymerizing 2-deoxy-2-methacrylamido glucopyranose (MAG) with either a tertiary amine-containing monomer, N-[3-(N,N-dimethylamino) propyl] methacrylamide (DMAPMA), or a primary amine-containing unit, N-(2-aminoethyl) methacrylamide (AEMA). Seven structures were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization that varied in the block lengths of MAG, DMAPMA, and AEMA along with two homopolymer controls of DMAPMA and AEMA that lacked a MAG block. The polymers were all able to complex plasmid DNA into polyplex structures and to prevent colloidal aggregation of polyplexes in physiological salt conditions. In vitro transfection experiments were performed in both HeLa (human cervix adenocarcinoma) cells and HepG2 (human liver hepatocellular carcinoma) cells to examine the role of charge type, block length, and cell type on transfection efficiency and toxicity. The glycopolycation vehicles with primary amine blocks and PAEMA homopolymers revealed much higher transfection efficiency and lower toxicity when compared to analogs created with DMAPMA. Block length was also shown to influence cellular delivery and toxicity; as the block length of DMAPMA increased in the glycopolycation-based polyplexes, toxicity increased while transfection decreased. While the charge block played a major role in delivery, the MAG block length did not affect these cellular parameters. Lastly, cell type played a major role in efficiency. These glycopolymers revealed higher cellular uptake and transfection efficiency in HepG2 cells than in HeLa cells, while homopolycations (PAEMA and PDMAPMA) lacking the MAG blocks exhibited the opposite trend, signifying that the MAG block could aid in hepatocyte transfection.
Collapse
Affiliation(s)
- Yaoying Wu
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Miao Wang
- Department
of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Dustin Sprouse
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam E. Smith
- Department
of Chemical Engineering, University of Mississippi, 134 Anderson, University, Mississippi 38677, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Ruan GX, Zhang TY, Li LM, Zhang XG, Shen YQ, Tabata Y, Gao JQ. Hepatic-Targeted Gene Delivery Using Cationic Mannan Vehicle. Mol Pharm 2014; 11:3322-9. [DOI: 10.1021/mp5000899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gui-Xin Ruan
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tian-Yuan Zhang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li-Ming Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing-Guo Zhang
- Department
of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, P. R. China
| | - You-Qing Shen
- Center
for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yasuhiko Tabata
- Department
of Biomaterials, Field of Tissue Engineering, Institute for Frontier
Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
8
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted.
Collapse
|
9
|
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 2013; 65:1204-14. [PMID: 23602906 DOI: 10.1016/j.addr.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022]
Abstract
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
10
|
Hayashi Y, Higashi T, Motoyama K, Mori Y, Jono H, Ando Y, Arima H. Design and evaluation of polyamidoamine dendrimer conjugate with PEG,α-cyclodextrin and lactose as a novel hepatocyte-selective gene carrierin vitroandin vivo. J Drug Target 2013; 21:487-96. [DOI: 10.3109/1061186x.2013.769105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release 2012; 161:188-97. [DOI: 10.1016/j.jconrel.2012.02.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 02/07/2023]
|
12
|
Liu J, Van S, Ma N, Yu L. Efficient systemic delivery of siRNA to the mouse liver by pegylated lipopolymer. Int J Pharm 2012; 427:58-63. [DOI: 10.1016/j.ijpharm.2011.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/15/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022]
|