1
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
2
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
3
|
Russell E, Dunne V, Russell B, Mohamud H, Ghita M, McMahon SJ, Butterworth KT, Schettino G, McGarry CK, Prise KM. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol 2021; 16:104. [PMID: 34118963 PMCID: PMC8199842 DOI: 10.1186/s13014-021-01829-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The recent implementation of MR-Linacs has highlighted theranostic opportunities of contrast agents in both imaging and radiotherapy. There is a lack of data exploring the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitisers. Through preclinical 225 kVp exposures, this study aimed to characterise the uptake and radiobiological effects of SPIONs in tumour cell models in vitro and to provide proof-of-principle application in a xenograft tumour model. METHODS SPIONs were also characterised to determine their hydrodynamic radius using dynamic light scattering and uptake was measured using ICP-MS in 6 cancer cell lines; H460, MiaPaCa2, DU145, MCF7, U87 and HEPG2. The impact of SPIONs on radiobiological response was determined by measuring DNA damage using 53BP1 immunofluorescence and cell survival. Sensitisation Enhancement Ratios (SERs) were compared with the predicted Dose Enhancement Ratios (DEFs) based on physical absorption estimations. In vivo efficacy was demonstrated using a subcutaneous H460 xenograft tumour model in SCID mice by following intra-tumoural injection of SPIONs. RESULTS The hydrodynamic radius was found to be between 110 and 130 nm, with evidence of being monodisperse in nature. SPIONs significantly increased DNA damage in all cell lines with the exception of U87 cells at a dose of 1 Gy, 1 h post-irradiation. Levels of DNA damage correlated with the cell survival, in which all cell lines except U87 cells showed an increased sensitivity (P < 0.05) in the linear quadratic curve fit for 1 h exposure to 23.5 μg/ml SPIONs. There was also a 30.1% increase in the number of DNA damage foci found for HEPG2 cells at 2 Gy. No strong correlation was found between SPION uptake and DNA damage at any dose, yet the biological consequences of SPIONs on radiosensitisation were found to be much greater, with SERs up to 1.28 ± 0.03, compared with predicted physical dose enhancement levels of 1.0001. In vivo, intra-tumoural injection of SPIONs combined with radiation showed significant tumour growth delay compared to animals treated with radiation or SPIONs alone (P < 0.05). CONCLUSIONS SPIONs showed radiosensitising effects in 5 out of 6 cancer cell lines. No correlation was found between the cell-specific uptake of SPIONs into the cells and DNA damage levels. The in vivo study found a significant decrease in the tumour growth rate.
Collapse
Affiliation(s)
- Emily Russell
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK.
- National Physical Laboratory, London, UK.
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals, NHS Trust, Leeds, UK.
| | - Victoria Dunne
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | | | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Giuseppe Schettino
- National Physical Laboratory, London, UK
- Department of Physics, University of Surrey, Guildford, UK
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
- Northern Ireland Cancer Centre, Belfast, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
4
|
Zhao W, Yu X, Peng S, Luo Y, Li J, Lu L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J Nanobiotechnology 2021; 19:125. [PMID: 33941206 PMCID: PMC8091158 DOI: 10.1186/s12951-021-00866-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant glioma remains incurable largely due to the aggressive and infiltrative nature, as well as the existence of blood-brain-barrier (BBB). Precise diagnosis of glioma, which aims to accurately delineate the tumor boundary for guiding surgical resection and provide reliable feedback of the therapeutic outcomes, is the critical step for successful treatment. Numerous imaging modalities have been developed for the efficient diagnosis of tumors from structural or functional aspects. However, the presence of BBB largely hampers the entrance of contrast agents (Cas) or probes into the brain, rendering the imaging performance highly compromised. The development of nanomaterials provides promising strategies for constructing nano-sized Cas or probes for accurate imaging of glioma owing to the BBB crossing ability and other unique advantages of nanomaterials, such as high loading capacity and stimuli-responsive properties. In this review, the recent progress of nanomaterials applied in single modal imaging modality and multimodal imaging for a comprehensive diagnosis is thoroughly summarized. Finally, the prospects and challenges are offered with the hope for its better development.
Collapse
Affiliation(s)
- Wei Zhao
- Zhuhai Precision Medical Center, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Xiangrong Yu
- Zhuhai Precision Medical Center, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Yu Luo
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China.
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
Montigaud Y, Pourchez J, Leclerc L, Tillement O, Clotagatide A, Bal C, Pinaud N, Ichinose N, Zhang B, Perinel S, Lux F, Crémillieux Y, Prevot N. Nebulised Gadolinium-Based Nanoparticles for a Multimodal Approach: Quantitative and Qualitative Lung Distribution Using Magnetic Resonance and Scintigraphy Imaging in Isolated Ventilated Porcine Lungs. Int J Nanomedicine 2020; 15:7251-7262. [PMID: 33061379 PMCID: PMC7533906 DOI: 10.2147/ijn.s260640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose This study aims at determining lung distribution of gadolinium-based polysiloxane nanoparticles, AGuIX® (small rigid platform - SRP), as a potential theranostic approach by the pulmonary route. Methods First, the aerodynamic size distribution and the aerosol output rate were thoroughly characterized. Then, a multimodal approach using magnetic resonance (MR) and gamma-camera (GC) imaging allows to assess the deposition of the aerosolised nanoparticles in the respiratory tract using isolated ventilated porcine lungs. Results The SRP has proven to be radiolabelled by radioisotope with a good yield. Crude SRP or radiolabelled ones showed the same aerodynamic size distribution and output as a conventional molecular tracer, as sodium fluoride. With MR and GC imaging approaches, the nebulised dose represented about 50% of the initial dose of nanoparticles placed in the nebuliser. Results expressed as proportions of the deposited aerosol showed approximately a regional aerosol deposition of 50% of the deposited dose in the lungs and 50% in the upper airways. Each technique assessed a homogeneous pattern of deposited nanoparticles in Lungs. MR observed a strong signal enhancement with the SRP, similar to the one obtained with a commonly used MRI contrast agent, gadoterate meglumine. Conclusion As a known theranostic approach by intravenous administration, SRP appeared to be easily aerosolised with a conventional nebuliser. The present work proves that pulmonary administration of SRP is feasible in a human-like model and allows multimodal imaging with MR and GC imaging. This work presents the proof of concept of SRP nebulisation and aims to generate preclinical data for the potential clinical transfer of SRP for pulmonary delivery.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | | | - Anthony Clotagatide
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Bei Zhang
- Canon Medical Systems Europe, Zoetermeer, Netherlands
| | - Sophie Perinel
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | - François Lux
- Institut Lumière Matière, Université de Lyon, Villeurbanne, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Nathalie Prevot
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
6
|
Quatre R, Jacquet T, Atallah I, Tillement O, Lux F, Coll JL, Dufort S, Righini CA. Evaluation of the theranostic properties of gadolinium-based nanoparticles for head and neck cancer. Head Neck 2018; 41:403-410. [PMID: 30548507 DOI: 10.1002/hed.25460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The aim of the study was to evaluate the benefits of the combination of Gadolinium-based nanoparticles AGuIX and radiotherapy on the recurrence free survival after tumor resection in a head and neck animal orthotopic model. METHODS Human head and neck CAL33 orthotopic tumors were implanted in female NMRI nude mice. The biodistribution of AGuIX was studied by fluorescence imaging. Tumor resection was performed 19 days after tumor implantation. Radiotherapy was performed 23 days after resection (10 Gy), 1 hour after AGuIX IV injection. RESULTS After systemic administration, AGuIX passively accumulated in the orthotopic tumors. After tumor surgery, the combination of AGuIX with radiotherapy significantly improved the recurrence free survival and the median survival time (196 days) compared to irradiated only mice (75 days). CONCLUSION This study demonstrated the improvement of the recurrence free survival following combination of AGuIX injection with radiotherapy after Head and neck tumor resection.
Collapse
Affiliation(s)
- Raphaële Quatre
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble Alpes University Hospital, Grenoble, France
| | - Thibault Jacquet
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France
| | - Ihab Atallah
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble Alpes University Hospital, Grenoble, France
| | - Olivier Tillement
- Institut Lumière Matière, CNRS UMR 5306, Université ć Claude Bernard, Lyon, France
| | - François Lux
- Institut Lumière Matière, CNRS UMR 5306, Université ć Claude Bernard, Lyon, France
| | - Jean-Luc Coll
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France
| | - Sandrine Dufort
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France.,NHTheraguix, Crolles, France
| | - Christian-Adrien Righini
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Univ. Grenoble Alpes, Grenoble, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
7
|
Magnetic Resonance Lymphography at 9.4 T Using a Gadolinium-Based Nanoparticle in Rats: Investigations in Healthy Animals and in a Hindlimb Lymphedema Model. Invest Radiol 2018; 52:725-733. [PMID: 28678084 DOI: 10.1097/rli.0000000000000398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Magnetic resonance lymphography (MRL) in small animals is a promising but challenging tool in preclinical lymphatic research. In this study, we compared the gadolinium (Gd)-based nanoparticle AGuIX with Gd-DOTA for interstitial MRL in healthy rats and in a chronic rat hindlimb lymphedema model. MATERIALS AND METHODS A comparative study with AGuIX and Gd-DOTA for interstitial MRL was performed in healthy Lewis rats (n = 6). For this purpose, 75 μL of 3 mM AGuIX (containing 30 mM Gd-DOTA side residues) and 75 μL 30 mM Gd-DOTA were injected simultaneously in the right and left hindlimbs. Repetitive high-resolution, 3-dimensional time-of-flight gradient recalled echo MRL sequences were acquired over a period of 90 minutes using a 9.4 T animal scanner. Gadofosveset-enhanced MR angiography and surgical dissection after methylene blue injection served as supportive imaging techniques. In a subsequent proof-of-principle study, AGuIX-based MRL was investigated in a hindlimb model of chronic lymphedema (n = 4). Lymphedema of the right hindlimbs was induced by means of popliteal and inguinal lymphadenectomy and irradiation with 20 Gy. The nonoperated left hindlimbs served as intraindividual controls. Six, 10, and 14 weeks after lymphadenectomy, MRL investigations were performed to objectify lymphatic reorganization. Finally, skin samples of the lymphedematous and the contralateral control hindlimbs were analyzed by means of histology and immunohistochemistry. RESULTS AGuIX-based MRL resulted in high-resolution anatomical depiction of the rodent hindlimb lymphatic system. Signal-to-noise ratio and contrast-to-noise ratio of the popliteal lymph node were increased directly after injection and remained significantly elevated for up to 90 minutes after application. AGuIX provided significantly higher and prolonged signal intensity enhancement as compared with Gd-DOTA. Furthermore, AGuIX-based MRL demonstrated lymphatic regeneration in the histopathologically verified chronic lymphedema model. Collateral lymphatic vessels were detectable 6 weeks after lymphadenectomy. CONCLUSIONS This study demonstrates that AGuIX is a suitable contrast agent for preclinical interstitial MRL in rodents. AGuIX yields anatomical imaging of lymphatic vessels with diameters greater than 200 μm. Moreover, it resides in the lymphatic system for a prolonged time. AGuIX may therefore facilitate high-resolution MRL-based analyses of the lymphatic system in rodents.
Collapse
|
8
|
Delorme R, Taupin F, Flaender M, Ravanat JL, Champion C, Agelou M, Elleaume H. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med Phys 2017; 44:5949-5960. [PMID: 28886212 DOI: 10.1002/mp.12570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in cancer treatments. Many parameters influence their efficacy, such as their size, concentration, composition, their cellular localization, as well as the photon source energy. The current Monte Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these physical parameters at the cellular and the nanometer scale. In parallel, in vitro assays were performed in presence of either the gadolinium contrast agent (GdCA) Magnevist® or ultrasmall gadolinium NPs (GdNPs, 3 nm) for comparison with the simulations. METHODS PENELOPE Monte Carlo Code was used for in silico dose calculations. Monochromatic photon beams were used to calculate dose enhancements in different cell compartments and low-energy secondary electron spectra dependence with energy. Particular attention has been placed on the interplay between the X-ray beam energy, the Gd localization and its distance from cellular targets. Clonogenic assays were used to quantify F98 rat glioma cell survival after irradiation in the presence of GdNPs or GdCA, using monochromatic X-rays with energies in the 30 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. The simulations that correspond to the experimental conditions were compared with the experimental results. RESULTS In silico, a highly heterogeneous and clustered Gd-atom distribution, a massive production of low energy electrons around GdNPs and an optimal X-ray beam energy, above the Gd K-edge, were key factors found to increase microscopic doses, which could potentially induce cell death. The different Gd localizations studied all resulted in a lower dose enhancement for the nucleus component than for cytoplasm or membrane compartments, with a maximum dose-enhancement factor (DEF) found at 65 keV and 58 keV, respectively. In vitro, radiosensitization was observed with GdNPs incubated 5 h with the cells (2.1 mg Gd/mL) at all energies. Experimental DEFs were found to be greater than computational DEFs but follow a similar trend with irradiation energy. However, an important radiosensitivity was observed experimentally with GdNPs at high energy (1.25 MeV), whereas no effect was expected from modeling. This effect was correlated with GdNPs incubation time. In vitro, GdCA provided no dose enhancement at 1.25 MeV energies, in agreement with computed data. CONCLUSIONS These results provide a foundation on which to base optimizations of the physical parameters in Gd radiation-enhanced therapy. Strong evidence was provided that GdCA or GdNPs could both be used for radiation dose-enhancement therapy. There in vivo biological distribution, in the tumor volume and at the cellular scale, will be the key factor for providing large dose enhancements and determine their therapeutic efficacy.
Collapse
Affiliation(s)
- Rachel Delorme
- CEA, LIST, F-91191, Gif-sur-Yvette, France.,IMNC Laboratory, UMR 8165-CNRS/IN2P3, Paris-Saclay University, 91405, Orsay, France
| | - Florence Taupin
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Mélanie Flaender
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Christophe Champion
- Centre d'Études Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Université de Bordeaux, Bordeaux, France
| | | | - Hélène Elleaume
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France
| |
Collapse
|
9
|
Colombo C, Li M, Watanabe S, Messa P, Edefonti A, Montini G, Moscatelli D, Rastaldi MP, Cellesi F. Polymer Nanoparticle Engineering for Podocyte Repair: From in Vitro Models to New Nanotherapeutics in Kidney Diseases. ACS OMEGA 2017; 2:599-610. [PMID: 30023613 PMCID: PMC6044764 DOI: 10.1021/acsomega.6b00423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 05/21/2023]
Abstract
Specific therapeutic targeting of kidney podocytes, the highly differentiated ramified glomerular cells involved in the onset and/or progression of proteinuric diseases, could become the optimal strategy for preventing chronic kidney disease. With this aim, we developed a library of engineered polymeric nanoparticles (NPs) of tuneable size and surface properties and evaluated their interaction with podocytes. NP cytotoxicity, uptake, and cytoskeletal effects on podocytes were first assessed. On the basis of these data, nanodelivery of dexamethasone loaded into selected biocompatible NPs was successful in repairing damaged podocytes. Finally, a three-dimensional in vitro system of co-culture of endothelial cells and podocytes was exploited as a new tool for mimicking the mechanisms of NP interaction with glomerular cells and the repair of the kidney filtration barrier.
Collapse
Affiliation(s)
- Claudio Colombo
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Fondazione
CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Shojiro Watanabe
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Piergiorgio Messa
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Alberto Edefonti
- Pediatric
Nephrology and Dialysis Unit, Department of Clinical Sciences and
Community Health, University of Milan, Fondazione
IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via Commenda, 20122 Milano, Italy
| | - Giovanni Montini
- Pediatric
Nephrology and Dialysis Unit, Department of Clinical Sciences and
Community Health, University of Milan, Fondazione
IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via Commenda, 20122 Milano, Italy
| | - Davide Moscatelli
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Maria Pia Rastaldi
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Francesco Cellesi
- Fondazione
CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
- E-mail:
| |
Collapse
|
10
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
11
|
Zhao J, Zhou M, Li C. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol 2016; 7:9. [PMID: 27909463 PMCID: PMC5112292 DOI: 10.1186/s12645-016-0022-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy has been, and will continue to be, a critical modality to treat cancer. Since the discovery of radiation-induced cytotoxicity in the late 19th century, both external and internal radiation sources have provided tremendous benefits to extend the life of cancer patients. Despite the dramatic improvement of radiation techniques, however, one challenge persists to limit the anti-tumor efficacy of radiotherapy, which is to maximize the deposited dose in tumor while sparing the rest of the healthy vital organs. Nanomedicine has stepped into the spotlight of cancer diagnosis and therapy during the past decades. Nanoparticles can potentiate radiotherapy by specifically delivering radionuclides or radiosensitizers into tumors, therefore enhancing the efficacy while alleviating the toxicity of radiotherapy. This paper reviews recent advances in synthetic nanoparticles for radiotherapy and radiosensitization, with a focus on the enhancement of in vivo anti-tumor activities. We also provide a brief discussion on radiation-associated toxicities as this is an area that, up to date, has been largely missing in the literature and should be closely examined in future studies involving nanoparticle-mediated radiosensitization.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054 USA
| | - Min Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054 USA
| |
Collapse
|
12
|
Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnology 2016; 14:60. [PMID: 27455834 PMCID: PMC4960888 DOI: 10.1186/s12951-016-0212-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Amyloidoses are characterized by the extracellular deposition of insoluble fibrillar proteinaceous aggregates highly organized into cross-β structure and referred to as amyloid fibrils. Nowadays, the diagnosis of these diseases remains tedious and involves multiple examinations while an early and accurate protein typing is crucial for the patients' treatment. Routinely used neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) using Pittsburgh compound B, [(11)C]PIB, provide structural information and allow to assess the amyloid burden, respectively, but cannot discriminate between different amyloid deposits. Therefore, the availability of efficient multimodal imaging nanoparticles targeting specific amyloid fibrils would provide a minimally-invasive imaging tool useful for amyloidoses typing and early diagnosis. In the present study, we have functionalized gadolinium-based MRI nanoparticles (AGuIX) with peptides highly specific for Aβ amyloid fibrils, LPFFD and KLVFF. The capacity of such nanoparticles grafted with peptide to discriminate among different amyloid proteins, was tested with Aβ(1-42) fibrils and with mutated-(V30M) transthyretin (TTR) fibrils. RESULTS The results of surface plasmon resonance studies showed that both functionalized nanoparticles interact with Aβ(1-42) fibrils with equilibrium dissociation constant (Kd) values of 403 and 350 µM respectively, whilst they did not interact with V30M-TTR fibrils. Similar experiments, performed with PIB, displayed an interaction both with Aβ(1-42) fibrils and V30M-TTR fibrils, with Kd values of 6 and 10 µM respectively, confirming this agent as a general amyloid fibril marker. Thereafter, the ability of functionalized nanoparticle to target and bind selectively Aβ aggregates was further investigated by immunohistochemistry on AD like-neuropathology brain tissue. Pictures clearly indicated that KLVFF-grafted or LPFFD-grafted to AGuIX nanoparticle recognized and bound the Aβ amyloid plaque localized in the mouse hippocampus. CONCLUSION These results constitute a first step for considering these functionalized nanoparticles as a valuable multimodal imaging tool to selectively discriminate and diagnose amyloidoses.
Collapse
|
13
|
Altenbernd J, Wetter A, Umutlu L, Hahn S, Ringelstein A, Forsting M, Lauenstein T. Dual-energy computed tomography for evaluation of pulmonary nodules with emphasis on metastatic lesions. Acta Radiol 2016; 57:437-43. [PMID: 25907120 DOI: 10.1177/0284185115582060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/21/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The contrast enhancement of pulmonary nodules is a differential diagnostic criterion which can be helpful in staging investigations. PURPOSE To investigate the impact of dual-energy computed tomography (DECT) with regards to the evaluation of pulmonary nodules with emphasis on metastatic lesions. MATERIAL AND METHODS DECT scans of the thorax were performed in 70 consecutive patients. Data of the lung were acquired in the arterial and in delayed venous phase. The virtual native and overlay image data based on arterial and delayed venous phase of these lesions were compared using CT density values (HU) within the nodule tested for statistical significance. RESULTS A total of 156 pulmonary lesions ≥5 mm were identified on 70 DECT scans. There were no significant differences between the CT-value measurements in the virtual native images based on the arterial and delayed venous phase (27.9+/-3.9 HU vs.28.1+/-4.2 HU, P = 0.89) and between the CT-value measurements in the overlay images based on the arterial und delayed venous phase (35.5+/-6.8 HU vs. 36.6+/-5.0 HU, P = 0.75). Metastases of colorectal carcinoma (51.4+/-9.4 HU vs. 32.5+/-8.9 HU, P = 0.0001), malignant melanoma (56.1+/-6.4 HU vs. 34.2+/-1.6 HU, P = 0.0045), and thyroid cancer (53.5+/-15.5 HU vs. 15.7+/-4.2 HU, P = 0.001) showed a distinct wash-out, whereas metastases of lung cancer (23.1+/-6.3 HU vs. 58.6+/-4.8 HU, P = 0.001), salivary gland cancer (41.4+/-20.3 HU vs. 65.7+/-15.7 HU, P = 0.023), and sarcoma (56.2+/-7.4 HU vs. 90.2+/-3.4 HU, P = 0.001) had an increased enhancement in the delayed venous phase. CONCLUSION The contrast enhancement behavior of pulmonary metastases can be evaluated with DECT and depends on the type of the primary malignant tumor.
Collapse
Affiliation(s)
- Jens Altenbernd
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Axel Wetter
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Steffen Hahn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Adrian Ringelstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Thomas Lauenstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
14
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Woźniak A, Noculak A, Gapiński J, Kociolek D, Boś-Liedke A, Zalewski T, Grześkowiak BF, Kołodziejczak A, Jurga S, Banski M, Misiewicz J, Podhorodecki A. Cytotoxicity and imaging studies of β-NaGdF4:Yb3+Er3+@PEG-Mo nanorods. RSC Adv 2016. [DOI: 10.1039/c6ra20415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multimodal imaging based on nanostructures has become a subject of interest for numerous biomedical laboratories.
Collapse
Affiliation(s)
- Anna Woźniak
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - Agnieszka Noculak
- Department of Experimental Physics
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Jacek Gapiński
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
- Faculty of Physics
| | - Daria Kociolek
- Department of Experimental Physics
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Agnieszka Boś-Liedke
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
- Faculty of Physics
| | - Tomasz Zalewski
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | | | | | - Stefan Jurga
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - Mateusz Banski
- Department of Experimental Physics
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Jan Misiewicz
- Department of Experimental Physics
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Artur Podhorodecki
- Department of Experimental Physics
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| |
Collapse
|
16
|
Seo JW, Ang J, Mahakian LM, Tam S, Fite B, Ingham ES, Beyer J, Forsayeth J, Bankiewicz KS, Xu T, Ferrara KW. Self-assembled 20-nm (64)Cu-micelles enhance accumulation in rat glioblastoma. J Control Release 2015; 220:51-60. [PMID: 26437259 DOI: 10.1016/j.jconrel.2015.09.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
Abstract
There is an urgent need to develop nanocarriers for the treatment of glioblastoma multiforme (GBM). Using co-registered positron emission tomography (PET) and magnetic resonance (MR) images, here we performed systematic studies to investigate how a nanocarrier's size affects the pharmacokinetics and biodistribution in rodents with a GBM xenograft. In particular, highly stable, long-circulating three-helix micelles (3HM), based on a coiled-coil protein tertiary structure, were evaluated as an alternative to larger nanocarriers. While the circulation half-life of the 3HM was similar to 110-nm PEGylated liposomes (t1/2=15.5 and 16.5h, respectively), the 20-nm micelles greatly enhanced accumulation within a U87MG xenograft in nu/nu rats after intravenous injection. After accounting for tumor blood volume, the extravasated nanoparticles were quantified from the PET images, yielding ~0.77%ID/cm(3) for the micelles and 0.45%ID/cm(3) for the liposomes. For GBM lesions with a volume greater than 100mm(3), 3HM accumulation was enhanced both within the detectable tumor and in the surrounding brain parenchyma. Further, the nanoparticle accumulation was shown to extend to the margins of the GBM xenograft. In summary, 3HM provides an attractive nanovehicle for carrying treatment to GBM.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - JooChuan Ang
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Brett Fite
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Janine Beyer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Ting Xu
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
17
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sancey L, Kotb S, Truillet C, Appaix F, Marais A, Thomas E, van der Sanden B, Klein JP, Laurent B, Cottier M, Antoine R, Dugourd P, Panczer G, Lux F, Perriat P, Motto-Ros V, Tillement O. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS NANO 2015; 9:2477-88. [PMID: 25703068 DOI: 10.1021/acsnano.5b00552] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.
Collapse
Affiliation(s)
- Lucie Sancey
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Shady Kotb
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Charles Truillet
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | | | - Arthur Marais
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Eloïse Thomas
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | | | - Jean-Philippe Klein
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Blandine Laurent
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Michèle Cottier
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Rodolphe Antoine
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Philippe Dugourd
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Gérard Panczer
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - François Lux
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Pascal Perriat
- ∥MATEIS, UMR 5510 INSA Lyon-CNRS, INSA Lyon, 69621 Villeurbanne, France
| | - Vincent Motto-Ros
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Olivier Tillement
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| |
Collapse
|
20
|
Peters T, Grunewald C, Blaickner M, Ziegner M, Schütz C, Iffland D, Hampel G, Nawroth T, Langguth P. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy. Radiat Oncol 2015; 10:52. [PMID: 25889824 PMCID: PMC4349485 DOI: 10.1186/s13014-015-0342-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Methods Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. Results The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Conclusions Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in 157Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.
Collapse
Affiliation(s)
- Tanja Peters
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| | - Catrin Grunewald
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Matthias Blaickner
- AIT Austrian Institute of Technology, Health & Environment Department, Biomedical Systems, Donau-City-Strasse 1/2, A-1220, Vienna, Austria.
| | - Markus Ziegner
- AIT Austrian Institute of Technology, Health & Environment Department, Biomedical Systems, Donau-City-Strasse 1/2, A-1220, Vienna, Austria.
| | - Christian Schütz
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Dorothee Iffland
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Gabriele Hampel
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Thomas Nawroth
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| |
Collapse
|
21
|
Abstract
Nanomaterials have been shown to have physical and chemical properties that have opened new avenues for cancer diagnosis and therapy. Nanoconstructs that enhance existing treatments for cancer, such as radiation therapy, are being explored in several different ways. Two general paths toward nanomaterial-enabled radiosensitization have been explored: (1) improving the effectiveness of ionizing radiation and (2) modulating cellular pathways leading to a disturbance of cellular homeostasis, thus rendering the cells more susceptible to radiation-induced damage. A variety of different agents that work via one of these two approaches have been explored, many of which modulate direct and indirect DNA damage (gold), radiosensitivity through hyperthermia (Fe), and different cellular pathways. There have been many in vitro successes with the use of nanomaterials for radiosensitization, but in vivo testing has been less efficacious, predominantly because of difficulty in targeting the nanoparticles. As improved methods for tumor targeting become available, it is anticipated that nanomaterials can become clinically useful radiosensitizers for radiation therapy.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Tarry Building Room 4-713, 300 E Superior Street, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|
22
|
Miot-Noirault E, Vidal A, Morlieras J, Bonazza P, Auzeloux P, Besse S, Dauplat MM, Peyrode C, Degoul F, Billotey C, Lux F, Rédini F, Tillement O, Chezal JM, Kryza D, Janier M. Small rigid platforms functionalization with quaternary ammonium: Targeting extracellular matrix of chondrosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1887-95. [DOI: 10.1016/j.nano.2014.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/04/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
23
|
Cooper DR, Bekah D, Nadeau JL. Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2014; 2:86. [PMID: 25353018 PMCID: PMC4196578 DOI: 10.3389/fchem.2014.00086] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.
Collapse
Affiliation(s)
- Daniel R Cooper
- Department of Biomedical Engineering, McGill University Montreal, QC, Canada
| | - Devesh Bekah
- Department of Biomedical Engineering, McGill University Montreal, QC, Canada
| | - Jay L Nadeau
- Department of Biomedical Engineering, McGill University Montreal, QC, Canada
| |
Collapse
|
24
|
Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:559-73. [DOI: 10.1002/wnan.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/07/2014] [Accepted: 07/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Peter Fries
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| | - John N. Morelli
- Russell H Morgan Department of Radiology & Radiological Science; Johns Hopkins University; Baltimore MD USA
| | - Francois Lux
- Institut Lumière Matière; Université Claude Bernard Lyon 1; Lyon France
| | - Olivier Tillement
- Institut Lumière Matière; Université Claude Bernard Lyon 1; Lyon France
| | - Günther Schneider
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| | - Arno Buecker
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| |
Collapse
|
25
|
Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, Crémillieux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, Janier M, Dutreix M, Barberi-Heyob M, Boschetti F, Denat F, Louis C, Porcel E, Lacombe S, Le Duc G, Deutsch E, Perfettini JL, Detappe A, Verry C, Berbeco R, Butterworth KT, McMahon SJ, Prise KM, Perriat P, Tillement O. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 2014; 87:20140134. [PMID: 24990037 PMCID: PMC4453146 DOI: 10.1259/bjr.20140134] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.
Collapse
Affiliation(s)
- L Sancey
- 1 Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Team FENNEC, Université de Lyon, Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miladi I, Aloy MT, Armandy E, Mowat P, Kryza D, Magné N, Tillement O, Lux F, Billotey C, Janier M, Rodriguez-Lafrasse C. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:247-57. [PMID: 24983891 DOI: 10.1016/j.nano.2014.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gadolinium based nanoparticles (GBNs, diameter 2.9±0.2nm), have promising biodistribution properties for theranostic use in-vivo. We aimed at demonstrating the radiosensitizing effect of these GBNs in experimental radioresistant human head and neck squamous cell carcinoma (SQ20B, FaDu and Cal33 cell lines). Combining 0.6mM GBNs with 250kV photon irradiation significantly decreased SQ20B cell survival, associated with an increase in non-reparable DNA double-strand breaks, the shortening of G2/M phase blockage, and the inhibition of cell proliferation, each contributing to the commitment of late apoptosis. Similarly, radiation resistance was overcome for SQ20B stem-like cells, as well as for FaDu and Cal33 cell lines. Using a SQ20B tumor-bearing mouse model, combination of GBNs with 10Gy irradiation significantly delayed tumor growth with an increase in late apoptosis and a decrease in cell proliferation. These results suggest that GBNs could be envisioned as adjuvant to radiotherapy for HNSCC tumors.
Collapse
Affiliation(s)
- Imen Miladi
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - Marie-Thérèse Aloy
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Emma Armandy
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Pierre Mowat
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - David Kryza
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - François Lux
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - Claire Billotey
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marc Janier
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France; Unité Médicale d'Oncologie Moléculaire et Transfert, Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France.
| |
Collapse
|
27
|
LIANG RUICHAO, FANG FANG. THE APPLICATION OF NANOMATERIALS IN DIAGNOSIS AND TREATMENT FOR MALIGNANT PRIMARY BRAIN TUMORS. NANO 2014. [DOI: 10.1142/s1793292014300011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malignant primary brain tumors have a very high morbidity and mortality. Even though enormous advances have been made in primary brain tumor management, in the case of malignant primary brain tumors, current diagnostic strategies cannot identify exact infiltrating margins, surgery alone cannot achieve total mass resection, and adjuvant therapies cannot improve survivals. Therefore, there is an urgent need to explore novel strategies to diagnose and treat such infiltrating brain tumors. Nanomaterials, particularly zero-dimensional and one-dimensional platforms, can carry various compounds such as contrast agents, anticancer drugs and genes into brain tumor cells specifically. Thus, contrast agent-based nanomaterials can selectively present infiltrating tumor outlines, while anticancer agent-based nanomaterials can specifically kill malignant tumor cells. In addition, dual-targeting nanomaterials, multifunctional nanocarriers, theranostic nanovehicles as well as convection-enhanced delivery technology hold promise to increase drug accumulation in tumor tissues, which could largely improve anticancer efficacy. In this review, we will mainly focus on the application of nanomaterials in preoperative diagnosis, intraoperative diagnosis and adjuvant treatment for malignant primary brain tumors.
Collapse
Affiliation(s)
- RUICHAO LIANG
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - FANG FANG
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
28
|
Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014; 66:42-57. [PMID: 24060923 PMCID: PMC3948347 DOI: 10.1016/j.addr.2013.09.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management.
Collapse
Affiliation(s)
- Yu Cheng
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Alex L Tobias
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Deng Y, Wang H, Gu W, Li S, Xiao N, Shao C, Xu Q, Ye L. Ho3+ doped NaGdF4 nanoparticles as MRI/optical probes for brain glioma imaging. J Mater Chem B 2014; 2:1521-1529. [DOI: 10.1039/c3tb21613f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CTX-conjugated doped NaGdF4 (CTX-NaGdF4:Ho3+) NPs were prepared by a thermal decomposition method followed by ligand-exchange with TETT silane and CTX conjugation. The potential of these NPs as dual-modal nanoprobes in tiny glioma imaging was demonstrated.
Collapse
Affiliation(s)
- Yunlong Deng
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| | - Hao Wang
- Regeneration and Repair
- Key Laboratory for Neurodegenerative Disease of The Ministry of Education
- Capital Medical University
- Beijing, P. R. China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| | - Shuai Li
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| | - Ning Xiao
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| | - Chen Shao
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| | - Qunyuan Xu
- Regeneration and Repair
- Key Laboratory for Neurodegenerative Disease of The Ministry of Education
- Capital Medical University
- Beijing, P. R. China
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing, P. R. China
| |
Collapse
|
30
|
Abstract
Malignant brain cancer treatment is limited by a number of barriers, including the blood-brain barrier, transport within the brain interstitium, difficulties in delivering therapeutics specifically to tumor cells, the highly invasive quality of gliomas and drug resistance. As a result, the prognosis for patients with high-grade gliomas is poor and has improved little in recent years. Nanomedicine approaches have been developed in the laboratory, with some technologies being translated to the clinic, in order to address these needs. This review discusses the obstacles to effective treatment that are currently faced in the field, as well as various nanomedicine techniques that have been used or are being explored to overcome them, with a focus on liposomal and polymeric nanoparticles.
Collapse
|
31
|
Kharissova OV, Kharisov BI, Jiménez-Pérez VM, Muñoz Flores B, Ortiz Méndez U. Ultrasmall particles and nanocomposites: state of the art. RSC Adv 2013. [DOI: 10.1039/c3ra43418d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|