1
|
Khazaei MR, Ibrahim R, Faris R, Bozorgi A, Khazaei M, Rezakhani L. Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration. Cell Tissue Bank 2024; 25:721-734. [PMID: 38671187 DOI: 10.1007/s10561-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rawa Ibrahim
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rayan Faris
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Ma W, Liu Z, Zhu T, Wang L, Du J, Wang K, Xu C. Fabric-Enhanced Vascular Graft with Hierarchical Structure for Promoting the Regeneration of Vascular Tissue. Adv Healthc Mater 2024; 13:e2302676. [PMID: 38279911 DOI: 10.1002/adhm.202302676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Natural blood vessels have completed functions, including elasticity, compliance, and excellent antithrombotic properties because of their mature structure. To replace damaged blood vessels, vascular grafts should perform these functions by simulating the natural vascular structures. Although the structures of natural blood vessels are thoroughly explored, constructing a small-diameter vascular graft that matches the mechanical and biological properties of natural blood vessels remains a challenge. A hierarchical vascular graft is fabricated by Electrospinning, Braiding, and Thermally induced phase separation (EBT) processes, which could simulate the structure of natural blood vessels. The internal electrospun structure facilitates the adhesion of endothelial cells, thereby accelerating endothelialization. The intermediate PLGA fabric exhibits excellent mechanical properties, which allow it to maintain its shape during long-term transplantation and prevent graft expansion. The external macroporous structure is beneficial for cell growth and infiltration. Blood vessel remodeling aims to combine a structure that promotes tissue regeneration with anti-inflammatory materials. The results in vitro demonstrated that it EBT vascular graft (EBTVG) has matched the mechanical properties, reliable cytocompatibility, and the strongest endothelialization in situ. The results in vitro and replacement of the resected artery in vivo suggest that the EBTVG combines different structural advantages with biomechanical properties and reliable biocompatibility, significantly promoting the stabilization and regeneration of vascular endothelial cells and vascular smooth muscle cells, as well as stabilizing the blood microenvironment.
Collapse
Affiliation(s)
- Wenxin Ma
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Liming Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Kun Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumors, the First Affiliated Hospital of Shandong First Medical University, Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Shandong Medicine and Health Key Laboratory of General Surgery, 16766 Jingshi Rd., Jinan, 250014, P. R. China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Zumbardo-Bacelis GA, Peponi L, Vargas-Coronado RF, Rodríguez-Velázquez E, Alatorre-Meda M, Chevallier P, Copes F, Mantovani D, Abraham GA, Cauich-Rodríguez JV. A Comparison of Three-Layer and Single-Layer Small Vascular Grafts Manufactured via the Roto-Evaporation Method. Polymers (Basel) 2024; 16:1314. [PMID: 38794507 PMCID: PMC11125268 DOI: 10.3390/polym16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.
Collapse
Affiliation(s)
- Gualberto Antonio Zumbardo-Bacelis
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
- Department of Chemical Engineering, Laval University, Quebec, QC G1V 0A6, Canada
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rossana Faride Vargas-Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
| | - Manuel Alatorre-Meda
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Gustavo A. Abraham
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, Mar del Plata B7606BWV, Argentina
| | - Juan Valerio Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| |
Collapse
|
4
|
Zhang Q, Chen J, Wang H, Xie D, Yang Z, Hu J, Luo H, Wan Y. Water-Induced Expanded Bilayer Vascular Graft with Good Hemocompatibility and Biocompatibility. Macromol Biosci 2024; 24:e2300401. [PMID: 38154146 DOI: 10.1002/mabi.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Shape memory polymer (SMP) vascular grafts are promising interventional vascular grafts for cardiovascular disease (CAD) treatment; However, hemocompatibility and biocompatibility, which are the critical issues for the SMP vascular grafts, are not systematically concerned. Furthermore, the water-induced SMP grafts are more convenient and safer than the thermally induced ones in case of the bioapplication. Herein, in this work, the new water-induced expanded bilayer vascular graft with the inner layer of crosslinked poly(ε-caprolactone) (cPCL) and the outer layer of water-induced SMP of regenerated chitosan/polyvinyl alcohol (RCS/PVA) are prepared by hot pressing and programming approaches. The results show that the inner and outer layer surfaces of the prepared grafts are smooth, and they exhibit good interfacial interaction properties. The bilayer grafts show good mechanical properties and can be expanded in water with a diameter expansion of ≈30%. When compared with commercial expanded polytetrafluoroethylene (ePTFE), the bilayer graft shows better hemocompatibility (platelet adhesion, hemolysis rate, various clotting times, and plasma recalcification time (PRT)) and in vitro and in vivo biocompatibility, which thus is a promising material for the vascular graft.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jingyi Chen
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Huiwen Wang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Denghang Xie
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jian Hu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300384, China
| |
Collapse
|
5
|
Carrabba M, Fagnano M, Ghorbel MT. Development of a Novel Hierarchically Biofabricated Blood Vessel Mimic Decorated with Three Vascular Cell Populations for the Reconstruction of Small-Diameter Arteries. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202300621. [PMID: 39257639 PMCID: PMC7616429 DOI: 10.1002/adfm.202300621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 09/12/2024]
Abstract
The availability of grafts to replace small-diameter arteries remains an unmet clinical need. Here, the validated methodology is reported for a novel hybrid tissue-engineered vascular graft that aims to match the natural structure of small-size arteries. The blood vessel mimic (BVM) comprises an internal conduit of co-electrospun gelatin and polycaprolactone (PCL) nanofibers (corresponding to the tunica intima of an artery), reinforced by an additional layer of PCL aligned fibers (the internal elastic membrane). Endothelial cells are deposited onto the luminal surface using a rotative bioreactor. A bioprinting system extrudes two concentric cell-laden hydrogel layers containing respectively vascular smooth muscle cells and pericytes to create the tunica media and adventitia. The semi-automated cellularization process reduces the production and maturation time to 6 days. After the evaluation of mechanical properties, cellular viability, hemocompatibility, and suturability, the BVM is successfully implanted in the left pulmonary artery of swine. Here, the BVM showed good hemostatic properties, capability to withstand blood pressure, and patency at 5 weeks post-implantation. These promising data open a new avenue to developing an artery-like product for reconstructing small-diameter blood vessels.
Collapse
Affiliation(s)
- Michele Carrabba
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| | - Marco Fagnano
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| | - Mohamed T Ghorbel
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| |
Collapse
|
6
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Al-Musawi MH, Mahmoudi E, Kamil MM, Almajidi YQ, Mohammadzadeh V, Ghorbani M. The effect of κ-carrageenan and ursolic acid on the physicochemical properties of the electrospun nanofibrous mat for biomedical application. Int J Biol Macromol 2023; 253:126779. [PMID: 37683747 DOI: 10.1016/j.ijbiomac.2023.126779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Wound dressing materials such as nanofiber (NF) mats have gained a lot of attention in recent years owing to their wonderful effect on accelerating the healing process and protection of wounds. In this regard, three different types of NF mats were fabricated using pure polyvinylpyrrolidone (PVP), PVP/κ-carrageenan (KG), and ursolic acid (UA) in the optimal PVP/KG ratio by electrospinning method to apply them as wound dressings. The morphology, chemical structure, degradation, porosity, mechanical properties and antioxidant activity of the produced NFs were investigated. Moreover, cell studies (e.g., cell proliferation, adhesion, and migration) and their antibacterial properties were evaluated. Adding KG and UA reduced the mean diameter size of the PVP-based NFs to ∼98 nm in the optimal sample, with defect-free morphology. The PVP/KG/UA 0.25 % exhibited the highest porosity, hydrophilicity, and degradation rate and a wound closure rate of 60 %, 2.5 times higher than that of the control group. Furthermore, this sample's proliferation and antibacterial ability were significantly higher than the other groups. These findings confirmed that the produced UA-loaded NFs have excellent properties as wound dressing.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Elham Mahmoudi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Yasir Q Almajidi
- Baghdad College of Medical Sciences, Department of Pharmacy, Baghdad, Iraq
| | - Vahid Mohammadzadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Atari M, Saroukhani A, Manshaei M, Bateni P, Zargar Kharazi A, Vatankhah E, Haghjooy Javanmard S. Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model. Biomater Sci 2023; 11:6871-6880. [PMID: 37646468 DOI: 10.1039/d3bm00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tissue-engineered vascular grafts (TEVGs) are promising alternatives to existing prosthetic grafts. The objective of this study is to evaluate the clinical feasibility of a novel multi-layered small-diameter vascular graft that has a hierarchical structure. Vascular grafts with elaborately designed composition and architecture were prepared by 3D printing and electrospinning and were implanted into the femoral artery of 5 dogs. The patency of the grafts was assessed using Doppler ultrasonography. After 6 months, the grafts were retrieved and histological and SEM examinations were conducted. During implantation, the grafts exhibited resistance to kinking and no blood seepage thanks to the helical structure of the innermost and outermost layers. The grafts showed a high patency rate and remodelling ability. At 6 months post-implantation, the lumen was endothelialized and middle layers were regenerated by infiltration of smooth muscle cells (SMCs) and deposition of extracellular matrix (ECM). These results suggest that the multi-layered vascular graft may be a promising candidate for small-diameter blood vessel tissue engineering in clinical practice.
Collapse
Affiliation(s)
- Mehdi Atari
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
| | - Abbas Saroukhani
- Department of Surgery, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Maziar Manshaei
- Animal Laboratory and Dental Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Peiman Bateni
- Animal Laboratory and Dental Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Biosystems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
| |
Collapse
|
9
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Rajora AD, Bal T. Evaluation of cashew gum-polyvinyl alcohol (CG-PVA) electrospun nanofiber mat for scarless wound healing in a murine model. Int J Biol Macromol 2023; 240:124417. [PMID: 37059283 DOI: 10.1016/j.ijbiomac.2023.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Modern-day treatment for burns and wounds demands scarless healing which is becoming a challenging clinical problem. Thus, to alleviate such issues, it becomes essential to develop biocompatible and biodegradable wound dressing material for skin tissue regeneration, which could heal the wound in a very short span leaving no scars. The present study focuses on the development of nanofiber of Cashew gum polysaccharide-Polyvinyl alcohol using electrospinning. The prepared nanofiber was optimized based on uniformity of fiber diameter (FESEM), mechanical property (Tensile Strength), and optical contact angle (OCA) and was subjected to evaluation of: antimicrobial activity against Streptococcus aureus and Escherichia coli, hemocompatibility, and in-vitro biodegradability. The nanofiber was also characterized using different analytical techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction. The cytotoxicity was also investigated on L929 fibroblast cells using an SRB assay. The in-vivo wound healing assay showed accelerated healing in comparison to untreated wounds. The in-vivo wound healing assay and histopathological slides of regenerated tissue confirmed that the nanofiber has the potential to accelerate healing properties.
Collapse
Affiliation(s)
- Aditya Dev Rajora
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
11
|
Doostan M, Doostan M, Mohammadi P, Khoshnevisan K, Maleki H. Wound healing promotion by flaxseed extract-loaded polyvinyl alcohol/chitosan nanofibrous scaffolds. Int J Biol Macromol 2023; 228:506-516. [PMID: 36572078 DOI: 10.1016/j.ijbiomac.2022.12.228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Impaired wound healing is a severe complication of sufferers, related to prolonged wound closure, a high infection rate, and eventually disabilities of organs. To aid resolve this issue, we developed the electrospun polyvinyl alcohol and chitosan (PVA/CS) nanofibrous scaffold-loaded flaxseed extract. The scaffold containing 10 wt% of the extract indicated a three-dimensional cross-network with a nano-scale diameter (257 ± 37 nm) and smooth surface. Also, the relevant analyses confirmed high water absorption, porosity, and wettability of the scaffold. Fourier-transform infrared (FTIR), degradation, and mechanical studies revealed the intact presence and loading of the extract into the scaffold, the complete degradation over 48 h, and a high tensile elastic modulus. Besides, the advanced scaffold displayed remarkable anti-oxidant and could inhibit the growth of both Gram-positive and negative bacteria compared to the free PVA/CS scaffold. Desired fibroblast viability and blood compatibility of flaxseed-loaded scaffold endorsed the biocompatibility for wound zones. The in vitro studies showed that the flaxseed-loaded scaffold resulted in an accelerated wound healing process and 100 % closure of the scratched area within 48 h. The results obtained reveal that the flaxseed-loaded PVA/CS electrospun scaffold could be effectively applied for wound healing promotion.
Collapse
Affiliation(s)
- Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Trujillo-Miranda M, Apsite I, Agudo JAR, Constante G, Ionov L. 4D Biofabrication of Mechanically Stable Tubular Constructs Using Shape Morphing Porous Bilayers for Vascularization Application. Macromol Biosci 2023; 23:e2200320. [PMID: 36165235 DOI: 10.1002/mabi.202200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Indexed: 01/19/2023]
Abstract
This study reports the fabrication of highly porous electrospun self-folding bilayers, which fold into tubular structures with excellent mechanical stability, allowing them to be easily manipulated and handled. Two kinds of bilayers based on biocompatible and biodegradable soft (PCL, polycaprolactone) and hard (PHB, poly-hydroxybutyrate) thermoplastic polymers have been fabricated and compared. Multi-scroll structures with tunable diameter are obtained after the shape transformation of the bilayer in aqueous media, where PCL-based bilayer rolled longitudinally and PHB-based one rolled transversely with respect to the fiber direction. A combination of higher elastic modulus and transverse orientation of fibers with respect to rolling direction allowed precise temporal control of shape transformation of PHB-bilayer - stress produced by swollen methacrylated hyaluronic acid (HA-MA) do not relax with time and folding is not affected by the fact that bilayer is fixed in unfolded state in cell culture medium for more than 1 h. This property of PHB-bilayer allowed cell culturing without a negative effect on its shape transformation ability. Moreover, PHB-based tubular structure demonstrated superior mechanical stability compared to PCL-based ones and do not collapse during manipulations that happened to PCL-based one. Additionally, PHB/HA-MA bilayers showed superior biocompatibility, degradability, and long-term stability compared to PCL/HA-MA.
Collapse
Affiliation(s)
- Mairon Trujillo-Miranda
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Indra Apsite
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | | | - Gissela Constante
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| |
Collapse
|
13
|
Preparation and Synergistic Effect of Biomimetic Poly(lactic acid)/Graphene Oxide Composite Scaffolds Loaded with Dual Drugs. Polymers (Basel) 2022; 14:polym14245348. [PMID: 36559717 PMCID: PMC9784114 DOI: 10.3390/polym14245348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To promote the bone repair ability of drug-loaded scaffolds, poly(lactic acid) (PLA)/graphene oxide (GO)/Salvianolic acid B (Sal-B)/aspirin (ASA) dual drug-loaded biomimetic composite scaffolds were prepared. The results showed that the addition of these two drugs delayed the gel formation of the composite system, but a biomimetic nanofiber structure could still be obtained by extending the gel time. The addition of Sal-B increased the hydrophilicity of the scaffold, while an increase in ASA reduced the porosity. Dual drug-loaded scaffolds had good haemocompatibility and synergically promoted the proliferation of MC3T3-E1 cells and enhanced alkaline phosphatase activity. Sustained-release experiments of the two drugs showed that the presence of ASA slowed the cumulative release of Sal-B, while Sal-B promoted the release of ASA. Kinetic modeling showed that the release of both drugs conforms to the Korsmeyer-Peppas model, but Sal-B conforms to the Fick diffusion mechanism and ASA follows Fick diffusion and carrier swelling/dissolution.
Collapse
|
14
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
15
|
Liu S, Xu Z, Hu J, Wu Z, Zheng Y. Preparation and sustained-release properties of poly(lactic acid)/graphene oxide porous biomimetic composite scaffolds loaded with salvianolic acid B. RSC Adv 2022; 12:28867-28877. [PMID: 36329763 PMCID: PMC9585927 DOI: 10.1039/d2ra05371c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 01/24/2023] Open
Abstract
Biomimetic scaffolds loaded with drugs can improve the osteogenesis and neovascularisation of scaffolds. A series of PLA/GO/Sal-B drug-loaded scaffolds was prepared by thermally induced phase separation. The addition of Sal-B increased the diameter of the fibres, but the scaffold showed a porous nanofibrous structure after drug release. X-ray diffraction results showed that the addition of Sal-B did not affect the formation of the nanofibre biomimetic structure of the scaffold. FTIR results indicated a certain interaction between Sal-B and PLA/GO. Water absorption and porosity test results revealed that the scaffolds had good hydrophilicity and appropriate porosity. The addition of Sal-B was also conducive to the formation of sediments possibly due to the good water solubility of Sal-B itself. The prepared scaffolds had good blood compatibility and cytocompatibility, and a small additional amount of Sal-B could significantly promote cell proliferation and alkaline phosphatase activity. Their sustained release performance indicated that the biomimetic scaffolds had controlled the release of Sal-B. The kinetic model showed that the PLA/GO/Sal-B drug-loaded biomimetic scaffolds followed the diffusion mechanism.
Collapse
Affiliation(s)
- Shuqiong Liu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Zhenyi Xu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Jiapeng Hu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Zhenzeng Wu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Yuying Zheng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 People's Republic of China +86-591-22866524
| |
Collapse
|
16
|
Zare S, Mohammadpour M, Izadi Z, Ghazanfari S, Nadri S, Samadian H. Nanofibrous Hydrogel Nanocomposite Based on Strontium-Doped Bioglass Nanofibers for Bone Tissue Engineering Applications. BIOLOGY 2022; 11:1472. [PMID: 36290377 PMCID: PMC9598828 DOI: 10.3390/biology11101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The main aim of the current study is to fabricate an osteocompatible, bioactive, porous, and degradable bone tissue engineering scaffold. For this purpose, bioactive glasses (BGs) were chosen due to their similarity to bone's natural mineral composition, and the effect of replacing Ca ions with Sr on their properties were considered. First, strontium-containing BGs (Sr-BGs) were synthesized using the electrospinning technique and assembled by the sol-gel method, then they were incorporated into the alginate (Alg) matrix. Photographs of the scanning electron microscope (SEM) showed that the BG nanofibers have a diameter of 220 ± 36 nm, which was smaller than the precursor nanofibers (275 ± 66 nm). The scaffolds possess a porous internal microstructure (230-330 nm pore size) with interconnected pores. We demonstrated that the scaffolds could be degraded in the acetate sodium buffer and phosphate-buffered saline. The osteoactivity of the scaffolds was confirmed via visual inspection of the SEM illustrations after seven days of immersing them in the SBF solution. In vitro assessments disclosed that the produced Alg-based composites including Sr-BGs (Alg/Sr-BGs) are blood-compatible and biocompatible. Accumulating evidence shows that Alg/Sr-BG (5%, 10%, and 15%) hydrogels could be a promising scaffold for bone regeneration.
Collapse
Affiliation(s)
- Soheila Zare
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan 45154, Iran
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah P.O. Box 671551616, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah P.O. Box 671551616, Iran
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, 6167 RD Geleen, The Netherlands
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52072 Aachen, Germany
| | - Samad Nadri
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45154, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan 45154, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| |
Collapse
|
17
|
Fan Q, Hamidi S. Moringa oleifera-Loaded Nanocomposite Scaffolds Augment Bone Injury Healing in a Rat Model of Critical Sized Bone Defect: A Potential Treatment Strategy for Nursing Care in Fracture Patients. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nursing and medical care for facture patients is challenged by several issues such as unavailability of a suitable bone graft, challenges associated with autologous bone graphing, and rejection of the bone graft. In the current study, Moringa oleifera extract was loaded into
chitosan nanoparticles and the resulting delivery system was added into a collagen solution and lyophilized to produce a bioactive bone graft. Various In vitro experiments were performed to characterize the nanocomposite scaffolds and their healing function was evaluated in a rat model
of calvarial defect. In vitro studies showed that the scaffolds protected MG-63 cells against oxidative stress and had a porous microstructure. Histopathological studies showed that the scaffolds loaded with Moringa oleifera extract augmented bone injury healing to a higher extent
than other groups. Furthermore, gene expression studies showed that the rats treated with Moringa oleifera extract-loaded scaffolds had significantly higher tissue expression levels of osteopontin, Osteonectin, collagen type 1, collagen type 2, and VEGFa genes.
Collapse
Affiliation(s)
- Qiuhua Fan
- Clinical Medical Laboratory Center, Shanxi Children’s Hospital (Shanxi Maternal and Child Health Hospital), Taiyuan, 030000, China
| | - Sasan Hamidi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 12036598, Tehran, Iran
| |
Collapse
|
18
|
Oztemur J, Ozdemir S, Yalcin-Enis I. Effect of blending ratio on morphological, chemical, and thermal characteristics of PLA/PCL and PLLA/PCL electrospun fibrous webs. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers (Basel) 2022; 14:1153. [PMID: 35335484 PMCID: PMC8955974 DOI: 10.3390/polym14061153] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Manuela Ceraulo
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
20
|
Wang W, Zhou Z, Liu N, Zhang X, Zhou H, Wang Y, Fang K, Wu T. Improving Biocompatibility of Polyester Fabrics through Polyurethane/Gelatin Complex Coating for Potential Vascular Application. Polymers (Basel) 2022; 14:polym14050989. [PMID: 35267812 PMCID: PMC8912764 DOI: 10.3390/polym14050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Medical apparatus and instruments, such as vascular grafts, are first exposed to blood when they are implanted. Therefore, blood compatibility is considered to be the critical issue when constructing a vascular graft. In this regard, the coating method is verified to be an effective and simple approach to improve the blood compatibility as well as prevent the grafts from blood leakage. In this study, polyester fabric is chosen as the substrate to provide excellent mechanical properties while a coating layer of polyurethane is introduced to prevent the blood leakage. Furthermore, gelatin is coated on the substrate to mimic the native extracellular matrix together with the improvement of biocompatibility. XPS and FTIR analysis are performed for elemental and group analysis to determine the successful coating of polyurethane and gelatin on the polyester fabrics. In terms of blood compatibility, hemolysis and platelet adhesion are measured to investigate the anticoagulation performance. In vitro cell experiments also indicate that endothelial cells show good proliferation and morphology on the polyester fabric modified with such coating layers. Taken together, such polyester fabric coated with polyurethane and gelatin layers would have a promising potential in constructing vascular grafts with expected blood compatibility and biocompatibility without destroying the basic mechanical requirements for vascular applications.
Collapse
Affiliation(s)
- Wei Wang
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Ziyi Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
| | - Xiaopei Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
| | - Hua Zhou
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| | - Kuanjun Fang
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| | - Tong Wu
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| |
Collapse
|
21
|
Efficient Decellularization by Application of Moderate High Hydrostatic Pressure with Supercooling Pretreatment. MICROMACHINES 2021; 12:mi12121486. [PMID: 34945339 PMCID: PMC8708072 DOI: 10.3390/mi12121486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/17/2022]
Abstract
Decellularized tissues are considered superior scaffolds for cell cultures, preserving the microstructure of native tissues and delivering many kinds of cytokines. High hydrostatic pressure (HHP) treatment could remove cells physically from biological tissues rather than chemical methods. However, there are some risks of inducing destruction or denaturation of extracellular matrices (ECMs) at an ultrahigh level of HHP. Therefore, efficient decellularization using moderate HHP is required to remove almost all cells simultaneously to suppress tissue damage. In this study, we proposed a novel decellularization method using a moderate HHP with supercooling pretreatment. To validate the decellularization method, a supercooling device was developed to incubate human dermal fibroblasts or collagen gels in a supercooled state. The cell suspension and collagen gels were subjected to 100, 150, and 200 MPa of HHP after supercooling pretreatment, respectively. After applying HHP, the viability and morphology of the cells and the collagen network structure of the gels were evaluated. The viability of cells decreased dramatically after HHP application with supercooling pretreatment, whereas the microstructures of collagen gels were preserved and cell adhesivity was retained after HHP application. In conclusion, it was revealed that supercooling pretreatment promoted the denaturation of the cell membrane to improve the efficacy of decellularization using static application of moderate HHP. Furthermore, it was demonstrated that the HHP with supercooling pretreatment did not degenerate and damage the microstructure in collagen gels.
Collapse
|
22
|
Jin L, Xu J, Xue Y, Zhang X, Feng M, Wang C, Yao W, Wang J, He M. Research Progress in the Multilayer Hydrogels. Gels 2021; 7:172. [PMID: 34698200 PMCID: PMC8544501 DOI: 10.3390/gels7040172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
Hydrogels have been widely used in many fields including biomedicine and water treatment. Significant achievements have been made in these fields due to the extraordinary properties of hydrogels, such as facile processability and tissue similarity. However, based on the in-depth study of the microstructures of hydrogels, as a result of the enhancement of biomedical requirements in drug delivery, cell encapsulation, cartilage regeneration, and other aspects, it is challenge for conventional homogeneous hydrogels to simultaneously meet different needs. Fortunately, heterogeneous multilayer hydrogels have emerged and become an important branch of hydrogels research. In this review, their main preparation processes and mechanisms as well as their composites from different resources and methods, are introduced. Moreover, the more recent achievements and potential applications are also highlighted, and their future development prospects are clarified and briefly discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (L.J.); (J.X.); (Y.X.); (X.Z.); (M.F.); (C.W.); (W.Y.); (J.W.)
| |
Collapse
|
23
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021; 8:bioengineering8070099. [PMID: 34356206 PMCID: PMC8301202 DOI: 10.3390/bioengineering8070099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.
Collapse
|
25
|
Zhou Y, Zhou D, Cao P, Zhang X, Wang Q, Wang T, Li Z, He W, Ju J, Zhang Y. 4D Printing of Shape Memory Vascular Stent Based on βCD-g-Polycaprolactone. Macromol Rapid Commun 2021; 42:e2100176. [PMID: 34121258 DOI: 10.1002/marc.202100176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Indexed: 11/07/2022]
Abstract
The 4D-printing technology is applied to fabricate a shape memory peripheral stent with good biocompatibility, which sustains long-term drug release. The star polymer s-PCL is prepared by ring opening polymerization of ε-caprolactone with the -OH of β-cyclodextrin (βCD) as initiator, and then the s-PCL is modified with acrylate endgroup which allows the polymerization under UV light to form the crosslinking network c-PCL. Attributed to the feature of the high crosslinked structure and chemical nature of polycaprolactone (PCL) and βCD, the composite exhibits appropriate tensile strength and sufficient elasticity and bursting pressure, and it is comparable with great saphenous vein in human body. The radial support of the 4D-printed stent is 0.56 ± 0.11 N and is equivalent to that of commercial stent. The cell adhesion and proliferation results show a good biocompatibility of the stent with human umbilical vein endothelial cells. Due to the presence of βCD, the wettability and biocompatibility of the materials are improved, and the sustained paclitaxel release based on the host-guest complexion shows the potential of the drug-loaded stent for long-term release. This study provides a new strategy to solve the urgent need of small-diameter scaffolds to treat critical limb ischemia.
Collapse
Affiliation(s)
- Yanyi Zhou
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China.,Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dong Zhou
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Pengrui Cao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaolong Li
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Wenyang He
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Junping Ju
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Kuźmińska A, Kwarta D, Ciach T, Butruk-Raszeja BA. Cylindrical Polyurethane Scaffold Fabricated Using the Phase Inversion Method: Influence of Process Parameters on Scaffolds' Morphology and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2977. [PMID: 34072853 PMCID: PMC8198356 DOI: 10.3390/ma14112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
This work presents a method of obtaining cylindrical polymer structures with a given diameter (approx. 5 mm) using the phase inversion technique. As part of the work, the influence of process parameters (polymer hardness, polymer solution concentration, the composition of the non-solvent solution, process time) on the scaffolds' morphology was investigated. Additionally, the influence of the addition of porogen on the scaffold's mechanical properties was analyzed. It has been shown that the use of a 20% polymer solution of medium hardness (ChronoFlex C45D) and carrying out the process for 24 h in 0:100 water/ethanol leads to the achievement of repeatable structures with adequate flexibility. Among the three types of porogens tested (NaCl, hexane, polyvinyl alcohol), the most favorable results were obtained for 10% polyvinyl alcohol (PVA). The addition of PVA increases the range of pore diameters and the value of the mean pore diameter (9.6 ± 3.2 vs. 15.2 ± 6.4) while reducing the elasticity of the structure (Young modulus = 3.6 ± 1.5 MPa vs. 9.7 ± 4.3 MPa).
Collapse
Affiliation(s)
- Aleksandra Kuźmińska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Dominika Kwarta
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Beata A. Butruk-Raszeja
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| |
Collapse
|
27
|
Kazanci M, Haciosmanoglu SK, Kamel G. Synchrotron Fourier transform infrared microspectroscopy (sFTIRM) analysis of unfolding behavior of electrospun collagen nanofibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119420. [PMID: 33465575 DOI: 10.1016/j.saa.2020.119420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Collagen nanofibers are popular extracellular matrix (ECM) materials in regenerative medicine. Electrospinning of collagen dissolved in organic solvents is widely used for fabricating anisotropic collagen nanofibers; however, such fibers are water-soluble and require cross-linking before use as scaffolds for cell culture. Herein, in-situ crosslinking during electrospinning process is suggested by using different chemical agents, namely genipin and glutaraldehyde, and physical crosslinking method (UV light). sFTIRM; Synchrotron Fourier-Transform Infrared Microspectroscopy is a powerful tool that sheds light on the molecular structure of collagen nanofibers. Applied extraction methods caused shifts on protein band positions. Electrospinning process prevents self-assembly of collagen molecules and obtained electrospun collagen nanofibers have lower band positions. Crosslinkers have effect on the secondary structure of collagen molecules. Among different crosslinkers, genipin in-situ crosslinking process perform better in preserving the native structure of electrospun collagen nanofibers than the physical crosslinking method (UV).
Collapse
Affiliation(s)
- Murat Kazanci
- Biomedical Engineering Department, School of Engineering and Natural Sciences, Istanbul Medeniyet University, 34700 Istanbul, Turkey; Nanoscience and Nanoengineering Program, Graduate School, Istanbul Medeniyet University, 34700 Istanbul, Turkey.
| | - Selcuk Kaan Haciosmanoglu
- Nanoscience and Nanoengineering Program, Graduate School, Istanbul Medeniyet University, 34700 Istanbul, Turkey
| | - Gihan Kamel
- SESAME Synchrotron (Synchrotron-light for Experimental Science and Applications in the Middle East), 19252 Allan, Jordan; Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
28
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
29
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med 2021; 7:592361. [PMID: 33585576 PMCID: PMC7873993 DOI: 10.3389/fcvm.2020.592361] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna B J Leal
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Naohiro Wakabayashi
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Kamiya
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Daikelly I Braghirolli
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
31
|
Liu S, Wu X, Hu J, Wu Z, Zheng Y. Preparation and characterisation of a novel polylactic acid/hydroxyapatite/graphene oxide/aspirin drug-loaded biomimetic composite scaffold. NEW J CHEM 2021. [DOI: 10.1039/d1nj01045j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The prepared scaffold has good cytocompatibility, hemocompatibility and controlled drug release, and has biomimetic structure and drug loaded function.
Collapse
Affiliation(s)
- Shuqiong Liu
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
- College of Ecology and Resource Engineering
| | - Xiaoyan Wu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Jiapeng Hu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Zhenzeng Wu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Yuying Zheng
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
| |
Collapse
|
32
|
Fundamental Study of Decellularization Method Using Cyclic Application of High Hydrostatic Pressure. MICROMACHINES 2020; 11:mi11111008. [PMID: 33203164 PMCID: PMC7696941 DOI: 10.3390/mi11111008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Decellularized tissues are promising materials that mainly consist of extracellular matrices (ECMs) obtained by removing all cells from organs and tissues. High hydrostatic pressure (HHP) has been used for decellularization to remove cells physically from organs or tissues rather than by chemical methods. However, ultrahigh pressure induces denaturation of the ECM structure. In this study, we examined the effects of cyclic HHP at low and high pressures on the cell membrane structure to establish a novel decellularization method that enables decellularization without the denaturation of the ECM. A decellularization device using cyclic HHP (maximum pressure: 250 MPa, cycle number: 5) was developed. NB1RGB cell suspension was injected into a plastic bag to be subjected to cyclic HHP. After applying cyclic HHP, the amount of DNA inside the cells and the morphological changes of the cells were evaluated. As a result, the amount of DNA inside the cells decreased after the cyclic HHP compared to the static HHP. In addition, cyclic HHP was suggested to promote the destruction of the cell and nuclear membrane. In conclusion, it was revealed that the cell structure could be denatured and destroyed by cyclic HHP at a lower level than that of previous approaches.
Collapse
|
33
|
Midha S, Jain KG, Bhaskar N, Kaur A, Rawat S, Giri S, Basu B, Mohanty S. Tissue-specific mesenchymal stem cell-dependent osteogenesis in highly porous chitosan-based bone analogs. Stem Cells Transl Med 2020; 10:303-319. [PMID: 33049125 PMCID: PMC7848378 DOI: 10.1002/sctm.19-0385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Among conventional fabrication techniques, freeze‐drying process has widely been investigated for polymeric implants. However, the understanding of the stem cell progenitor‐dependent cell functionality modulation and quantitative analysis of early osseointegration of highly porous scaffolds have not been explored. Here, we developed a novel, highly porous, multimaterial composite, chitosan/hydroxyapatite/polycaprolactone (CHT/HA/PCL). The in vitro studies have been performed using mesenchymal stem cells (MSCs) from three tissue sources: human bone marrow‐derived MSCs (BM‐MSCs), adipose‐derived MSCs (AD‐MSCs), and Wharton's jelly‐derived MSCs (WJ‐MSCs). Although cell attachment and metabolic activity [3‐4,5‐dimethylthiazol‐2yl‐(2,5 diphenyl‐2H‐tetrazoliumbromide) assay] were ore enhanced in WJ‐MSC‐laden CHT/HA/PCL composites, scanning electron microscopy, real‐time gene expression (alkaline phosphatase [ALP], collagen type I [Col I], osteocalcin [OCN], and bone morphogenetic protein 4 [BMP‐4]), and immunostaining (COL I, β‐CATENIN, OCN, and SCLEROSTIN [SOST]) demonstrated pronounced osteogenesis with terminal differentiation on BM‐MSC‐laden CHT/HA/PCL composites only. The enhanced cell functionality on CHT/HA/PCL composites was explained in terms of interplay among the surface properties and the optimal source of MSCs. In addition, osteogenesis in rat tibial model over 6 weeks confirmed a better ratio of bone volume to the total volume for BM‐MSC‐laden composites over scaffold‐only and defect‐only groups. The clinically conformant combination of 3D porous architecture with pore sizes varying in the range of 20 to 200 μm together with controlled in vitro degradation and early osseointegration establish the potential of CHT/HA/PCL composite as a potential cancellous bone analog.
Collapse
Affiliation(s)
- Swati Midha
- Stem Cell Facility (Department of Biotechnology-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Krishan G Jain
- Stem Cell Facility (Department of Biotechnology-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - Amtoj Kaur
- Stem Cell Facility (Department of Biotechnology-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Sonali Rawat
- Stem Cell Facility (Department of Biotechnology-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, Medical faculty, University of Leipzig, Leipzig, Germany.,Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - Sujata Mohanty
- Stem Cell Facility (Department of Biotechnology-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol 2020; 11:495-521. [PMID: 32812139 DOI: 10.1007/s13239-020-00482-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.
Collapse
Affiliation(s)
- Francis O Obiweluozor
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| | - Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Do-Wan Kim
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Hwa-Jin Cho
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - In Seok Jeong
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
35
|
Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1916-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Hu Q, Wu C, Zhang H. Preparation and optimization of a gelatin-based biomimetic three-layered vascular scaffold. J Biomater Appl 2019; 34:431-441. [PMID: 31126207 DOI: 10.1177/0885328219851224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qingxi Hu
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- 2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- 3 National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Chuang Wu
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- 2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- 3 National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| |
Collapse
|
37
|
Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm 2019; 567:118480. [DOI: 10.1016/j.ijpharm.2019.118480] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|
38
|
Zhang F, Xie Y, Celik H, Akkus O, Bernacki SH, King MW. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication 2019; 11:035020. [PMID: 30943452 DOI: 10.1088/1758-5090/ab15ce] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of Textiles, North Carolina State University, Raleigh, United States of America
| | | | | | | | | | | |
Collapse
|
39
|
Goins A, Webb AR, Allen JB. Multi-layer approaches to scaffold-based small diameter vessel engineering: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:896-912. [DOI: 10.1016/j.msec.2018.12.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022]
|
40
|
Song WK, Liu D, Sun LL, Li BF, Hou H. Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia ( Oreochromis niloticus) for Biomedical Applications. Mar Drugs 2019; 17:E137. [PMID: 30813606 PMCID: PMC6471296 DOI: 10.3390/md17030137] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the physicochemical properties, biosafety, and biocompatibility of the collagen extract from the skin of Nile tilapia, and evaluate its use as a potential material for biomedical applications. Two extraction methods were used to obtain acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from tilapia skin. Amino acid composition, FTIR, and SDS-PAGE results showed that ASC and PSC were type I collagen. The molecular form of ASC and PSC is (α₁)₂α₂. The FTIR spectra of ASC and PSC were similar, and the characteristic peaks corresponding to amide A, amide B, amide I, amide II, and amide III were 3323 cm-1, 2931 cm-1, 1677 cm-1, 1546 cm-1, and 1242 cm-1, respectively. Denaturation temperatures (Td) were 36.1 °C and 34.4 °C, respectively. SEM images showed the loose and porous structure of collagen, indicting its physical foundation for use in applications of biomedical materials. Negative results were obtained in an endotoxin test. Proliferation rates of osteoblastic (MC3T3E1) cells and fibroblast (L929) cells from mouse and human umbilical vein endothelial cells (HUVEC) were increased in the collagen-treated group compared with the controls. Furthermore, the acute systemic toxicity test showed no acute systemic toxicity of the ASC and PSC collagen sponges. These findings indicated that the collagen from Nile tilapia skin is highly biocompatible in nature and could be used as a suitable biomedical material.
Collapse
Affiliation(s)
- Wen-Kui Song
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China.
| | - Lei-Lei Sun
- College of Life Science, Yantai University, Yantai 264005, China.
| | - Ba-Fang Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| |
Collapse
|
41
|
Zhou D, Sun Y, Bao Z, Liu W, Xian M, Nian R, Xu F. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation. Macromol Biosci 2019; 19:e1800395. [DOI: 10.1002/mabi.201800395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Dongyan Zhou
- College of Life SciencesJilin University No. 2699 Qianjin Street 130012 Changchun China
| | - Yue Sun
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Zixian Bao
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Mo Xian
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Rui Nian
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Fei Xu
- College of Life SciencesJilin University No. 2699 Qianjin Street 130012 Changchun China
| |
Collapse
|
42
|
A nanofibrous bilayered scaffold for tissue engineering of small-diameter blood vessels. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Modi A, Verma SK, Bellare J. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application. Colloids Surf B Biointerfaces 2018; 167:457-467. [PMID: 29723817 DOI: 10.1016/j.colsurfb.2018.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
In this study, L-3, 4-dihydroxyphenylalanine and human collagen type IV were coated over the outer surface of the custom-made hollow fiber membranes (HFMs) with the objective of simultaneously improving biocompatibility leading to proliferation of human embryonic kidney cells-293 (HEK-293) and improving separation of uremic toxins, thereby making them suitable for bioartificial kidney application. Physicochemical characterization showed the development of coated HFMs, resulting in low hemolysis (0.25 ± 0.10%), low SC5b-9 marker level (7.95 ± 1.50 ng/mL), prolonged blood coagulation time, and minimal platelet adhesion, which indicated their improved human blood compatibility. Scanning electron microscopy and confocal laser scanning microscopy showed significantly improved attachment and proliferation of HEK-293 cells on the outer surface of the coated HFMs, which was supported by the results of glucose consumption and MTT cell proliferation assay. The solute rejection profile of these coated HFMs was compared favorably with that of the commercial dialyzer membranes. These coated HFMs showed a remarkable 1.6-3.2 fold improvement in reduction ratio of uremic toxins as compared to standard dialyzer membranes. These results clearly demonstrated that these extracellular matrix-coated HFMs can be a potential biocompatible substrate for the attachment and proliferation of HEK-293 cells and removal of uremic toxins from the simulated blood, which may find future application for bioartificial renal assist device.
Collapse
Affiliation(s)
- Akshay Modi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surendra Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
44
|
Carrabba M, Madeddu P. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Front Bioeng Biotechnol 2018; 6:41. [PMID: 29721495 PMCID: PMC5916236 DOI: 10.3389/fbioe.2018.00041] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/23/2018] [Indexed: 01/12/2023] Open
Abstract
Occlusive arterial disease, including coronary heart disease (CHD) and peripheral arterial disease (PAD), is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG) with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid) or self-assembled (cell-sheet, microtissue aggregation and bioprinting). Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.
Collapse
Affiliation(s)
- Michele Carrabba
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Vatankhah E, Prabhakaran MP, Ramakrishna S. Biomimetic microenvironment complexity to redress the balance between biodegradation and de novo matrix synthesis during early phase of vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:39-47. [DOI: 10.1016/j.msec.2017.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023]
|
46
|
Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function. Acta Biomater 2017; 56:102-109. [PMID: 28159718 DOI: 10.1016/j.actbio.2017.01.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/23/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering strategies. STATEMENT OF SIGNIFICANCE The meniscus is a complex fibrous tissue, whose architecture includes radial tie fibers that run perpendicular to and interdigitate with the predominant circumferential fibers. We hypothesized that these radial elements function to preserve mechanical function in the context of interruption of circumferential bundles, as would be the case in a meniscal tear. To test this hypothesis, we developed a biomaterial analog containing disorganized layers enmeshed regularly throughout an otherwise aligned network. Using this material formulation, we showed that strain transmission is improved in the vicinity of defects when disorganized fiber layers were present. This supports the idea that radial elements within the meniscus improve function near a tear, and will guide future clinical interventions and the development of engineered replacements.
Collapse
|