1
|
Ghezzi B, Matera B, Meglioli M, Rossi F, Duraccio D, Faga MG, Zappettini A, Macaluso GM, Lumetti S. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement. Int Dent J 2024; 74:1220-1232. [PMID: 38614878 PMCID: PMC11551565 DOI: 10.1016/j.identj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES The purpose of this work was to optimise printable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) biomaterials with high percentages of β-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS PCL/β-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of β-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS The parameters of the newly fabricated materila were optimal for PCL/β-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of β-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of β-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/β-TCP scaffolds of up to 70 % concentrations of β-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Biagio Matera
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Matteo Meglioli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Donatella Duraccio
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Maria Giulia Faga
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
2
|
Sufianov A, Ovalle CS, Cruz O, Contreras J, Begagić E, Kannan S, Rosario Rosario A, Chmutin G, Askatovna GN, Lafuente J, Sanchez JS, Nurmukhametov R, Soto García ME, Peev N, Pojskić M, Reyes-Soto G, Bozkurt I, Encarnación Ramírez MDJ. Low-Cost 3D Models for Cervical Spine Tumor Removal Training for Neurosurgery Residents. Brain Sci 2024; 14:547. [PMID: 38928547 PMCID: PMC11201732 DOI: 10.3390/brainsci14060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal surgery, particularly for cervical pathologies such as myelopathy and radiculopathy, requires a blend of theoretical knowledge and practical skill. The complexity of these conditions, often necessitating surgical intervention, underscores the need for intricate understanding and precision in execution. Advancements in neurosurgical training, especially with the use of low-cost 3D models for simulating cervical spine tumor removal, are revolutionizing this field. These models provide the realistic and hands-on experience crucial for mastering complex neurosurgical techniques, filling gaps left by traditional educational methods. MATERIALS AND METHODS This study aimed to assess the effectiveness of 3D-printed cervical vertebrae models in enhancing surgical skills, focusing on tumor removal, and involving 20 young neurosurgery residents. These models, featuring silicone materials to simulate the spinal cord and tumor tissues, provided a realistic training experience. The training protocol included a laminectomy, dural incision, and tumor resection, using a range of microsurgical tools, focusing on steps usually performed by senior surgeons. RESULTS The training program received high satisfaction rates, with 85% of participants extremely satisfied and 15% satisfied. The 3D models were deemed very realistic by 85% of participants, effectively replicating real-life scenarios. A total of 80% found that the simulated pathologies were varied and accurate, and 90% appreciated the models' accurate tactile feedback. The training was extremely useful for 85% of the participants in developing surgical skills, with significant post-training confidence boosts and a strong willingness to recommend the program to peers. CONCLUSIONS Continuing laboratory training for residents is crucial. Our model offers essential, accessible training for all hospitals, regardless of their resources, promising improved surgical quality and patient outcomes across various pathologies.
Collapse
Affiliation(s)
- Albert Sufianov
- Federal State Budgetary Institution the Federal Center of Neurosurgery of the Ministry of Health of the Russian Federation, 625062 Tyumen, Russia
- Department of Neurosurgery, State Medical University (Sechenov University), 119991 Moscow, Russia
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia RUDN University, 117198 Moscow, Russia
| | - Carlos Salvador Ovalle
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Omar Cruz
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Javier Contreras
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR02AG, UK
| | | | - Gennady Chmutin
- Petrovsky Russian Scientific Center of Surgery, 121359 Moscow, Russia
| | - Garifullina Nargiza Askatovna
- Federal State Budgetary Institution the Federal Center of Neurosurgery of the Ministry of Health of the Russian Federation, 625062 Tyumen, Russia
| | - Jesus Lafuente
- Spine Center Hospital del Mar, Sagrat Cor University Hospital, 08029 Barcelona, Spain
| | - Jose Soriano Sanchez
- Instituto Soriano de Cirugía de Columna Mínimamente Invasiva at ABC Hospital, Neurological Center, Santa Fe Campus, Mexico City 05100, Mexico
| | - Renat Nurmukhametov
- NCC No. 2 Federal State Budgetary Scientific Institution Russian Scientific Center Named after. Acad. B.V. Petrovsky (Central Clinical Hospital Russian Academy of Sciences), 121359 Moscow, Russia
| | | | - Nikolay Peev
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| | - Gervith Reyes-Soto
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Ismail Bozkurt
- Department of Neurosurgery, Medical Park Ankara Hospital, Kent Koop Mah 1868. Sok, Batıkent Blv. No:15, 06680 Ankara, Turkey
- Department of Neurosurgery, School of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey
| | | |
Collapse
|
3
|
Rehage E, Sowislok A, Busch A, Papaeleftheriou E, Jansen M, Jäger M. Surgical Site-Released Tissue Is Potent to Generate Bone onto TCP and PCL-TCP Scaffolds In Vitro. Int J Mol Sci 2023; 24:15877. [PMID: 37958857 PMCID: PMC10647844 DOI: 10.3390/ijms242115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
There is evidence that surgical site tissue (SSRT) released during orthopedic surgery has a strong mesenchymal regenerative potential. Some data also suggest that this tissue may activate synthetic or natural bone substitute materials and can thus upgrade its osteopromoting properties. In this comparative in vitro study, we investigate the composition of SSRT during total hip replacement (n = 20) harvested using a surgical suction handle. In addition, the osteopromoting effect of the cells isolated from SSRT is elucidated when incubated with porous beta-tricalcium phosphate (β-TCP) or 80% medical-grade poly-ε-caprolactone (PCL)/20% TCP composite material. We identified multiple growth factors and cytokines with significantly higher levels of PDGF and VEGF in SSRT compared to peripheral blood. The overall number of MSC was 0.09 ± 0.12‱ per gram of SSRT. A three-lineage specific differentiation was possible in all cases. PCL-TCP cultures showed a higher cell density and cell viability compared to TCP after 6 weeks in vitro. Moreover, PCL-TCP cultures showed a higher osteocalcin expression but no significant differences in osteopontin and collagen I synthesis. We could demonstrate the high regenerative potential from SSRT harvested under vacuum in a PMMA filter device. The in vitro data suggest advantages in cytocompatibility for the PCL-TCP composite compared to TCP alone.
Collapse
Affiliation(s)
- Emely Rehage
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - Andrea Sowislok
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - André Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
| | - Eleftherios Papaeleftheriou
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| | - Melissa Jansen
- Institute of Cognitive Science, University of Osnabrück, 49090 Osnabrück, Germany;
| | - Marcus Jäger
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| |
Collapse
|
4
|
Ren Z, Li L, Xu F, Xu J, Lai F. Design and mechanical properties of cervical fusion cage based on porous entangled metal rubber material. J Biomater Appl 2023; 37:1029-1041. [PMID: 36533989 DOI: 10.1177/08853282221146692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Titanium and its alloys are one of the mainstream materials for the manufacture of intervertebral cages. With the application on clinical, the problems of elastic modulus is relatively high, subsidence of adjacent vertebral implants and stress shielding after surgery have gradually exposed. In this paper, metal rubber made from titanium alloy wire was used to prepare cervical fusion cage (CFC), which was a porous material with buffering and vibration damping properties. The C5/C6 segment of the goat cervical vertebra was used as the research object. The shape parameters of the CFC were determined by combining the three-dimensional model data of the cervical vertebra and the structural characteristics of the natural intervertebral disc. The force of CFC under different working conditions were simulated and analyzed by finite element simulation. Then three kinds of metal rubber core (MRC) were prepared by medical titanium alloy wire (TC4), and their mechanical properties and fatigue strength were experimentally studied. With the increases of density, the mechanical properties of MRC improved. The variation range of the loss factor η under different amplitudes and frequencies were 20% and 16.3%, respectively. After one million vibrations, the wear rate was 0.131 g/MC; after five million vibrations, the wear rate was 0.158 g/MC, which was similar to the existing clinical prosthesis wear rate. The MRC has sufficient mechanical strength. Compared with the existing clinical prostheses, it has a longer service life and has broad application prospects.
Collapse
Affiliation(s)
- Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber and Vibration Noise, 12423Fuzhou University, Fuzhou China
| | - Linlin Li
- School of Mechanical Engineering and Automation, Institute of Metal Rubber and Vibration Noise, 12423Fuzhou University, Fuzhou China
| | - Fangqi Xu
- School of Mechanical Engineering and Automation, Institute of Metal Rubber and Vibration Noise, 12423Fuzhou University, Fuzhou China
| | - Jie Xu
- 117861Fujian Provincial Hospital, Fuzhou, China
| | - Fuqiang Lai
- School of Mechanical Engineering and Automation, Institute of Metal Rubber and Vibration Noise, 12423Fuzhou University, Fuzhou China
| |
Collapse
|