1
|
Lho Y, Park Y, Do JY, Kim AY, Park YE, Kang SH. Empagliflozin attenuates epithelial-to-mesenchymal transition through senescence in peritoneal dialysis. Am J Physiol Renal Physiol 2024; 327:F363-F372. [PMID: 38961839 DOI: 10.1152/ajprenal.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, antisenescence therapies effectively reduce EMT. Some models have shown antisenescence effects with the use of sodium-glucose cotransporter 2 (SGLT2) inhibitor. Therefore, our study investigated the antisenescence effects of empagliflozin as an SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with d-glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. HPMCs treated with glucose transformed from cobblestone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphological changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, cotreatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence, or EMT markers of the parietal peritoneum was observed, which, however, was attenuated by cotreatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared with those in the control group; however, these changes were decreased by empagliflozin. In conclusion, empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Cotreatment with empagliflozin improved peritoneal thickness and fibrosis in PD.NEW & NOTEWORTHY Epithelial-to-mesenchymal transition (EMT) is considered one of the senescence processes. Antisenescence therapies may effectively reduce EMT in peritoneal dialysis models. Human peritoneal mesothelial cells treated with glucose show an increase in senescence and EMT markers; however, empagliflozin attenuates these changes. Mice undergoing peritoneal dialysis exhibit increased senescence and EMT markers, which are decreased by empagliflozin. These findings suggest that empagliflozin may emerge as a novel strategy for prevention or treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yunmee Lho
- Senotherpy-Based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yeong Park
- Senotherpy-Based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun Young Do
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - A-Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Eun Park
- Department of Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seok Hui Kang
- Senotherpy-Based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Shi G, Yang C, Zhou L, Zong M, Guan Q, da Roza G, Wang H, Qi H, Du C. Comprehensive cell surface protein profiling of human mesenchymal stromal cells from peritoneal dialysis effluent and comparison with those from human bone marrow and adipose tissue. Hum Cell 2023; 36:2259-2269. [PMID: 37603218 PMCID: PMC10587256 DOI: 10.1007/s13577-023-00971-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Peritoneal mesenchymal stromal cells (pMSCs) are isolated from peritoneal dialysis (PD) effluent, and treatment with the pMSCs reduces peritoneal membrane injury in rat model of PD. This study was designed to verify the identity of the pMSCs. pMSCs were grown in plastic dishes for 4-7 passages, and their cell surface phenotype was examined by staining with a panel of 242 antibodies. The positive stain of each target protein was determined by an increase in fluorescence intensity as compared with isotype controls in flow cytometrical analysis. Here, we showed that pMSCs predominantly expressed CD9, CD26, CD29, CD42a, CD44, CD46, CD47, CD49b, CD49c, CD49e, CD54, CD55, CD57, CD59, CD63, CD71, CD73, CD81, CD90, CD98, CD147, CD151, CD200, CD201, β2-micoglobulin, epithelial growth factor receptor, human leukocyte antigen (HLA) class 1, and, to a lesser extent, CD31, CD45RO, CD49a, CD49f, CD50, CD58, CD61, CD105, CD164, and CD166. These cells lacked expression of most hematopoietic markers such as CD11b, CD14, CD19, CD34, CD40, CD80, CD79, CD86, and HLA-DR. There was 38.55% difference in the expression of 83 surface proteins between bone marrow (BM)-derived MSCs and pMSCs, and 14.1% in the expression of 242 proteins between adipose tissue (AT)-derived MSCs and pMSCs. The BM-MSCs but not both AT-MSCs and pMSCs express cytokine receptors (IFNγR, TNFI/IIR, IL-1R, IL-4R, IL-6R, and IL-7R). In conclusion, pMSCs exhibited a typical cell surface phenotype of MSCs, which was not the same as on BM-MSCs or AT-MSCs, suggesting that the pMSCs may represent a different MSC lineage from peritoneal cavity.
Collapse
Affiliation(s)
- Ganggang Shi
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Chong Yang
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Organ Transplantation Center, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Lan Zhou
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Shanghai United Family Hospital, Shanghai, People's Republic of China
| | - Ming Zong
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Gerald da Roza
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hualin Qi
- Department of Nephrology, Shanghai Pudong New Area People's Hospital, 490 Chuanhuan Nan Lu, Pudong New Area, Shanghai, 201299, People's Republic of China.
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.
- Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
3
|
Zhu N, Wang L, Guo H, Jia J, Gu L, Wang X, Yang M, Guan H, Yuan W. Thalidomide Suppresses Angiogenesis Through the Signal Transducer and Activator of Transcription 3/SP4 Signaling Pathway in the Peritoneal Membrane. Front Physiol 2021; 12:712147. [PMID: 34539435 PMCID: PMC8446434 DOI: 10.3389/fphys.2021.712147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Peritoneal angiogenesis is the key pathophysiological factor that limits peritoneal ultrafiltration during peritoneal dialysis (PD) in uremic patients. Thalidomide has been confirmed to inhibit angiogenesis by inhibiting the secretion of vascular endothelial growth factor (VEGF), but the exact mechanism by which thalidomide inhibits vascular proliferation during PD is still unclear. Here, the objective of the present study was to investigate whether the reduction in VEGF production by human peritoneal mesothelial cells (HPMCs) was controlled by thalidomide. Stimulation of HPMCs with IL-6 in combination with soluble IL-6 receptor (sIL-6R) promoted VEGF expression and secretion, but these effects were attenuated by thalidomide treatment through a transcriptional mechanism that involved signal transducer and activator of transcription 3 (STAT3) and SP4. Conditioned medium from HPMCs cultured with thalidomide inhibited angiogenic endothelial tube formation, which could be further blocked by silencing SP4 and promoted by overexpressing SP4. In vivo, induction of peritoneal angiogenesis in sham rats, sham+PD rats, 5/6 nephrectomy (5/6Nx) rats, 5/6Nx+PD rats, and 5/6Nx+PD rats intraperitoneally treated with thalidomide showed that thalidomide was involved in the control of several key endothelial-specific targets, including VEGFR2, VEGFR3, SP4, and STAT3 expression and new vessel formation, confirming the role of thalidomide and STAT3/SP4 signaling in these processes. Taken together, these findings identify a novel mechanism that links thalidomide, STAT3/SP4 signaling, and angiogenesis in the peritoneal membrane.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Huimin Guo
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Jieshuang Jia
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Lijie Gu
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Xuan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Haochen Guan
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
4
|
Ito Y, Ryuzaki M, Sugiyama H, Tomo T, Yamashita AC, Ishikawa Y, Ueda A, Kanazawa Y, Kanno Y, Itami N, Ito M, Kawanishi H, Nakayama M, Tsuruya K, Yokoi H, Fukasawa M, Terawaki H, Nishiyama K, Hataya H, Miura K, Hamada R, Nakakura H, Hattori M, Yuasa H, Nakamoto H. Peritoneal Dialysis Guidelines 2019 Part 1 (Position paper of the Japanese Society for Dialysis Therapy). RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractApproximately 10 years have passed since the Peritoneal Dialysis Guidelines were formulated in 2009. Much evidence has been reported during the succeeding years, which were not taken into consideration in the previous guidelines, e.g., the next peritoneal dialysis PD trial of encapsulating peritoneal sclerosis (EPS) in Japan, the significance of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), the effects of icodextrin solution, new developments in peritoneal pathology, and a new international recommendation on a proposal for exit-site management. It is essential to incorporate these new developments into the new clinical practice guidelines. Meanwhile, the process of creating such guidelines has changed dramatically worldwide and differs from the process of creating what were “clinical practice guides.” For this revision, we not only conducted systematic reviews using global standard methods but also decided to adopt a two-part structure to create a reference tool, which could be used widely by the society’s members attending a variety of patients. Through a working group consensus, it was decided that Part 1 would present conventional descriptions and Part 2 would pose clinical questions (CQs) in a systematic review format. Thus, Part 1 vastly covers PD that would satisfy the requirements of the members of the Japanese Society for Dialysis Therapy (JSDT). This article is the duplicated publication from the Japanese version of the guidelines and has been reproduced with permission from the JSDT.
Collapse
|
5
|
Shi Y, Ni J, Tao M, Ma X, Wang Y, Zang X, Hu Y, Qiu A, Zhuang S, Liu N. Elevated expression of HDAC6 in clinical peritoneal dialysis patients and its pathogenic role on peritoneal angiogenesis. Ren Fail 2021; 42:890-901. [PMID: 32862739 PMCID: PMC7472510 DOI: 10.1080/0886022x.2020.1811119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for end-stage renal disease (ESRD) patients. However, its complications, such as peritoneal fibrosis (PF) and angiogenesis can cause ultrafiltration failure and PD termination. Histone deacetylase 6 (HDAC6) has been demonstrated to be involved in PF. However, its underlying role in peritoneal angiogenesis is still unknown and clinical value needs to be explored. In this study, we analyzed the expression of HDAC6 in the peritoneum from patients with non-PD and PD-related peritonitis and dialysis effluent from stable PD patients. Our study revealed that HDAC6 expressed highly in the peritoneum with peritonitis and co-stained with α-smooth muscle actin (α-SMA), a biomarker of the myofibroblast. And the level of HDAC6 in the dialysate increased with time and positively correlated with transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), and negatively with cancer antigen 125 (CA125). In vitro, blockading HDAC6 with a selective inhibitor tubastatin A (TA) or silencing HDAC6 with a small interfering RNA (siRNA) prominently decreased IL-6-stimulated VEGF expression in cultured human peritoneal mesothelial cells (HPMCs), and inhibited proliferation and vasoformation of human umbilical vein endothelial cells (HUVECs). TA or HDAC6 siRNA also suppressed the expression of Wnt1, β-catenin, and the phosphorylation of STAT3 in IL-6-treated HPMCs. In summary, HDAC6 inhibition protects against PD-induced angiogenesis through suppression of IL-6/STAT3 and Wnt1/β-catenin signaling pathway, subsequently reducing the VEGF production and angiogenesis. It could become a new therapeutic target or forecast biomarker for PF, inflammation, and angiogenesis in the future.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Nephrology, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu J, Feng Y, Li N, Shao QY, Zhang QY, Sun C, Xu PF, Jiang CM. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor. Am J Physiol Renal Physiol 2021; 320:F273-F284. [PMID: 33427062 DOI: 10.1152/ajprenal.00149.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Peritoneal dialysis (PD)-related peritoneal fibrosis (PF) is characterized by progressive extracellular matrix (ECM) accumulation in peritoneal mesothelial cells (PMCs) during long-term use of high glucose (HG)-based dialysates. Activation of the renin-angiotensin system (RAS) has been shown to be associated with PF. The aim of this study was to explore the underlying mechanism of the RAS in HG-induced PF. We treated C57BL/6 mice and a human PMC line with HG to induce a PF model and to stimulate ECM accumulation, respectively. RAS activity was blocked using valsartan or angiotensin II (ANGII) type 1 receptor siRNA. The major findings were as follows. First, mice in the HG group exhibited increased collagen deposition and expression of ECM proteins, including α-smooth muscle actin (α-SMA) and collagen type I in the peritoneum. Consistent with the in vivo data, HG upregulated α-SMA expression in human peritoneal mesothelial cells (HPMCs) in a time- and dose-dependent manner. Second, HG stimulation led to RAS activation in HPMCs, and inactivation of RAS decreased the expression of ECM proteins in vivo and in vitro, even during HG stimulation. Finally, RAS-mediated ECM production was associated with lipid accumulation in HPMCs and depended on the dysregulation of the low-density lipoprotein receptor (LDLr) pathway. HG-stimulated HPMCs showed increased coexpression of LDLr and α-SMA, whereas blockade of RAS activity reversed the effect. Furthermore, inhibition of LDLr signaling decreased α-SMA and collagen type I expression in HPMCs when treated with HG and ANG II. In conclusion, increased intracellular RAS activity impaired lipid homeostasis and induced ECM accumulation in HPMCs by disrupting the LDLr pathway, which contributed to PF.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yuan Feng
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qiu-Yuan Shao
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Cheng Sun
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng-Fei Xu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
8
|
Yang B, Wang M, Tong X, Ankawi G, Sun L, Yang H. Experimental models in peritoneal dialysis (Review). Exp Ther Med 2021; 21:240. [PMID: 33603848 PMCID: PMC7851610 DOI: 10.3892/etm.2021.9671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Peritoneal dialysis (PD) is one of the most commonly used dialysis methods and plays an important role in maintaining the quality of life of patients with end-stage renal disease. However, long-term PD treatment is associated with adverse effects on the structure and function of peritoneal tissue, which may lead to peritoneal ultrafiltration failure, resulting in dialysis failure and eventually PD withdrawal. In order to prevent the occurrence of these effects, the important issues that need to be tackled are improvement of ultrafiltration, protection of peritoneal function and extension of dialysis time. In basic PD research, a reasonable experimental model is key to the smooth progress of experiments. A good PD model should not only simulate the process of human PD as accurately as possible, but also help researchers to understand the evolution process and pathogenesis of various complications related to PD treatment. To better promote the clinical application of PD technology, the present review will summarize and evaluate the in vivo PD experimental models available, thus providing a reference for relevant PD research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Mengmeng Wang
- Department of Endocrinology, Fuyang Fourth People's Hospital, Fuyang, Anhui 236000, P.R. China
| | - Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Ghada Ankawi
- Department of Internal Medicine and Nephrology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lin Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| |
Collapse
|
9
|
Kang SH, Kim SW, Kim KJ, Cho KH, Park JW, Kim CD, Do JY. Effects of tranilast on the epithelial-to-mesenchymal transition in peritoneal mesothelial cells. Kidney Res Clin Pract 2019; 38:472-480. [PMID: 31554027 PMCID: PMC6913598 DOI: 10.23876/j.krcp.19.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background We investigated the effects of tranilast on epithelial-to-mesenchymal transition (EMT) in an animal model and on the EMT signaling pathway in human peritoneal mesothelial cells (HPMCs). Methods We performed in vitro studies (cytotoxicity, cell morphology, and western blot analyses) on HPMCs from human omenta, along with in vivo studies (peritoneal membrane function and morphometric and immunohistochemical analyses) on Sprague Dawley rats. Thirty-two rats were divided into three groups: control (C) group (peritoneal dialysis [PD] catheter but not infused with dialysate), PD group (4.25% glucose-containing dialysate), and PD + tranilast group (4.25% glucose-containing dialysate along with tranilast). Results In in vitro experiments, transforming growth factor-beta 1 (TGF-β1) increased α-smooth muscle actin and Snail expression and reduced E-cadherin expression in HPMCs. TGF-β1 also reduced cell contact, induced a fibroblastoid morphology, and increased phosphorylation of Akt, Smad2, and Smad3 in HPMCs. Tranilast significantly inhibited TGF-β1-induced EMT and attenuated these morphological changes in HPMCs. In in vivo studies, after 6 weeks of experimental PD, the peritoneal membrane was significantly thicker in the PD group than in the C group. Tranilast protected against PD-induced glucose mass transfer change and histopathological changes in rats. Conclusion Tranilast prevented EMT both in HPMCs triggered with TGF-β1 and in rats with PD-induced peritoneal fibrosis. Thus, tranilast may be considered a therapeutic intervention that enables long-term PD by regulating TGF-β1 signaling pathways.
Collapse
Affiliation(s)
- Seok Hui Kang
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Sang Woon Kim
- Division of Gastro-Enterology, Department of Surgery, Yeungnam University Hospital, Daegu, Republic of Korea
| | - Keuk Jun Kim
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan, Republic of Korea
| | - Kyu Hyang Cho
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Jong Won Park
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Young Do
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
10
|
Zhang Y, Huang Q, Chen Y, Peng X, Wang Y, Li S, Wu J, Luo C, Gong W, Yin B, Xiao J, Zhou W, Peng F, Long H. Parthenolide, an NF-κB inhibitor, alleviates peritoneal fibrosis by suppressing the TGF-β/Smad pathway. Int Immunopharmacol 2019; 78:106064. [PMID: 31838448 DOI: 10.1016/j.intimp.2019.106064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
Transforming growth factor (TGF)-β/Smad signalling plays a central role in the pathogenesis of peritoneal fibrosis related to peritoneal dialysis (PD). Parthenolide (PTL), a naturally occurring phytochemical, is isolated from the shoots of feverfew (Tanacetum parthenium) and displays analgesia, anti-inflammation and anticancer activities. In this study, we examined the therapeutic potential of PTL on PD-related peritoneal fibrosis induced by daily intraperitoneal injection of 4.25% dextrose-containing PD fluid (PDF) in vivo and TGF-β1-induced epithelial-mesenchymal transition (EMT) in vitro. PTL was administered daily before PDF injection or after 14 days of PDF injection. Both PTL treatments showed a protective effect on peritoneal fibrosis and prevented peritoneal dysfunction. Similarly, PTL suppressed the expression of fibrotic markers (fibronectin and collagen I) and restored the expression of the epithelial marker (E-cadherin) in TGF-β1-treated HMrSV5 cells. Furthermore, PTL inhibited TGF-β1-induced Smad2 and Smad3 phosphorylation and nuclear translocation but did not influence Smad1/5/9 phosphorylation or activate other downstream signalling pathways of TGF-β1, including AKT, extracellular signal-regulated kinase (ERK) or p38. In conclusion, PTL treatment may represent an effective and novel therapy for PD-associated peritoneal fibrosis by suppressing the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Peng
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weidong Zhou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
11
|
Protection of the Peritoneal Membrane by Peritoneal Dialysis Effluent-Derived Mesenchymal Stromal Cells in a Rat Model of Chronic Peritoneal Dialysis. Stem Cells Int 2019; 2019:8793640. [PMID: 31636678 PMCID: PMC6766137 DOI: 10.1155/2019/8793640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/09/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Peritoneal dialysis (PD) is a renal replacement option for patients with end-stage renal disease. However, a long-term exposure to hypertonic PD solutions leads to peritoneal membrane (PM) injury, resulting in ultrafiltration (UF) failure. This study was designed to primarily evaluate efficacy of PD effluent-derived mesenchymal stromal cells (pMSCs) in the prevention of PM injury in rats. The pMSCs were isolated from PD effluent. Male Wistar rats received daily intraperitoneal (IP) injection of 10 mL of Dianeal (4.25% dextrose) and were treated with pMSCs (1.2‐1.5 × 106/rat/wk, IP). UF was determined by IP injection of 30 mL of Dianeal (4.25% dextrose) with dwell time of 1.5 h, and PM injury was examined by histology. Apoptosis was quantitated by using flow cytometric analysis, and gene expression by using the PCR array and Western blot. Here, we showed that as compared to naive control, daily IP injection of the Dianeal PD solution for 6 weeks without pMSC treatment significantly reduced UF, which was associated with an increase in both PM thickness and blood vessel, while pMSC treatment prevented the UF loss and reduced PM injury and blood vessels. In vitro incubation with pMSC-conditioned medium prevented cell death in cultured human peritoneal mesothelial cells (HPMCs) and downregulated proinflammatory (i.e., CXCL6, NOS2, IL1RN, CCL5, and NR3C1) while upregulated anti-inflammatory (i.e., CCR1, CCR4, IL9, and IL-10) gene expression in activated THP1 cells. In conclusion, pMSCs prevent bioincompatible PD solution-induced PM injury and UF decline, suggesting that infusing back ex vivo-expanded pMSCs intraperitoneally may have therapeutic potential for reduction of UF failure in PD patients.
Collapse
|
12
|
Toda N, Mori K, Kasahara M, Koga K, Ishii A, Mori KP, Osaki K, Mukoyama M, Yanagita M, Yokoi H. Deletion of connective tissue growth factor ameliorates peritoneal fibrosis by inhibiting angiogenesis and inflammation. Nephrol Dial Transplant 2019; 33:943-953. [PMID: 29165602 DOI: 10.1093/ndt/gfx317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/09/2017] [Indexed: 01/28/2023] Open
Abstract
Background Connective tissue growth factor (CTGF/CCN2) regulates the signalling of other growth factors and promotes fibrosis. CTGF is increased in mice and humans with peritoneal fibrosis. Inhibition of CTGF has not been examined as a potential therapeutic target for peritoneal fibrosis because systemic CTGF knockout mice die at the perinatal stage. Methods To study the role of CTGF in peritoneal fibrosis of adult mice, we generated CTGF conditional knockout (cKO) mice by crossing CTGF floxed mice with RosaCreERT2 mice. We administered tamoxifen to Rosa-CTGF cKO mice to delete the CTGF gene throughout the body. We induced peritoneal fibrosis by intraperitoneal injection of chlorhexidine gluconate (CG) in wild-type and Rosa-CTGF cKO mice. Results Induction of peritoneal fibrosis in wild-type mice increased CTGF expression and produced severe thickening of the peritoneum. In contrast, CG-treated Rosa-CTGF cKO mice exhibited reduced thickening of the peritoneum. Peritoneal equilibration test revealed that the excessive peritoneal small-solute transport in CG-treated wild-type mice was normalized by CTGF deletion. CG-treated Rosa-CTGF cKO mice exhibited a reduced number of αSMA-, Ki67-, CD31- and MAC-2-positive cells in the peritoneum. Analyses of peritoneal mRNA showed that CG-treated Rosa-CTGF cKO mice exhibited reduced expression of Cd68, Acta2 (αSMA), Pecam1 (CD31) and Vegfa. Conclusions These results indicate that a deficiency of CTGF can reduce peritoneal thickening and help to maintain peritoneal function by reducing angiogenesis and inflammation in peritoneal fibrosis. These results suggest that CTGF plays an important role in the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Kenichi Koga
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Jing R, Feng H, Jiang N, Zhang H, Fang W, Ni Z, Yuan J. Visceral adipogenesis inhibited by Pref-1 is associated with peritoneal angiogenesis. Nephrology (Carlton) 2019; 25:248-254. [PMID: 31090987 DOI: 10.1111/nep.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 05/12/2019] [Indexed: 01/04/2023]
Abstract
AIM Studies showed an increased visceral adipose tissue and peritoneal angiogenesis in peritoneal dialysis (PD) patients. However, the relationship between the visceral adipose expands and peritoneal angiogenesis remains unclear. METHODS Pref-1 (preadipocyte factor-1) recombinant adeno-associated virus (AAV) and control AAV were constructed. Mice were divided into four groups, mice in control and PD group were injected intraperitoneally with PBS, mice in control-AAV-PD were injected intraperitoneally with plaque-forming unit (PFU) control AAV and mice in pref-1-AAV-PD group were injected with PFU recombinant AAV. Two weeks later, control group was injected intraperitoneally with normal saline while other groups were injected intraperitoneally with 4.25% peritoneal dialysis fluid (PDF). Thirty days later, viscerall adipose tissue was collected and weighed. Pref-1 protein expression was measured by Western blot, and peritoneal permeability was measured by Evans blue. Cluster of differentiation 31(CD31) immunohistochemical staining was used to detect mesenteric blood vessel number, and vascular endothelial growth factor (VEGF) in serum were measured by enzyme-linked immunosorbent assay. RESULTS Pref-1 protein expression increased in pref-1-AAV-PD group. Visceral adipose expanded in PD and control-AAV-PD group while decreased in pref-1-AAV-PD group, which approves PD fluid enhance visceral adipogensis, and the process could be inhibited by Pref-1 recombinant AAV. The reduction of peritoneal vessel number and the decrease of vascular permeability as well as down-regulation of serum vascular endothelial growth factor observed in pref-1-AAV-PD group suggested peritoneal angiogenesis could be inhibited following visceral adipose tissue reduction. CONCLUSION Visceral adipose expands is associated with peritoneal angiogenesis in PD treatment, and prevention of visceral adipogenesis may be an alternative way to protect the validity of peritoneum. Copyright © 2019 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ran Jing
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Hao Feng
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Na Jiang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - He Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiangzi Yuan
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| |
Collapse
|
14
|
Gao L, Fan Y, Zhang X, Yang L, Huang W, Hang T, Li M, Du S, Ma J. Zinc supplementation inhibits the high glucose‑induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway. Mol Med Rep 2019; 20:655-663. [PMID: 31115566 PMCID: PMC6580007 DOI: 10.3892/mmr.2019.10260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/11/2019] [Indexed: 01/17/2023] Open
Abstract
The high glucose (HG)-induced epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) serves an important role in peritoneal fibrosis (PF) during peritoneal dialysis. Our previous study reported that zinc (Zn) supplementation prevented the HG-induced EMT of rat PMCs in vitro. In the present study, the role of Zn in HG-induced EMT was investigated in vivo using a rat model of PF. Additionally, the molecular mechanisms underlying HG-induced EMT were studied in human PMCs (HPMCs). In the rat model of PF, HG treatment increased the glucose transfer capacity and decreased the ultrafiltration volume. Histopathological analysis revealed peritoneal thickening, increased expression of vimentin and decreased expression of E-cadherin. ZnSO4 significantly ameliorated the aforementioned changes, whereas Zn inhibition by clioquinol significantly aggravated the effects of HG on rats. The effects of Zn on HPMCs was assessed using western blot analysis, Transwell assays and flow cytometry. It was revealed that Zn also significantly suppressed the extent of the EMT, and reduced reactive oxygen species production and the migratory ability of HG-induced HPMCs, whereas Zn inhibition by N',N',N',N'-tetrakis (2-pyridylmethyl) ethylenediamine significantly potentiated the HG-induced EMT of HPMCs. HG-stimulated HPMCs exhibited increased expression of nuclear factor-like 2 (Nrf2) in the nucleus, and total cellular NAD(P)H quinone dehydrogenase 1 (NQO1) and heme oxygenase-1 (HO-1), the target proteins of the Nrf2 antioxidant pathway. Zn supplementation further promoted nuclear Nrf2 expression, and increased the expression of target proteins of the Nrf2 antioxidant pathway, whereas Zn depletion decreased nuclear Nrf2, NQO1 and HO-1 expression compared with the HG group. In conclusion, Zn supplementation was proposed to suppress the effects of HG on the EMT by stimulating the Nrf2 antioxidant pathway and subsequently reducing oxidative stress in PMCs.
Collapse
Affiliation(s)
- Lili Gao
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Fan
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lina Yang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyu Huang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianyu Hang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mingyang Li
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuyan Du
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianfei Ma
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Liu B, Feng S, Dairi G, Guan Q, Chafeeva I, Wang H, Liggins R, da Roza G, Kizhakkedathu JN, Du C. Transcriptome analysis of signaling pathways of human peritoneal mesothelial cells in response to different osmotic agents in a peritoneal dialysis solution. BMC Nephrol 2019; 20:181. [PMID: 31113397 PMCID: PMC6528310 DOI: 10.1186/s12882-019-1376-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
Background Glucose is a primary osmotic agent in peritoneal dialysis (PD) solutions, but its long-term use causes structural alteration of the peritoneal membrane (PM). Hyperbranched polyglycerol (HPG) is a promising alternative to glucose. This study was designed to compare the cellular responses of human peritoneal mesothelial cells (HPMCs) to these two different osmotic agents in a hypertonic solution using transcriptome analysis. Methods Cultured HPMCs were repeatedly exposed to HPG-based or Physioneal 40 (PYS, glucose 2.27%) hypertonic solutions. Transcriptome datasets were produced using Agilent SurePrint G3 Human GE 8 × 60 microarray. Cellular signaling pathways were examined by Ingenuity Pathway Analysis (IPA). Protein expression was examined by flow cytometry analysis and Western blotting. Results The HPG-containing solution was better tolerated compared with PYS, with less cell death and disruption of cell transcriptome. The levels of cell death in HPG- or PYS- exposed cells were positively correlated with the number of affected transcripts (HPG: 128 at day 3, 0 at day 7; PYS: 1799 at day 3, 212 at day 7). In addition to more affected “biosynthesis” and “cellular stress and death” pathways by PYS, both HPG and PYS commonly affected “sulfate biosynthesis”, “unfolded protein response”, “apoptosis signaling” and “NRF2-mediated oxidative stress response” pathways at day 3. PYS significantly up-regulated HLA-DMB and MMP12 in a time-dependent manner, and stimulated T cell adhesion to HPMCs. Conclusion The lower cytotoxicity of hypertonic HPG solution is in agreement with its transient and minimal impact on the pathways for the “biosynthesis of cell constituents” and the “cellular stress and death”. The significant up-regulation of HLA-DMB and MMP12 by PYS may be part of its initiation of immune response in the PM.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,General Hospital of Tianjin Medical University, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shijian Feng
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, and Laboratory of Reconstructive Urology at the Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ghida Dairi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Medicine and Medical Sciences Research Center, Deanship of Scientific Research, Umm Al Qura University, Mecca, Saudi Arabia
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Irina Chafeeva
- Centre for Blood Research, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hao Wang
- General Hospital of Tianjin Medical University, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Richard Liggins
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Gerald da Roza
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
16
|
Wei X, Huang H, Bao Y, Zhan X, Zhang L, Guo R, Hu N, Chen Q, Zhou J. Novel long non-coding RNA AV310809 promotes TGF-β1 induced epithelial-mesenchymal transition of human peritoneal mesothelial cells via activation of the Wnt2/β-catenin signaling pathway. Biochem Biophys Res Commun 2019; 513:119-126. [DOI: 10.1016/j.bbrc.2019.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/12/2019] [Indexed: 11/15/2022]
|
17
|
Han SM, Ryu HM, Suh J, Lee KJ, Choi SY, Choi S, Kim YL, Huh JY, Ha H. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells. Sci Rep 2019; 9:1497. [PMID: 30728376 PMCID: PMC6365569 DOI: 10.1038/s41598-018-37101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Long-term peritoneal dialysis is associated with progressive fibrosis of the peritoneum. Epithelial-mesenchymal transition (EMT) of mesothelial cells is an important mechanism involved in peritoneal fibrosis, and TGF-β1 is considered central in this process. However, targeting currently known TGF-β1-associated pathways has not proven effective to date. Therefore, there are still gaps in understanding the mechanisms underlying TGF-β1-associated EMT and peritoneal fibrosis. We conducted network-based integrated analysis of transcriptomic and proteomic data to systemically characterize the molecular signature of TGF-β1-stimulated human peritoneal mesothelial cells (HPMCs). To increase the power of the data, multiple expression datasets of TGF-β1-stimulated human cells were employed, and extended based on a human functional gene network. Dense network sub-modules enriched with differentially expressed genes by TGF-β1 stimulation were prioritized and genes of interest were selected for functional analysis in HPMCs. Through integrated analysis, ECM constituents and oxidative stress-related genes were shown to be the top-ranked genes as expected. Among top-ranked sub-modules, TNFAIP6, ZC3H12A, and NNT were validated in HPMCs to be involved in regulation of E-cadherin, ZO-1, fibronectin, and αSMA expression. The present data shows the validity of network-based integrated analysis in discovery of novel players in TGF-β1-induced EMT in peritoneal mesothelial cells, which may serve as new prognostic markers and therapeutic targets for peritoneal dialysis patients.
Collapse
Affiliation(s)
- Soo Min Han
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Myung Ryu
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea
| | - Jinjoo Suh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Soon-Youn Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea.
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Yang J, Zhang JN, Chen WL, Wang GS, Mao Q, Li SQ, Xiong WH, Lin YY, Ge JW, Li XX, Gu Z, Zhao CR. Effects of AQP5 gene silencing on proliferation, migration and apoptosis of human glioma cells through regulating EGFR/ERK/ p38 MAPK signaling pathway. Oncotarget 2018; 8:38444-38455. [PMID: 28404978 PMCID: PMC5503544 DOI: 10.18632/oncotarget.16461] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
We investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups. MTT assay was used to measure cell proliferation. Flow cytometry (FCM) with AnnexinV-FITC/PI double staining and PI staining were employed to analyze cell apoptosis and cell cycle respectively. Scratch test was used to detect cell migration. Western blotting was performed to determine the EGFR/ERK/p38 MAPK signaling pathway-related proteins. Results showed that the positive expression of AQP5 in primary glioblastoma was associated with the tumor size and whether complete excision was performed. The mRNA expressions of AQP5 in cell lines of U87-MG, U251 and LN229 were significantly higher than in U373 and T98G. The proliferation rates of U87-MG, U251 and LN229 cells in the AQP5 siRNA group were lower than in the vector and blank groups. The apoptosis rate increased in the AQP5 siRNA group compared with the vector group. Scratch test demonstrated that AQP5 gene silencing could suppress cell migration. Compared with the vector and blank groups, the AQP5 siRNA group showed decreased expressions of the ERK1/2, p38 MAPK, p-ERK1/2 and p-p38 MAPK proteins. AQP5 gene silencing could inhibit the cell proliferation, reduce cell migration and promote the cell apoptosis of U87-MG, U251 and LN229 by suppressing EGFR/ERK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Nan Zhang
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wei-Lin Chen
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Gui-Song Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Shan-Quan Li
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wen-Hao Xiong
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Ying-Ying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Wei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Xiao-Xiong Li
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Zhao Gu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Chun-Run Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| |
Collapse
|
19
|
Simon F, Tapia P, Armisen R, Echeverria C, Gatica S, Vallejos A, Pacheco A, Sanhueza ME, Alvo M, Segovia E, Torres R. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca 2+ and Na + Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways. Front Physiol 2017; 8:379. [PMID: 28659813 PMCID: PMC5468383 DOI: 10.3389/fphys.2017.00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.
Collapse
Affiliation(s)
- Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile.,Millennium Institute on Immunology and ImmunotherapySantiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Critico, Hospital Clínico Metropolitano de La FloridaSantiago, Chile
| | - Ricardo Armisen
- Centro de Investigación y Tratamiento del Cancer, Facultad de Medicina, Universidad de ChileSantiago, Chile.,Center for Excellence in Precision Medicine Pfizer, Pfizer ChileSantiago, Chile
| | - Cesar Echeverria
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo OHigginsSantiago, Chile
| | - Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile
| | - Alejandro Vallejos
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile
| | - Alejandro Pacheco
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Maria E Sanhueza
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Miriam Alvo
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Erico Segovia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo OHigginsSantiago, Chile
| | - Rubén Torres
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile.,Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile
| |
Collapse
|
20
|
Pearson LJ, Klaharn IY, Thongsawang B, Manuprasert W, Saejew T, Somparn P, Chuengsaman P, Kanjanabuch T, Pisitkun T. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One 2017; 12:e0178601. [PMID: 28594924 PMCID: PMC5464591 DOI: 10.1371/journal.pone.0178601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dialysis inevitability results in activation of inflammatory processes and its efficiency is highly variable between patients. An improved method to isolate biomarkers and study pathophysiological mechanisms in peritoneal dialysis effluent (PDE) is expected to be of much benefit for the development of this treatment approach and help with patient management. Extracellular vesicles (EVs) are released as part of normal cellular processes. Their proteome is expected to reflect both type and health of their cell of origin. Although there is a significant interest in using EVs for "liquid biopsies", little is reported of their presence or composition in plentiful dialysis waste fluids, including peritoneal dialysis effluent (PDE). Here we determined the presence of EVs in PDE and subsequently characterized their proteome. EVs were first isolated from PDE using differential centrifugation, then a further enrichment using size exclusion chromatography (SEC) was performed. The presence of EVs was demonstrated using transmission electron microscopy, and their particle counts were investigated using nanoparticle tracking analysis and dynamic light scattering. Using tandem mass spectrometry, marker proteins from three types of EVs i.e. apoptotic bodies, ectosomes, and exosomes were identified. The proteomic results demonstrated that the isolation of EVs by differential centrifugation helped enrich for over 2,000 proteins normally masked by abundant proteins in PDE such as albumin and SEC markedly further improved the isolation of low abundant proteins. Gene ontology analysis of all identified proteins showed the marked enrichment of exosome and membrane-associated proteins. Over 3,700 proteins were identified in total, including many proteins with known roles in peritoneal pathophysiology. This study demonstrated the prominence of EVs in PDE and their potential value as a source of biomarkers for peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lachlan James Pearson
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - I-yanut Klaharn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bussakorn Thongsawang
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wasin Manuprasert
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thunvarat Saejew
- Peritoneal Dialysis Excellence Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Talerngsak Kanjanabuch
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- * E-mail: (TP); (TK)
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (TP); (TK)
| |
Collapse
|
21
|
Farhat K, Douma CE, Ferrantelli E, Ter Wee PM, Beelen RHJ, van Ittersum FJ. Effects of Conversion to a Bicarbonate/Lactate-Buffered, Neutral-pH, Low-GDP PD Regimen in Prevalent PD: A 2-Year Randomized Clinical Trial. Perit Dial Int 2017; 37:273-282. [PMID: 28348100 DOI: 10.3747/pdi.2015.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
♦ BACKGROUND: The use of pH-neutral peritoneal dialysis (PD) fluids low in glucose degradation products (GDP) may better preserve the peritoneal membrane and have fewer systemic effects. The effects of conversion from conventional to neutral-pH, low-GDP PD fluids in prevalent patients are unclear. Few studies on the role of neutral-pH, low-GDP PD have studied residual renal function, ultrafiltration, peritonitis incidence and technique failure, transport characteristics, and local and systemic markers of inflammation in prevalent PD patients. ♦ METHODS: In a multi-center open-label randomized clinical trial (RCT), we randomly assigned 40 of 78 stable continuous ambulatory PD (CAPD) and automated PD (APD) patients to treatment with bicarbonate/lactate, neutral-pH, low-GDP PD fluid (Physioneal; Baxter Healthcare Corporation, Deerfield, IL, USA) and compared them with 38 patients continuing their current standard lactate-buffered PD fluid (PDF) (Dianeal; Baxter Healthcare Corporation, Deerfield, IL, USA) during 2 years. Primary outcome was residual renal function (RRF) and ultrafiltration (UF) during peritoneal equilibration test (PET); peritonitis incidence was a secondary outcome. Furthermore, clinical parameters as well as several biomarkers in effluents and serum were measured. ♦ RESULTS: During follow-up, RRF did not differ between the groups. In the Physioneal group ultrafiltration (UF) during PET remained more or less stable (-20 mL [confidence interval (CI): -163.5 - 123.5 mL]; p = 0.7 over 24 months), whereas it declined in the Dianeal group (-243 mL [CI: -376.6 to -109.4 mL]; p < 0.0001 over 24 months), resulting in a difference of 233.7 mL [95% CI 41.0 - 425.5 mL]; p = 0.017 between the groups at 24 months. The peritonitis rate was lower in the Physioneal group: adjusted odds ratio (OR) 0.38 (0.15 - 0.97) p = 0.043. No differences were observed between the 2 groups in peritoneal adequacy or transport characteristics nor effluent markers of local inflammation (cancer antigen [CA]125, hyaluronan [HA], vascular endothelial growth factor [VEGF], macrophage chemo-attractant protein [MCP]-1, HA and transforming growth factor [TGF]β-1). ♦ CONCLUSION: In prevalent PD patients, our study did not find a difference in RRF after conversion from conventional to neutral-pH, low-GDP PD fluids, although there is a possibility that the study was underpowered to detect a difference. Decline in UF during standardized PET was lower after 2 years in the Physioneal group.
Collapse
Affiliation(s)
- Karima Farhat
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands .,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - Caroline E Douma
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands.,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - E Ferrantelli
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Pieter M Ter Wee
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| | - Robert H J Beelen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Frans J van Ittersum
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Akbari S, Abou-Arkoub R, Sun S, Hiremath S, Reunov A, McCormick BB, Ruzicka M, Burger D. Microparticle Formation in Peritoneal Dialysis: A Proof of Concept Study. Can J Kidney Health Dis 2017; 4:2054358117699829. [PMID: 28540060 PMCID: PMC5433663 DOI: 10.1177/2054358117699829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Injury to the mesothelial layer of the peritoneal membrane during peritoneal dialysis (PD) is implicated in loss of ultrafiltration capacity, but there are no validated biomarkers for mesothelial cell injury. Microparticles (MPs) are 0.1 to 1.0 µm membrane vesicles shed from the cell surface following injury and are sensitive markers of tissue damage. Formation of MPs in the peritoneal cavity during PD has not been reported to date. METHODS We designed a single-center, proof of concept study to assess whether peritoneal solution exposure induces formation of mesothelial MPs suggestive of PD membrane injury. We examined MP levels in PD effluents by electron microscopy, nanoparticle tracking analysis (NTA), flow cytometry, procoagulant activity, and Western blot. RESULTS NTA identified particles in the size range of 30 to 900 nm, with a mean of 240 (SE: 10 nm). MP levels increased in a progressive manner during a 4-hour PD dwell. Electron microscopy confirmed size and morphology of vesicles consistent with characteristics of MPs as well as the presence of mesothelin on the surface. Western blot analysis of the MP fraction also identified the presence of mesothelin after 4 hours, suggesting that MPs found in PD effluents may arise from mesothelial cells. CONCLUSIONS Our results suggest that MPs are formed and accumulate in the peritoneal cavity during PD, possibly as a stress response. Assessing levels of MPs in PD effluents may be useful as a biomarker for peritoneal membrane damage.
Collapse
Affiliation(s)
- Shareef Akbari
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | | | - Suzy Sun
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Swapnil Hiremath
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | | | - Brendan B McCormick
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | - Marcel Ruzicka
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Du C, Mendelson AA, Guan Q, Dairi G, Chafeeva I, da Roza G, Kizhakkedathu JN. Hyperbranched polyglycerol is superior to glucose for long-term preservation of peritoneal membrane in a rat model of chronic peritoneal dialysis. J Transl Med 2016; 14:338. [PMID: 27964722 PMCID: PMC5153908 DOI: 10.1186/s12967-016-1098-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Replacing glucose with a better biocompatible osmotic agent in peritoneal dialysis (PD) solutions is needed in PD clinic. We previously demonstrated the potential of hyperbranched polyglycerol (HPG) as a replacement for glucose. This study further investigated the long-term effects of chronic exposure to HPG as compared to a glucose-based conventional PD solution on peritoneal membrane (PM) structure and function in rats. Methods Adult male Wistar rats received once-daily intraperitoneal injection of 10 mL of HPG solution (1 kDa, HPG 6%) compared to Physioneal™ 40 (PYS, glucose 2.27%) or electrolyte solution (Control) for 3 months. The overall health conditions were determined by blood chemistry analysis. The PM function was determined by ultrafiltration, and its injury by histological and transcriptome-based pathway analyses. Results Here, we showed that there was no difference in the blood chemistry between rats receiving the HPG and the Control, while PYS increased serum alkaline phosphatase, globulin and creatinine and decreased serum albumin. Unlike PYS, HPG did not significantly attenuate PM function, which was associated with smaller change in both the structure and the angiogenesis of the PM and less cells expressing vascular endothelial growth factor, α-smooth muscle actin and MAC387 (macrophage marker). The pathway analysis revealed that there were more inflammatory signaling pathways functioning in the PM of PYS group than those of HPG or Control, which included the signaling for cytokine production in both macrophages and T cells, interleukin (IL)-6, IL-10, Toll-like receptors, triggering receptor expressed on myeloid cells 1 and high mobility group box 1. Conclusions The results from this experimental study indicate the superiority of HPG to glucose in the preservation of the peritoneum function and structure during the long-term PD treatment, suggesting the potential of HPG as a novel osmotic agent for PD. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1098-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | - Asher A Mendelson
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,London Health Sciences Centre, London, ON, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ghida Dairi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Irina Chafeeva
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Gerald da Roza
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Johnson JA, O'Halloran PJ, Crimmins D, Caird J. Thinking outside the shunt-sterile CSF malabsorption in pilocytic astrocytomas: case series and review of the literature. Childs Nerv Syst 2016; 32:2255-2260. [PMID: 27193012 DOI: 10.1007/s00381-016-3112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Ventriculoperitoneal (VP) shunt insertion is the most common cerebrospinal fluid (CSF) diversionary procedure used for the treatment of chronic hydrocephalus. Sterile CSF ascites is a rare complication of VP shunt insertion. This can arise from either an overproduction of CSF or inadequate filtration of CSF at the level of the peritoneum. By either mechanism, the development of CSF ascites requires an intact VP shunt. OBJECTIVE The authors discuss two paediatric cases diagnosed with suprasellar pilocytic astrocytomas treated with platinum-based chemotherapy, who subsequently developed sterile CSF ascites. We review the literature with regard to CSF malabsorption and discuss it as a contributing factor to shunt malfunction. CONCLUSION CSF malabsorption with resultant ascites is a rare complication of VP shunting with many etiologies. Two common predisposing factors included the use of platinum-based chemotherapeutic agents, as well as the specific neuropathology. Further analysis of these two entities is needed in order to elucidate their role in contributing to the development of CSF ascites in this patient cohort.
Collapse
Affiliation(s)
- J A Johnson
- Department of Neurological Surgery, Cork University Hospital, Corcaigh, Ireland
| | - P J O'Halloran
- Department of Neurological Surgery, Cork University Hospital, Corcaigh, Ireland.
| | - D Crimmins
- Department of Paediatric Neurosurgery, Children's University Hospital, Temple Street, Dublin 1, Ireland
| | - J Caird
- Department of Paediatric Neurosurgery, Children's University Hospital, Temple Street, Dublin 1, Ireland
| |
Collapse
|
25
|
Abstract
Peritoneal dialysis (PD) is a modality for treatment of patients with end-stage renal disease (ESRD) that depends on the structural and functional integrity of the peritoneal membrane. However, long-term PD can lead to morphological and functional changes in the peritoneum; in particular, peritoneal fibrosis has become one of the most common complications that ultimately results in ultrafiltration failure (UFF) and discontinuation of PD. Several factors and mechanisms such as inflammation and overproduction of transforming growth factor-β1 have been implicated in the development of peritoneal fibrosis, but there is no effective therapy to prevent or delay this process. Recent studies have shown that activation of multiple receptor tyrosine kinases (RTKs) is associated with the development and progression of tissue fibrosis in various organs, and there are also reports indicating the involvement of some RTKs in peritoneal fibrosis. This review will describe the role and mechanisms of RTKs in peritoneal fibrosis and discuss the possibility of using them as therapeutic targets for prevention and treatment of this complication.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
26
|
Padwal M, Margetts PJ. Experimental systems to study the origin of the myofibroblast in peritoneal fibrosis. Kidney Res Clin Pract 2016; 35:133-41. [PMID: 27668155 PMCID: PMC5025470 DOI: 10.1016/j.krcp.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
Peritoneal fibrosis is one of the major complications occurring in long-term peritoneal dialysis patients as a result of injury. Peritoneal fibrosis is characterized by submesothelial thickening and fibrosis which is associated with a decline in peritoneal membrane function. The myofibroblast has been identified as the key player involved in the development and progression of peritoneal fibrosis. Activation of the myofibroblast is correlated with expansion of the extracellular matrix and changes in peritoneal membrane integrity. Over the years, epithelial to mesenchymal transition (EMT) has been accepted as the predominant source of the myofibroblast. Peritoneal mesothelial cells have been described to undergo EMT in response to injury. Several animal and in vitro studies support the role of EMT in peritoneal fibrosis; however, emerging evidence from genetic fate-mapping studies has demonstrated that myofibroblasts may be arising from resident fibroblasts and pericytes/perivascular fibroblasts. In this review, we will discuss hypotheses currently surrounding the origin of the myofibroblast and highlight the experimental systems predominantly being used to investigate this.
Collapse
Affiliation(s)
- Manreet Padwal
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Xiang S, Li M, Xie X, Xie Z, Zhou Q, Tian Y, Lin W, Zhang X, Jiang H, Shou Z, Chen J. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases. FEBS J 2016; 283:2309-25. [PMID: 27093550 DOI: 10.1111/febs.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42).
Collapse
Affiliation(s)
- Shilong Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Li
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhoutao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshi Tian
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangfei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Nephrology department, Zhejiang University International Hospital, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Opatrná S, Pöpperlová A, Lysák D, Fuchsová R, Trefil L, Racek J, Topolčan O. Effects of Icodextrin and Glucose Bicarbonate/Lactate-Buffered Peritoneal Dialysis Fluids on Effluent Cell Population and Biocompatibility Markers IL-6 and CA125 in Incident Peritoneal Dialysis Patients. Ther Apher Dial 2016; 20:149-57. [PMID: 26929256 DOI: 10.1111/1744-9987.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 11/26/2022]
Abstract
Icodextrin peritoneal dialysis (PD) solution has been shown to increase interleukin-6 (IL-6) levels in PD effluent as well as leukocyte and mesothelial cell count. Mesothelial cells release cancer antigen 125 (CA125), which is used as a marker of mesothelial cell mass. This 1-year prospective study was designed to compare peritoneal effluent cell population, its inflammatory phenotype and biocompatibility biomarkers IL-6 and CA125 between icodextrin (E) and glucose bicarbonate/lactate (P) based PD solutions. Using baseline peritoneal ultrafiltration capacity, 19 stable incident PD patients were allocated either to P only (N = 8) or to P plus E for the overnight dwell (N = 11). Flow cytometry was used to measure white blood cell count and differential and the expression of inflammatory molecules on peritoneal cells isolated from timed overnight peritoneal effluents. Compared to P, E effluent showed higher leukocyte (10.9 vs. 7.9), macrophages (6.1 vs. 2.5) and mesothelial cells (0.3 vs. 0.1)×10(6) /L count, as well as expression of HLA DR on mesothelial cells and IL-6 (320.5 vs. 141.2 pg/min) on mesothelial cells and CA125 appearance rate (159.6 vs. 84.3 IU/min), all P < 0.05. In the E group, correlation between IL-6 and CA125 effluent levels (r = 0.503, P < 0.05) as well as appearance rates (r = 0.774, P < 0.001) was demonstrated. No effect on systemic inflammatory markers or peritoneal permeability was found. Icodextrin PD solution activates local inflammation without systemic consequences so the clinical relevance of this observation remains obscure. Correlation between effluent IL-6 and CA125 suggests that CA125 might be upregulated due to inflammation and thus is not a reliable marker of mesothelial cell mass and/or biocompatibility.
Collapse
Affiliation(s)
- Sylvie Opatrná
- Departments of Medicine I, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Anna Pöpperlová
- Departments of Medicine I, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Daniel Lysák
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.,Hematooncology, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Radka Fuchsová
- Nuclear Medicine, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Ladislav Trefil
- Biochemistry, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Jaroslav Racek
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.,Biochemistry, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Ondrej Topolčan
- Nuclear Medicine, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| |
Collapse
|
29
|
Lin CT, Sun XY, Lin AX. Supplementation with high-dose trans-resveratrol improves ultrafiltration in peritoneal dialysis patients: a prospective, randomized, double-blind study. Ren Fail 2016; 38:214-21. [PMID: 26727506 DOI: 10.3109/0886022x.2015.1128236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ultrafiltration (UF) failure mostly contributes to technical failure in peritoneal dialysis (PD) patients, and one of its responsible factors is peritoneal angiogenesis. Resveratrol has been proposed to have an angiogenesis-ameliorating effect on tumor patients. We hypothesize trans-resveratrol has beneficial effects on angiogenesis-related markers in PD patients. METHODS In this prospective, randomized, and double-blind trial, 72 patients were randomly assigned to 12-week treatment of low-dose or high-dose (150 or 450 mg/d) trans-resveratrol or a placebo. Visits were scheduled at 0, 4, 8, and 12 weeks after treatment. Clinical indices including 24-hour UF volume, UF rate, 24-hour urine volume, residual renal function, and dialysis adequacy (kt/v) were measured. Angiogenesis markers including vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1), angiopoietin-2 (Ang-2), tyrosine kinase 2 (Tie-2), and thrombospondin-1 (Tsp-1) in peritoneal effluent were also assessed by enzyme-linked immunosorbent assay. RESULTS Finally, 64 out of 72 patients were analyzed, 18 in the high-dose group, 22 in the low-dose group, and 24 in the placebo group. Over the 12-week period, patients in the high-dose group [mean change from baseline (95% CI): 171.4 (141.3-201.5) (mL), p = 0.003 (Net UF); 11.3(10.5-12.1) (mL/h), p = 0.02 (UF rate)] or the low-dose group [mean change from baseline (95% CI: 98.1 (49.5-146.7) (mL), p = 0.007 (Net UF); 6.5 (4.4-8.6) (mL/h), p = 0.04 (UF rate)] versus the placebo group had a significantly greater improvement in mean net UF volume and UF rate. The appearance rates of VEGF, Flk-1, and Ang-2 were more significantly reduced (appearance rates of Tie-2 and Tsp-1 increased) in the high-dose group versus the placebo group, but not in the low-dose group. CONCLUSION Supplementation with trans-resveratrol is beneficial to improve ultrafiltration in PD patients, and high-dose supplementation may improve ultrafiltration by ameliorating angiogenesis induced by conventional lactate-buffered PD solutions.
Collapse
Affiliation(s)
- Chong-Ting Lin
- a Department of Hemodialysis Room , Yantaishan Hospital, Taishan Medical College , Yantai , Shandong , PR China
| | - Xiao-Yan Sun
- b Department of Blood Purification Centre , Yeda Hospital , Yantai , Shandong , PR China
| | - Ai-Xia Lin
- a Department of Hemodialysis Room , Yantaishan Hospital, Taishan Medical College , Yantai , Shandong , PR China
| |
Collapse
|
30
|
Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Perit Dial Int 2015; 35:14-25. [PMID: 25700459 DOI: 10.3747/pdi.2014.00188] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Jiefu Zhu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Fuyou Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
31
|
Moll S, Meier M, Formentini I, Pomposiello S, Prunotto M. New renal drug development to face chronic renal disease. Expert Opin Drug Discov 2014; 9:1471-85. [DOI: 10.1517/17460441.2014.956075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Yang X, Zhang H, Hang Y, Yan H, Lin A, Huang J, Ni Z, Qian J, Fang W. Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol 2014; 39:459-65. [PMID: 24854010 DOI: 10.1159/000362622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND To evaluate the association of dialysate interleukin-6 (IL-6), a marker of ongoing peritoneal inflammation, with the alteration of peritoneal solute transport rate (PSTR) in continuous ambulatory peritoneal dialysis (CAPD) patients. METHODS Stable CAPD patients were enrolled in the present study. A total of 128 patients were analyzed in this prospective study. IL-6 concentration in the overnight effluent was determined and expressed as the IL-6 appearance rate (IL-6AR). Mass transfer area coefficients of creatinine (MTACcr) were measured at enrollment and 12 months later. Logistic regression was used to examine the association between IL-6AR and change in MTACcr. RESULTS Multivariable linear regression showed that historical glucose exposure was significantly associated with dialysate IL-6AR level [β = 0.008 (0.001-0.015), p = 0.021]. After 12 months, MTACcr was significantly increased [6.40 (4.70-8.75) vs. 7.14 (5.69-8.73) ml/min, p = 0.004], while ultrafiltration capacity decreased [4 h UF 340 (220-400) vs. 280 (180-380) ml, p = 0.006]. Compared to the patients with stable PSTR, the dialysate IL-6AR in patients with increasing PSTR was significantly higher [277.08 (247.45-349.53) vs. 263.18 (69.94-286.72) pg/min, p = 0.015]. Patients with increasing PSTR had lower residual renal function [0.79 (0-2.12) vs. 1.70 (0.39-3.38) ml/min, p = 0.006] and less urine output [225 (0-600) vs. 500 (125-900) ml/24 h, p = 0.014]. Logistic analysis showed that both high dialysate IL-6AR [OR 1.333 and 95% CI (1.024-1.735), p = 0.033] and low RRF [OR 0.831 and 95% CI (0.699-0.988), p = 0.036] were independent risk factors for increasing PSTR. CONCLUSIONS This prospective study suggests that intraperitoneal IL-6 is a predictor of increasing PSTR in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Renal Division, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
LUO LINGRONG, LIU HONG, DONG ZHENG, SUN LIN, PENG YOUMING, LIU FUYOU. Small interfering RNA targeting ILK inhibits EMT in human peritoneal mesothelial cells through phosphorylation of GSK-3β. Mol Med Rep 2014; 10:137-44. [DOI: 10.3892/mmr.2014.2162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
|
34
|
Aoki S, Takezawa T, Oshikata-Miyazaki A, Ikeda S, Kuroyama H, Chimuro T, Oguchi Y, Noguchi M, Narisawa Y, Toda S. Epithelial-to-mesenchymal transition and slit function of mesothelial cells are regulated by the cross talk between mesothelial cells and endothelial cells. Am J Physiol Renal Physiol 2013; 306:F116-22. [PMID: 24197067 DOI: 10.1152/ajprenal.00543.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peritoneal dysfunction is a major factor leading to treatment failure of peritoneal dialysis (PD). However, the precise mechanism of the peritoneal diffusion changes related to PD remains to be elucidated. To this end, we have established a novel peritoneal diffusion model in vitro, which consists of a three-dimensional culture system using a collagen vitrigel membrane chamber and a fluid-stream generation system. This artificial peritoneal model revealed that high-glucose culture medium and fluid flow stress promoted the epithelial-mesenchymal transition (EMT) process of mesothelial cells and that endothelial cells inhibited this mesothelial EMT process. Mesothelial cells in the EMT state showed high expression of connective tissue growth factor and low expression of bone morphogenic protein-7, while non-EMT mesothelial cells showed the opposite expression pattern of these two proteins. In addition, these protein expressions were dependent on the presence of endothelial cells in the model. Our model revealed that the endothelial slit function was predominantly dependent on the covering surface area, while the mesothelial layer possessed a specific barrier function for small solutes independently of the surface area. Notably, a synergic barrier effect of mesothelial cells and endothelial cells was present with low-glucose pretreatment, but high-glucose pretreatment abolished this synergic effect. These findings suggest that the mesothelial slit function is not only regulated by the high-glucose-induced EMT process but is also affected by an endothelial paracrine effect. This peritoneal diffusion model could be a promising tool for the development of PD.
Collapse
Affiliation(s)
- Shigehisa Aoki
- Dept. of Pathology and Microbiology, Faculty of Medicine, Saga Univ., 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, Hattori R, Matsukawa Y, Mizuno T, Noda Y, Nishimura H, Nishio R, Maruyama S, Imai E, Matsuo S, Takei Y. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol 2013; 24:1627-42. [PMID: 23990681 PMCID: PMC3785267 DOI: 10.1681/asn.2012030226] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis (PF) causes ultrafiltration failure (UFF) and is a complicating factor in long-term peritoneal dialysis. Lymphatic reabsorption also may contribute to UFF, but little is known about lymphangiogenesis in patients with UFF and peritonitis. We studied the role of the lymphangiogenesis mediator vascular endothelial growth factor-C (VEGF-C) in human dialysate effluents, peritoneal tissues, and peritoneal mesothelial cells (HPMCs). Dialysate VEGF-C concentration correlated positively with the dialysate-to-plasma ratio of creatinine (D/P Cr) and the dialysate TGF-β1 concentration. Peritoneal tissue from patients with UFF expressed higher levels of VEGF-C, lymphatic endothelial hyaluronan receptor-1 (LYVE-1), and podoplanin mRNA and contained more lymphatic vessels than tissue from patients without UFF. Furthermore, mesothelial cell and macrophage expression of VEGF-C increased in the peritoneal membranes of patients with UFF and peritonitis. In cultured mesothelial cells, TGF-β1 upregulated the expression of VEGF-C mRNA and protein, and this upregulation was suppressed by a TGF-β type I receptor (TGFβR-I) inhibitor. TGF-β1-induced upregulation of VEGF-C mRNA expression in cultured HPMCs correlated with the D/P Cr of the patient from whom the HPMCs were derived (P<0.001). Moreover, treatment with a TGFβR-I inhibitor suppressed the enhanced lymphangiogenesis and VEGF-C expression associated with fibrosis in a rat model of PF. These results suggest that lymphangiogenesis associates with fibrosis through the TGF-β-VEGF-C pathway.
Collapse
Affiliation(s)
| | - Yasuhiko Ito
- Departments of Nephrology and Renal Replacement Therapy
| | | | | | | | - Fumiko Nagura
- Departments of Nephrology and Renal Replacement Therapy
| | | | | | - Tomohiro Mizuno
- Division of Clinical Sciences and Neuropsychopharmacology, Meijyo University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijyo University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Nishimura
- Department of Nephrology, Toyota Kosei Hospital, Toyota, Japan; and
| | - Ryosuke Nishio
- Department of Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | | | - Enyu Imai
- Departments of Nephrology and Renal Replacement Therapy
| | | | - Yoshifumi Takei
- Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Zhang L, Liu F, Peng Y, Sun L, Chen G. Changes in expression of four molecular marker proteins and one microRNA in mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis patients. Exp Ther Med 2013; 6:1189-1193. [PMID: 24223642 PMCID: PMC3820727 DOI: 10.3892/etm_2013.1281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to detect the expression of microRNA-200c and epithelial-mesenchymal transition (EMT) in the mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis (PD) patients, and to investigate the association between microRNA-200c and peritoneal mesothelial cell EMT. Twelve patients who had recently started continuous ambulatory peritoneal dialysis (PD start group) and 16 patients who had been undergoing peritoneal dialysis for >6 months (PD >6 months group) were randomly chosen for the isolation, culture and identification of effluent cells. qPCR and western blot analysis were used to detect the expression levels of microRNA-200c and the levels of four cellular marker proteins, E-cadherin, vimentin, fibronectin (FN) and COL-1, in effluent cells. The results showed that the effluent cells in peritoneal dialysis were peritoneal mesothelial cells. The level of E-cadherin protein expression was significantly lower in the PD >6 months group than in the PD start group, while vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. microRNA-200c in the PD >6 months group was significantly downregulated. The E-cadherin protein expression level was significantly decreased and vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. The level of microRNA-200c was significantly reduced in the PD > 6 months group, suggesting that microRNA-200c may be associated with EMT.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nephrology, Second Xiangya Hospital, Institute of Nephrology, Central South University, Changsha, Hunan 410011; ; Department of Nephrology, Fourth Changsha Hospital, Changsha, Hunan 410006, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Zhou Q, Yang M, Lan H, Yu X. miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:808-19. [PMID: 23831330 DOI: 10.1016/j.ajpath.2013.05.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/17/2022]
Abstract
Although epithelial-mesenchymal transition (EMT) and the subsequent development of peritoneal fibrosis are key processes leading to the peritoneal failure related to peritoneal dialysis (PD), mechanisms underlying these processes remain largely unclear. In the present study, we found that miR-30a was significantly down-regulated in peritoneal tissues, with progressive fibrosis in patients with continuous ambulatory peritoneal dialysis and in a rat model of PD. In vitro, transforming growth factor (TGF)-β1-induced EMT, identified by de novo expression of α-smooth muscle actin and a loss of E-cadherin in both human and rat peritoneal mesothelial cells, was associated with down-regulation of miR-30a but up-regulation of Snai1, suggesting a close link between miR-30a and Snai1 in TGF-β1-induced peritoneal fibrosis. It was further demonstrated in vitro that miR-30a was able to bind the 3' untranslated region of Snai1 and overexpression of miR-30a blocked TGF-β1-induced up-regulation of Snai1 and, therefore, inhibited EMT and collagen expression. To determine the functional role of miR-30a, we overexpressed miR-30a in the peritoneal tissue in a rat model of PD and found that overexpression of miR-30a blocked both Snai1 and EMT and inhibited peritoneal fibrosis, with improvement of peritoneal dysfunction. In conclusion, miR-30a negatively regulates Snai1-mediated EMT during peritoneal fibrosis in vitro and in vivo. Blockade of peritoneal fibrosis by overexpressing miR-30a in a rat model of PD reveals a therapeutic potential of miR-30a for peritoneal fibrosis associated with PD.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
38
|
Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta 2013; 421:46-50. [DOI: 10.1016/j.cca.2013.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/22/2022]
|
39
|
Waniewski J, Paniagua R, Stachowska-Pietka J, Ventura MDJ, Ávila-Díaz M, Prado-Uribe C, Mora C, García-López E, Lindholm B. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 2013; 33:419-25. [PMID: 23378471 DOI: 10.3747/pdi.2011.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Fluid removal during peritoneal dialysis depends on modifiable factors such as tonicity of dialysis fluids and intrinsic characteristics of the peritoneal transport barrier and the osmotic agent-for example, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption. The latter parameters cannot be derived from tests of the small-solute transport rate. We here propose a simple test that may provide information about those parameters. METHODS Volumes and glucose concentrations of drained dialysate obtained with 3 different combinations of glucose-based dialysis fluid (3 exchanges of 1.36% glucose during the day and 1 overnight exchange of either 1.36%, 2.27%, or 3.86% glucose) were measured in 83 continuous ambulatory peritoneal dialysis (CAPD) patients. Linear regression analyses of daily net ultrafiltration in relation to the average dialysate-to-plasma concentration gradient of glucose allowed for an estimation of the osmotic conductance of glucose and the peritoneal fluid absorption rate, and net ultrafiltration in relation to glucose absorption allowed for an estimation of the ultrafiltration effectiveness of glucose. RESULTS The osmotic conductance of glucose was 0.067 ± 0.042 (milliliters per minute divided by millimoles per milliliter), the ultrafiltration effectiveness of glucose was 16.77 ± 7.97 mL/g of absorbed glucose, and the peritoneal fluid absorption rate was 0.94 ± 0.97 mL/min (if estimated concomitantly with osmotic conductance) or 0.93 ± 0.75 mL/min (if estimated concomitantly with ultrafiltration effectiveness). These fluid transport parameters were independent of small-solute transport characteristics, but proportional to total body water estimated by bioimpedance. CONCLUSIONS By varying the glucose concentration in 1 of 4 daily exchanges, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption could be estimated in CAPD patients, yielding transport parameter values that were similar to those obtained by other, more sophisticated, methods.
Collapse
Affiliation(s)
- Jacek Waniewski
- Institute of Biocybernetics and Biomedical Engineering PAS,1 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Braun N, Sen K, Alscher MD, Fritz P, Kimmel M, Morelle J, Goffin E, Jörres A, Wüthrich RP, Cohen CD, Segerer S. Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Perit Dial Int 2013; 33:515-28. [PMID: 23378472 DOI: 10.3747/pdi.2010.00259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Periostin is a matricellular protein involved in tissue remodeling through the promotion of adhesion, cell survival, cellular dedifferentiation, and fibrogenesis. It can be induced by transforming growth factor beta and high glucose concentrations. We hypothesized that this protein might be expressed in the peritoneal cavity of patients on peritoneal dialysis (PD) and even more in patients with signs of encapsulating peritoneal sclerosis (EPS). METHOD In this retrospective study, we included peritoneal biopsies from patients on PD with EPS (n = 7) and without signs of EPS (n = 10), and we compared them with biopsies taken during hernia repair from patients not on PD (n = 11) and during various procedures from uremic patients not on PD (n = 6). Periostin was localized by immunohistochemistry, scored semiquantitatively, and quantified by morphometry. Periostin protein concentrations were measured by ELISA in dialysates from 15 patients. Periostin messenger RNA was quantified in vitro in peritoneal fibroblasts. RESULTS In control biopsies, periostin was present in the walls of larger arteries and focally in extracellular matrix in the submesothelial zone. Patients on PD demonstrated interstitial periostin in variable amounts depending on the severity of submesothelial fibrosis. In EPS, periostin expression was very prominent in the sclerosis layer. The area of periostin was significantly larger in EPS biopsies than in control biopsies, and the percentage of periostin-positive area correlated with the thickness of the submesothelial fibrosis zone. Periostin concentrations in dialysate increased significantly with time on PD in patients without signs of EPS; in patients with EPS, periostin concentrations in dialysate were low and demonstrated the smallest increase with time. In vitro, periostin was found to be strongly expressed by peritoneal fibroblasts. CONCLUSION Periostin is strongly expressed by fibroblasts and deposited in the peritoneal cavity of patients with EPS and with simple peritoneal fibrosis on PD. This protein might play a role in the progression of peritoneal injury, and low levels of periostin after prolonged time on PD might be a marker of EPS.
Collapse
Affiliation(s)
- Niko Braun
- Department of Internal Medicine,1 Division of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, and Institute of Digital Medicine,2 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Adipocytes derived fibrinolytic components in peritoneum — a pilot study. Open Med (Wars) 2012. [DOI: 10.2478/s11536-012-0042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe proteins of the fibrinolytic system — urokinase plasminogen activator(uPA), tissue plasminogen activator (tPA)and plasminogen activator inhibitor type IPAI-I) — play important roles in fibrotization in various organs and including peritoneum. To study the cellular localization of PAI-1, tPA and uPA within the adipose tissue of the peritoneal membrane in patients at the onset of peritoneal dialysis(PD) we determined the initial expression of these proteins in relationship to multiple clinical variables. Methods: routinely performed parietal peritoneal biopsies in 12 patients undergoing peritoneal catheter implantation were examined. We used formalinfixed, paraffin-embedded specimens for immunohistochemical localization of these proteins along with the stereological pointcounting method for quantification of their expression within the peritoneal adipose tissue. Results: strong positive mutual correlation between the expression of PAI-1 and both uPA (SpearmanR=0.66) and tPA (R=0.59) as well as between the expression of uPA and tPA (R=0.77) was found without any relatioship to BMI, age, peritoneal transport characteristic or diabetes status. Conclusion: Adipose tissue within the peritoneum is capable of producing fibrinolysis regulators (independently on clinical parameters) thus possibly affecting the fibrotization and function of peritoneum as dialysis membrane. The effect of dialysis solution dosing, composition and other dialysis related factors should be clarified in future studies.
Collapse
|
42
|
Opatrna S, Lysak D, Trefil L, Parker C, Topley N. Intraperitoneal IL-6 signaling in incident patients treated with icodextrin and glucose bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int 2012; 32:37-44. [PMID: 22302924 DOI: 10.3747/pdi.2010.00235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In this study, we compared the activity of interleukin-6 (IL-6), a marker of ongoing peritoneal inflammation and biocompatibility, and its other signaling components, the soluble IL-6 receptor (sIL-6R) and soluble Gp130 (sGp130), in peritoneal effluent from patients treated with icodextrin-based (E) peritoneal dialysis (PD) solution and glucose-based bicarbonate/lactate-buffered (P) solution. METHODS Using baseline peritoneal ultrafiltration capacity, 33 stable incident PD patients were allocated either to P only (n = 20) or to P plus E for the overnight dwell (n = 13). We used ELISA to determine IL-6, sIL-6R, and sGp130 in timed overnight effluent at 1, 6, and 12 months after PD initiation. Flow cytometry was used to measure expression of IL-6R and Gp130 on isolated peritoneal leukocytes at the same time points. Peritonitis was an exclusion criterion. RESULTS At all time points, levels of IL-6 and sIL-6R, and the appearance rates of IL-6 (90.5 pg/min vs. 481.1 pg/min, p < 0.001; 138.6 pg/min vs. 1187.5 pg/min, p < 0.001; and 56.1 pg/min vs. 1386.0 pg/min, p < 0.001), sIL-6R (2035.3 pg/min vs. 4907.0 pg/min, p < 0.01; 1375.0 pg/min vs. 6348.4 pg/min, p < 0.01; and 1881.3 pg/min vs. 5437.8 pg/min, p < 0.01), and sGp130 (37.6 ng/min vs. 65.4 ng/min, p < 0.01; 39.2 ng/min vs. 80.6 ng/min, p < 0.01; 27.8 ng/min vs. 71.0 ng/min, p < 0.01) were significantly higher in peritoneal effluent from E-treated patients than from P-treated patients. Expression of IL6-R and Gp130 on individual leukocyte types isolated from PD effluent did not differ between E- and P-treated patients. The numbers of white blood cells present in effluent were higher in E-treated than in P-treated patients at all time points, but no significant differences were seen in the differential counts or in the number of exfoliated mesothelial cells. The IL-6 parameters in effluent from E-treated patients correlated with their plasma C-reactive protein. Despite the increased activation of the IL-6 system, no increase in peritoneal permeability as assessed by the dialysate-to-plasma ratio of creatinine in E effluent or by systemic inflammation was observed throughout the study. CONCLUSIONS Higher levels of IL-6, its soluble receptors, and leukocyte expression were observed in E-treated than in P-treated patients, but this difference was not associated with alterations in peritoneal permeability or systemic inflammation during 1 year of follow-up. Leukocyte counts in effluent from E-treated patients were within the normal range previously reported for glucose solutions. This lack of clinical consequences may be a result of a parallel rise in sIL-6R and sGp130, which are known to control the biologic activity of IL-6. The utility of IL-6 level determinations, in isolation, for assessing the biocompatibility of PD solutions is questionable.
Collapse
Affiliation(s)
- Sylvie Opatrna
- Department of Medicine I, Charles University Medical School, Pilsen, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Fernández-Reyes MJ, Bajo MA, Del Peso G, Ossorio M, Díaz R, Carretero B, Selgas R. The influence of initial peritoneal transport characteristics, inflammation, and high glucose exposure on prognosis for peritoneal membrane function. Perit Dial Int 2012; 32:636-44. [PMID: 22473036 DOI: 10.3747/pdi.2011.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Fast transport status, acquired with time on peritoneal dialysis (PD), is a pathology induced by peritoneal exposure to bioincompatible solutions. Fast transport has important clinical consequences and should be prevented. OBJECTIVE We analyzed the repercussions of initial peritoneal transport characteristics on the prognosis for peritoneal membrane function, and also whether the influence of peritonitis and high exposure to glucose are different according to the initial peritoneal transport characteristics or the moment when such events occur. METHODS The study included 275 peritoneal dialysis patients with at least 2 peritoneal function studies (at baseline and 1 year). Peritoneal kinetic studies were performed at baseline and annually. Those studies consist of a 4-hour dwell with glucose (1.5% during 1981 - 1990, and 2.27% during 1991 - 2002) to calculate the peritoneal mass transfer coefficients of urea and creatinine (milliliters per minute) using a previously described mathematical model. RESULTS Membrane prognosis and technique survival were independent of baseline transport characteristics. Fast transport and ultrafiltration (UF) failure are reversible conditions, provided that peritonitis and high glucose exposure are avoided during the early dialysis period. The first year on PD is a main determining factor for the membrane's future, and the mass transfer coefficient of creatinine at year 1 is the best functional predictor of future PD history. After 5 years on dialysis, permeability frequently increases, and UF decreases. Icodextrin is associated with peritoneal protection. CONCLUSIONS Peritoneal membrane prognosis is independent of baseline transport characteristics. Intrinsic fast transport and low UF are reversible conditions when peritonitis and high glucose exposure are avoided during the early dialysis period. Icodextrin helps in glucose avoidance and is associated with peritoneal protection.
Collapse
|
44
|
Mikuła-Pietrasik J, Kuczmarska A, Kucińska M, Murias M, Wierzchowski M, Winckiewicz M, Staniszewski R, Bręborowicz A, Książek K. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial cell-dependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 2012; 15:361-76. [PMID: 22451299 PMCID: PMC3409370 DOI: 10.1007/s10456-012-9266-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/13/2012] [Indexed: 11/19/2022]
Abstract
We examined the effect of resveratrol (RVT) and its two derivatives (3,3′,4,4′-tetrahydroxy-trans-stilbene and 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene) on human peritoneal mesothelial cell (HPMC)-dependent angiogenesis in vitro. To this end, angiogenic activity of endothelial cells (HUVEC, HMVEC, and HMEC-1) was monitored upon their exposure to conditioned medium (CM) from young and senescent HPMCs treated with stilbenes or to stilbenes themselves. Results showed that proliferation and migration of endothelial cells were inhibited in response to indirect (HPMC-dependent) or direct RVT activity. This effect was associated with decreased secretion of VEGF and IL-8/CXCL8 by HPMCs treated with RVT, which confirmed the experiments with recombinant forms of these angiogenic agents. Angiogenic activity of endothelial cells treated with CM from HPMCs exposed to RVT analogues was more effective. Improved migration was particularly evident in cells exposed to CM from senescent HPMCs. Upon direct treatment, RVT derivatives stimulated proliferation (but not migration) of HUVECs, and failed to affect the behaviour of HMVEC and HMEC-1 cells. These compounds stimulated production of VEGF and IL-8/CXCL8 by HPMCs. Studies with neutralizing antibodies against angiogenic factors revealed that augmented angiogenic reactions of endothelial cells exposed to CM from HPMC treated with RVT analogues were related to enhanced production of VEGF and IL-8/CXCL8. Collectively, these findings indicate that RVT and its synthetic analogues divergently alter the secretion of the angiogenic factors by HPMCs, and thus modulate HPMC-dependent angiogenic responses in the opposite directions. This may have implications for the attempts of practical employment of the stilbenes for treatment of pathologies proceeding with abnormal vascularisation of the peritoneal tissue.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology, Poznań University of Medical Sciences, Święcickiego 6 Str., 60-781, Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aubertin G, Choquet P, Dheu C, Constantinesco A, Ratomponirina C, Zaloszyc A, Passlick-Deetjen J, Fischbach M. The impact of dialysis solution biocompatibility on ultrafiltration and on free water transport in rats. Pediatr Nephrol 2012; 27:131-8. [PMID: 21744055 DOI: 10.1007/s00467-011-1945-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/11/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022]
Abstract
This study compares different peritoneal dialysis fluids (PDF) in rats over a short contact time. For greater accuracy, net ultrafiltration (UF) and peritoneal transport indices, mass transfer area coefficient (MTAC) were scaled for the in vivo peritoneal surface area recruited (ivPSA) measured by microcomputerized tomography. Wistar rats underwent nephrectomy (5/6ths), were randomized into two groups and given 1.5% glucose PDF, either conventional acidic lactate (n = 14) or pH neutral bicarbonate (BicaVera) (n = 13); MTAC and UF were measured using a 90-min peritoneal equilibrium test (PET), fill volume (IPV) of 10 ml/100 g; small pore fluid transport was determined from sodium balance and used to calculate free water transport (FWT). Each ivPSA value was significantly correlated with the actual IPV, which varied from one rat to another. At 90 min of contact, there was no difference in recruited ivPSA in relation to PDFs. There was a difference (p < 0.01) in net UF/ivPSA 0.45 vs. 1.41 cm(2)/ml for bicarbonate versus lactate, as there was in the proportion of FWT with bicarbonate (42 ± 5% of net UF) compared to lactate (29 ± 4% of net UF). Net UF for individual values of ivPSA differs between conventional PDF and more biocompatible solutions, such as bicarbonate PDF. This observed change in UF cannot be fully explained by differences in glucose transport. The changes in FWT may be explained by the impact of the PDF biocompatibility on aquaporin function.
Collapse
Affiliation(s)
- Gaëlle Aubertin
- Service de biophysique et médecine nucléaire - Institut de Mécanique des fluides et des Solides CNRS Université de Strasbourg, CHU Hautepierre, Avenue Molière, 67098 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
GAO DAN, ZHAO ZHANZHENG, LIANG XIANHUI, LI YAN, CAO YING, LIU ZHANGSUO. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients. Nephrology (Carlton) 2011; 16:736-42. [DOI: 10.1111/j.1440-1797.2011.01502.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|