1
|
Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. A Critical Analysis of the CFD-DEM Simulation of Pharmaceutical Aerosols Deposition in Upper Intra-Thoracic Airways: Considerations on Aerosol Transport and Deposition. Pharmaceutics 2024; 16:1119. [PMID: 39339157 PMCID: PMC11434992 DOI: 10.3390/pharmaceutics16091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions. Even if the total deposition compares very well with the reference data, it is clear from the present work how local deposition results can depend significantly upon spatial discretization and boundary conditions adopted to represent the respiratory act. The modeling of turbulent fluctuations in the airflow is also found to impact the local deposition and, to a minor extent, the flow characteristics at the inlet of the computational domain. Using the CFD-DEM model, it was also possible to calculate the airflow and particles splitting at bifurcations, which were found to depart from the assumption of being equally distributed among branches adopted by some of the simplified deposition models. The results thus suggest the need for further studies towards improving the quantitative prediction of aerosol transport and deposition in the human airways.
Collapse
Affiliation(s)
- Georgi H. Spasov
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), 34149 Trieste, Italy
| | | | - Andrea Vanossi
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), 34149 Trieste, Italy
| | - Ciro Cottini
- Chiesi Farmaceutici S.p.A., Largo Belloli, 11A, 43122 Parma, Italy
| | - Andrea Benassi
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Chiesi Farmaceutici S.p.A., Largo Belloli, 11A, 43122 Parma, Italy
| |
Collapse
|
2
|
Wang Y, Jin Z, Cui Y, Dong R, Li L, Lizal F, Hriberšek M, Ravnik J, Yang M, Liu Y. An individualised 3D computational flow and particle model to predict the deposition of inhaled medicines - A case study using a nebuliser. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108203. [PMID: 38744057 DOI: 10.1016/j.cmpb.2024.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Drug inhalation is generally accepted as the preferred administration method for treating respiratory diseases. To achieve effective inhaled drug delivery for an individual, it is necessary to use an interdisciplinary approach that can cope with inter-individual differences. The paper aims to present an individualised pulmonary drug deposition model based on Computational Fluid and Particle Dynamics simulations within a time frame acceptable for clinical use. METHODS We propose a model that can analyse the inhaled drug delivery efficiency based on the patient's airway geometry as well as breathing pattern, which has the potential to also serve as a tool for a sub-regional diagnosis of respiratory diseases. The particle properties and size distribution are taken for the case of drug inhalation by using nebulisers, as they are independent of the patient's breathing pattern. Finally, the inhaled drug doses that reach the deep airways of different lobe regions of the patient are studied. RESULTS The numerical accuracy of the proposed model is verified by comparison with experimental results. The difference in total drug deposition fractions between the simulation and experimental results is smaller than 4.44% and 1.43% for flow rates of 60 l/min and 15 l/min, respectively. A case study involving a COVID-19 patient is conducted to illustrate the potential clinical use of the model. The study analyses the drug deposition fractions in relation to the breathing pattern, aerosol size distribution, and different lobe regions. CONCLUSIONS The entire process of the proposed model can be completed within 48 h, allowing an evaluation of the deposition of the inhaled drug in an individual patient's lung within a time frame acceptable for clinical use. Achieving a 48-hour time window for a single evaluation of patient-specific drug delivery enables the physician to monitor the patient's changing conditions and potentially adjust the drug administration accordingly. Furthermore, we show that the proposed methodology also offers a possibility to be extended to a detection approach for some respiratory diseases.
Collapse
Affiliation(s)
- Yulong Wang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Zhendong Jin
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Yan Cui
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Rongbo Dong
- Department of Radiology, 95829 Hospital, Gongnongbing Road 15, 430012, Wuhan, China.
| | - Lei Li
- Department of Pediatrics, Union Hospital, Huazhong University of Science and Technology, 1277 Jie Fang Ave., 430022, Wuhan, China.
| | - Frantisek Lizal
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic.
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Yinshui Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| |
Collapse
|
3
|
Mišík O, Kejíková J, Cejpek O, Malý M, Jugl A, Bělka M, Mravec F, Lízal F. Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems. Mol Pharm 2024; 21:1848-1860. [PMID: 38466817 PMCID: PMC10988550 DOI: 10.1021/acs.molpharmaceut.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
Collapse
Affiliation(s)
- Ondrej Mišík
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Jana Kejíková
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Ondřej Cejpek
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Milan Malý
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Adam Jugl
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Miloslav Bělka
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Filip Mravec
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - František Lízal
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
4
|
Prinz F, Pokorný J, Elcner J, Lízal F, Mišík O, Malý M, Bělka M, Hafen N, Kummerländer A, Krause MJ, Jedelský J, Jícha M. Comprehensive experimental and numerical validation of Lattice Boltzmann fluid flow and particle simulations in a child respiratory tract. Comput Biol Med 2024; 170:107994. [PMID: 38308867 DOI: 10.1016/j.compbiomed.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/05/2024]
Abstract
The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child's respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child's airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1-20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems - potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.
Collapse
Affiliation(s)
- František Prinz
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic.
| | - Jan Pokorný
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Jakub Elcner
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - František Lízal
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Ondrej Mišík
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Milan Malý
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Miloslav Bělka
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Nicolas Hafen
- Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe, 76131, Germany
| | - Adrian Kummerländer
- Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe, 76131, Germany
| | - Mathias J Krause
- Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe, 76131, Germany
| | - Jan Jedelský
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| | - Miroslav Jícha
- Brno University of Technology, Technicka 2896, Brno, 616 69, Czech Republic
| |
Collapse
|
5
|
Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow. Comput Biol Med 2024; 170:107948. [PMID: 38219648 DOI: 10.1016/j.compbiomed.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
Collapse
Affiliation(s)
- G H Spasov
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - R Rossi
- RED Fluid Dynamics, Cagliari, Italy
| | - A Vanossi
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - C Cottini
- Chiesi Farmaceutici S.p.A., Parma, Italy
| | - A Benassi
- International School for Advanced Studies (SISSA), Trieste, Italy; Chiesi Farmaceutici S.p.A., Parma, Italy.
| |
Collapse
|
6
|
Allon R, Bhardwaj S, Sznitman J, Shoffel-Havakuk H, Pinhas S, Zloczower E, Shapira-Galitz Y, Lahav Y. A Novel Trans-Tracheostomal Retrograde Inhalation Technique Increases Subglottic Drug Deposition Compared to Traditional Trans-Oral Inhalation. Pharmaceutics 2023; 15:pharmaceutics15030903. [PMID: 36986764 PMCID: PMC10056688 DOI: 10.3390/pharmaceutics15030903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Subglottic stenosis represents a challenging clinical condition in otolaryngology. Although patients often experience improvement following endoscopic surgery, recurrence rates remain high. Pursuing measures to maintain surgical results and prevent recurrence is thus necessary. Steroids therapy is considered effective in preventing restenosis. Currently, however, the ability of trans-oral steroid inhalation to reach and affect the stenotic subglottic area in a tracheotomized patient is largely negligible. In the present study, we describe a novel trans-tracheostomal retrograde inhalation technique to increase corticosteroid deposition in the subglottic area. We detail our preliminary clinical outcomes in four patients treated with trans-tracheostomal corticosteroid inhalation via a metered dose inhaler (MDI) following surgery. Concurrently, we leverage computational fluid-particle dynamics (CFPD) simulations in an extra-thoracic 3D airway model to gain insight on possible advantages of such a technique over traditional trans-oral inhalation in augmenting aerosol deposition in the stenotic subglottic region. Our numerical simulations show that for an arbitrary inhaled dose (aerosols spanning 1–12 µm), the deposition (mass) fraction in the subglottis is over 30 times higher in the retrograde trans-tracheostomal technique compared to the trans-oral inhalation technique (3.63% vs. 0.11%). Importantly, while a major portion of inhaled aerosols (66.43%) in the trans-oral inhalation maneuver are transported distally past the trachea, the vast majority of aerosols (85.10%) exit through the mouth during trans-tracheostomal inhalation, thereby avoiding undesired deposition in the broader lungs. Overall, the proposed trans-tracheostomal retrograde inhalation technique increases aerosol deposition rates in the subglottis with minor lower-airway deposition compared to the trans-oral inhalation technique. This novel technique could play an important role in preventing restenosis of the subglottis.
Collapse
Affiliation(s)
- Raviv Allon
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
- Correspondence: or
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Hagit Shoffel-Havakuk
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sapir Pinhas
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elchanan Zloczower
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yael Shapira-Galitz
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yonatan Lahav
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
7
|
Szabová J, Mišík O, Fučík J, Mrázová K, Mravcová L, Elcner J, Lízal F, Krzyžánek V, Mravec F. Liposomal form of erlotinib for local inhalation administration and efficiency of its transport to the lungs. Int J Pharm 2023; 634:122695. [PMID: 36758881 DOI: 10.1016/j.ijpharm.2023.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas. The three most promising formulations were nebulized by two air-jet and two vibrating mesh nebulizers, and the aerosol deposition in lungs was calculated by tools of computational fluid and particle mechanics. According to the numerical simulations and measurements of liposomal stability, air-jet nebulizers generated larger portion of the aerosol able to penetrate deeper into the lungs, but the delivery is likely to be more efficient when the formulation is administered by Aerogen Solo vibrating mesh nebulizer because of a higher portion of intact vesicles after the nebulization. The leakage of encapsulated drug from liposomes nebulized by this nebulizer was lower than 2 % for all chosen vesicles.
Collapse
Affiliation(s)
- Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| | - Ondrej Mišík
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Fučík
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Jakub Elcner
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - František Lízal
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
8
|
Wedel J, Steinmann P, Štrakl M, Hriberšek M, Cui Y, Ravnik J. Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition - A CFD study. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 401:115372. [PMID: 35919629 PMCID: PMC9333481 DOI: 10.1016/j.cma.2022.115372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic is one of the greatest challenges to humanity nowadays. COVID-19 virus can replicate in the host's larynx region, which is in contrast to other viruses that replicate in lungs only, i.e. SARS. This is conjectured to support a fast spread of COVID-19. However, there is sparse research in this field about quantitative comparison of virus load in the larynx for varying susceptible individuals. In this regard the lung geometry itself could influence the risk of reproducing more pathogens and consequently exhaling more virus. Disadvantageously, there are only sparse lung geometries available. To still be able to investigate realistic geometrical deviations we employ three different digital replicas of human airways up to the 7 th level of bifurcation, representing two realistic lungs (male and female) as well as a more simplified experimental model. Our aim is to investigate the influence of breathing scenarios on aerosol deposition in anatomically different, realistic human airways. In this context, we employ three levels of cardiovascular activity as well as reported experimental particle size distributions by means of Computational Fluid Dynamics (CFD) with special focus on the larynx region to enable new insights into the local virus loads in human respiratory tracts. In addition, the influence of more realistic boundary conditions is investigated by performing transient simulations of a complete respiratory cycle in the upper lung regions of the considered respiratory models, focusing in particular on deposition in the oral cavity, the laryngeal region, and trachea, while simplifying the tracheobronchial tree. The aerosol deposition is modeled via OpenFOAM\protect \relax \special {t4ht=®} by employing an Euler-Lagrangian frame including steady and unsteady Reynolds Averaged Navier-Stokes (RANS) resolved turbulent flow using the k- ω -SST and k- ω -SST DES turbulence models. We observed that the respiratory geometry altered the local deposition patterns, especially in the laryngeal region. Despite the larynx region, the effects of varying flow rate for the airway geometries considered were found to be similar in the majority of respiratory tract regions. For all particle size distributions considered, localized particle accumulation occurred in the larynx of all considered lung models, which were more pronounced for larger particle size distributions. Moreover, it was found, that employing transient simulations instead of steady-state analysis, the overall particle deposition pattern is maintained, however with a stronger intensity in the transient cases.
Collapse
Affiliation(s)
- Jana Wedel
- Institute of Applied Mechanics, Universität Erlangen-Nürnberg, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, Universität Erlangen-Nürnberg, Germany
- Glasgow Computational Engineering Center, University of Glasgow, United Kingdom
| | - Mitja Štrakl
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| | - Yan Cui
- Huazhong University of Science and Technology, Wuhan, China
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| |
Collapse
|
9
|
Ruzycki CA, Tavernini S, Martin AR, Finlay WH. Characterization of dry powder inhaler performance through experimental methods. Adv Drug Deliv Rev 2022; 189:114518. [PMID: 36058349 DOI: 10.1016/j.addr.2022.114518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/24/2023]
Abstract
Experimental methods provide means for the quality control of existing DPIs and for exploring the influence of formulation and device parameters well in advance of clinical trials for novel devices and formulations. In this review, we examine the state of the art of in vitro testing of DPIs, with a focus primarily on the development of accurate in vitro-in vivo correlations. Aspects of compendial testing are discussed, followed by the influence of flow profiles on DPI performance, the characterization of extrathoracic deposition using mouth-throat geometries, and the characterization of regional thoracic deposition. Additional experimental methods that can inform the timing of bolus delivery, the influence of environmental conditions, and the development of electrostatic charge on aerosolized DPI powders are reviewed. We conclude with perspectives on current in vitro methods and identify potential areas for future investigation, including the estimation of variability in deposition, better characterization of existing compendial methods, optimization of formulation and device design to bypass extrathoracic deposition, and the use of novel tracheobronchial filters that aim to provide more clinically relevant measures of performance directly from in vitro testing.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
10
|
Fate of inhaled aerosols under the influence of glottal motion in a realistic insilico human tracheobronchial tree model. Eur J Pharm Sci 2022; 173:106172. [DOI: 10.1016/j.ejps.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
|
11
|
Sommerfeld M, Sgrott OL, Taborda MA, Koullapis P, Bauer K, Kassinos S. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Eur J Pharm Sci 2021; 166:105959. [PMID: 34324962 DOI: 10.1016/j.ejps.2021.105959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Airflow and aerosol deposition in the human airways are important aspects for applications such as pulmonary drug delivery and human exposure to aerosol pollutants. Numerical simulations are widely used nowadays to shed light in airflow features and particle deposition patterns inside the airways. For that purpose, the Euler/Lagrange approach is adopted for predicting flow field and particle deposition through point-particle tracking. Steady-state RANS (Reynolds-averaged Navier-Stokes) computations of flow evolution in an extended lung model applying different turbulence models were conducted and compared to measurements as well as high resolution LES (large-eddy simulations) for several flow rates. In addition, various inlet boundary conditions were considered and their influence on the predicted flow field was analysed. The results showed that the mean velocity field was simulated reasonably well, however, turbulence intensity was completely under-predicted by two-equation turbulence models. Only a Reynolds-stress model (RSM) was able predicting a turbulence level comparable to the measurements and the high resolution LES. Remarkable reductions in wall deposition were observed when wall effects were accounted for in the drag and lift force expressions. Naturally, turbulence is an essential contribution to particle deposition and it is well known that two-equation turbulence models considerably over-predict deposition due to the spurious drift effect. A full correction of this error is only possible in connection with a Reynolds-stress turbulence model whereby the predicted deposition in dependence of particle diameter yielded better agreement to the LES predictions. Specifically, with the RSM larger deposition is predicted for smaller particles and lower deposition fraction for larger particles compared to LES. The local deposition fraction along the lung model was numerically predicted with the same trend as found from the measurements, however the values in the middle region of the lung model were found to be somewhat larger.
Collapse
Affiliation(s)
- M Sommerfeld
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany.
| | - O L Sgrott
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany
| | - M A Taborda
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany
| | - P Koullapis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - K Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany.
| | - S Kassinos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
12
|
Wedel J, Steinmann P, Štrakl M, Hriberšek M, Ravnik J. Risk Assessment of Infection by Airborne Droplets and Aerosols at Different Levels of Cardiovascular Activity. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2021; 28:4297-4316. [PMID: 34226815 PMCID: PMC8246442 DOI: 10.1007/s11831-021-09613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
Since end of 2019 the COVID-19 pandemic, caused by the SARS-CoV-2 virus, is threatening humanity. Despite the fact that various scientists across the globe try to shed a light on this new respiratory disease, it is not yet fully understood. Unlike many studies on the geographical spread of the pandemic, including the study of external transmission routes, this work focuses on droplet and aerosol transport and their deposition inside the human airways. For this purpose, a digital replica of the human airways is used and particle transport under various levels of cardiovascular activity in enclosed spaces is studied by means of computational fluid dynamics. The influence of the room size, where the activity takes place, and the aerosol concentration is studied. The contribution aims to assess the risk of various levels of exercising while inhaling infectious pathogens to gain further insights in the deposition behavior of aerosols in the human airways. The size distribution of the expiratory droplets or aerosols plays a crucial role for the disease onset and progression. As the size of the expiratory droplets and aerosols differs for various exhaling scenarios, reported experimental particle size distributions are taken into account when setting up the environmental conditions. To model the aerosol deposition we employ OpenFOAM by using an Euler-Lagrangian frame including Reynolds-Averaged Navier-Stokes resolved turbulent flow. Within this study, the effects of different exercise levels and thus breathing rates as well as particle size distributions and room sizes are investigated to enable new insights into the local particle deposition in the human airway and virus loads. A general observation can be made that exercising at higher levels of activity is increasing the risk to develop a severe cause of the COVID-19 disease due to the increased aerosolized volume that reaches into the lower airways, thus the knowledge of the inhaled particle dynamics in the human airways at various exercising levels provides valuable information for infection control strategies.
Collapse
Affiliation(s)
- Jana Wedel
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
- Glasgow Computational Engineering Center, University of Glasgow, Glasgow, UK
| | - Mitja Štrakl
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
13
|
Wedel J, Steinmann P, Štrakl M, Hriberšek M, Ravnik J. Can CFD establish a connection to a milder COVID-19 disease in younger people? Aerosol deposition in lungs of different age groups based on Lagrangian particle tracking in turbulent flow. COMPUTATIONAL MECHANICS 2021; 67:1497-1513. [PMID: 33758453 PMCID: PMC7977503 DOI: 10.1007/s00466-021-01988-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/06/2021] [Indexed: 05/09/2023]
Abstract
To respond to the ongoing pandemic of SARS-CoV-2, this contribution deals with recently highlighted COVID-19 transmission through respiratory droplets in form of aerosols. Unlike other recent studies that focused on airborne transmission routes, this work addresses aerosol transport and deposition in a human respiratory tract. The contribution therefore conducts a computational study of aerosol deposition in digital replicas of human airways, which include the oral cavity, larynx and tracheobronchial airways down to the 12th generation of branching. Breathing through the oral cavity allows the air with aerosols to directly impact the larynx and tracheobronchial airways and can be viewed as one of the worst cases in terms of inhalation rate and aerosol load. The implemented computational model is based on Lagrangian particle tracking in Reynolds-Averaged Navier-Stokes resolved turbulent flow. Within this framework, the effects of different flow rates, particle diameters and lung sizes are investigated to enable new insights into local particle deposition behavior and therefore virus loads among selected age groups. We identify a signicant increase of aerosol deposition in the upper airways and thus a strong reduction of virus load in the lower airways for younger individuals. Based on our findings, we propose a possible relation between the younger age related fluid mechanical protection of the lower lung regions due to the airway size and a reduced risk of developing a severe respiratory illness originating from COVID-19 airborne transmission.
Collapse
Affiliation(s)
- Jana Wedel
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
- Glasgow Computational Engineering Center, University of Glasgow, Glasgow, Scotland
| | - Mitja Štrakl
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
14
|
Lizal F, Elcner J, Jedelsky J, Maly M, Jicha M, Farkas Á, Belka M, Rehak Z, Adam J, Brinek A, Laznovsky J, Zikmund T, Kaiser J. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways. JOURNAL OF AEROSOL SCIENCE 2020; 150:105649. [PMID: 32904428 PMCID: PMC7455204 DOI: 10.1016/j.jaerosci.2020.105649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 05/21/2023]
Abstract
The inhalation route has a substantial influence on the fate of inhaled particles. An outbreak of infectious diseases such as COVID-19, influenza or tuberculosis depends on the site of deposition of the inhaled pathogens. But the knowledge of respiratory deposition is important also for occupational safety or targeted delivery of inhaled pharmaceuticals. Simulations utilizing computational fluid dynamics are becoming available to a wide spectrum of users and they can undoubtedly bring detailed predictions of regional deposition of particles. However, if those simulations are to be trusted, they must be validated by experimental data. This article presents simulations and experiments performed on a geometry of airways which is available to other users and thus those results can be used for intercomparison between different research groups. In particular, three hypotheses were tested. First: Oral breathing and combined breathing are equivalent in terms of particle deposition in TB airways, as the pressure resistance of the nasal cavity is so high that the inhaled aerosol flows mostly through the oral cavity in both cases. Second: The influence of the inhalation route (nasal, oral or combined) on the regional distribution of the deposited particles downstream of the trachea is negligible. Third: Simulations can accurately and credibly predict deposition hotspots. The maximum spatial resolution of predicted deposition achievable by current methods was searched for. The simulations were performed using large-eddy simulation, the flow measurements were done by laser Doppler anemometry and the deposition has been measured by positron emission tomography in a realistic replica of human airways. Limitations and sources of uncertainties of the experimental methods were identified. The results confirmed that the high-pressure resistance of the nasal cavity leads to practically identical velocity profiles, even above the glottis for the mouth, and combined mouth and nose breathing. The distribution of deposited particles downstream of the trachea was not influenced by the inhalation route. The carina of the first bifurcation was not among the main deposition hotspots regardless of the inhalation route or flow rate. On the other hand, the deposition hotspots were identified by both CFD and experiments in the second bifurcation in both lungs, and to a lesser extent also in both the third bifurcations in the left lung.
Collapse
Affiliation(s)
- Frantisek Lizal
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Jakub Elcner
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Jan Jedelsky
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Milan Maly
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Miroslav Jicha
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Árpád Farkas
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
- Centre for Energy Research, Konkoly-Thege Miklós u. 29-33, 1121, Budapest, Hungary
| | - Miloslav Belka
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno, 616 69, Czech Republic
| | - Zdenek Rehak
- Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 602 00, Czech Republic
| | - Jan Adam
- Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 602 00, Czech Republic
- ÚJV Řež, a.s., Hlavni 130, Husinec-Rez, Rez 250 68, Czech Republic
| | - Adam Brinek
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Jakub Laznovsky
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| |
Collapse
|
15
|
Mallik AK, Mukherjee S, Panchagnula MV. An experimental study of respiratory aerosol transport in phantom lung bronchioles. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:111903. [PMID: 33244213 PMCID: PMC7684681 DOI: 10.1063/5.0029899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/25/2020] [Indexed: 05/04/2023]
Abstract
The transport and deposition of micrometer-sized particles in the lung is the primary mechanism for the spread of aerosol borne diseases such as corona virus disease-19 (COVID-19). Considering the current situation, modeling the transport and deposition of drops in human lung bronchioles is of utmost importance to determine their consequences on human health. The current study reports experimental observations on deposition in micro-capillaries, representing distal lung bronchioles, over a wide range of Re that imitates the particle dynamics in the entire lung. The experiment investigated deposition in tubes of diameter ranging from 0.3 mm to 2 mm and over a wide range of Reynolds number (10-2 ⩽ Re ⩽ 103). The range of the tube diameter and Re used in this study is motivated by the dimensions of lung airways and typical breathing flow rates. The aerosol fluid was loaded with boron doped carbon quantum dots as fluorophores. An aerosol plume was generated from this mixture fluid using an ultrasonic nebulizer, producing droplets with 6.5 µm as a mean diameter and over a narrow distribution of sizes. The amount of aerosol deposited on the tube walls was measured using a spectrofluorometer. The experimental results show that dimensionless deposition (δ) varies inversely with the bronchiole aspect ratio (L ¯ ), with the effect of the Reynolds number (Re) being significant only at lowL ¯ . δ also increased with increasing dimensionless bronchiole diameter (D ¯ ), but it is invariant with the particle size based Reynolds number. We show that δ L ¯ ∼ R e - 2 for 10-2 ⩽ Re ⩽ 1, which is typical of a diffusion dominated regime. For Re ⩾ 1, in the impaction dominated regime, δ L ¯ is shown to be independent of Re. We also show a crossover regime where sedimentation becomes important. The experimental results conclude that lower breathing frequency and higher breath hold time could significantly increase the chances of getting infected with COVID-19 in crowded places.
Collapse
Affiliation(s)
- Arnab Kumar Mallik
- Department of Applied Mechanics, Indian Institute
of Technology Madras, Chennai 600036, India
| | - Soumalya Mukherjee
- Department of Biotechnology, Indian Institute of
Technology Madras, Chennai 600036, India
| | - Mahesh V. Panchagnula
- Department of Applied Mechanics, Indian Institute
of Technology Madras, Chennai 600036, India
| |
Collapse
|
16
|
Agujetas R, Barrio-Perotti R, Ferrera C, Pandal-Blanco A, Walters DK, Fernández-Tena A. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105613. [PMID: 32593974 DOI: 10.1016/j.cmpb.2020.105613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Health care costs represent a substantial an increasing percentage of global expenditures. One key component is treatment of respiratory diseases, which account for one in twelve deaths in Europe. Computational simulations of lung airflow have potential to provide considerable cost reduction and improved outcomes. Such simulations require accurate in silico modeling of the lung airway. The geometry of the lung is extremely complex and for this reason very simple morphologies have primarily been used to date. The objective of this work is to develop an effective methodology for the creation of hybrid pulmonary geometries combining patient-specific models obtained from CT images and idealized pulmonary models, for the purpose of carrying out experimental and numerical studies on aerosol/particle transport and deposition in inhaled drug delivery. METHODS For the construction of the hybrid numerical model, lung images obtained from computed tomography were exported to the DICOM format to be treated with a commercial software to build the patient-specific part of the model. At the distal terminus of each airway of this portion of the model, an idealization of a single airway path is connected, extending to the sixteenth generation. Because these two parts have different endings, it is necessary to create an intermediate solid to link them together. Physically realistic treatment of truncated airway boundaries in the model was accomplished by mapping of the flow velocity distribution from corresponding conducting airway segments. RESULTS The model was verified using two sets of simulations, steady inspiration/expiration and transient simulation of forced spirometry. The results showed that the hybrid model is capable of providing a realistic description of air flow dynamics in the lung while substantially reducing computational costs relative to models of the full airway tree. CONCLUSIONS The model development outlined here represents an important step toward computational simulation of lung dynamics for patient-specific applications. Further research work may consist of investigating specific diseases, such as chronic bronchitis and pulmonary emphysema, as well as the study of the deposition of pollutants or drugs in the airways.
Collapse
Affiliation(s)
- R Agujetas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and ICCAEx, Universidad de Extremadura, Spain.
| | - R Barrio-Perotti
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Spain.
| | - C Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and ICCAEx, Universidad de Extremadura, Spain.
| | - A Pandal-Blanco
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Spain.
| | - D K Walters
- School of Aerospace and Mechanical Engineering, University of Oklahoma, United States.
| | - A Fernández-Tena
- Facultad de Enfermería, Universidad de Oviedo, Instituto Nacional de Silicosis and GRUBIPU-ISPA, Spain.
| |
Collapse
|
17
|
Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Int J Pharm 2020; 587:119599. [DOI: 10.1016/j.ijpharm.2020.119599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
|
18
|
Non-intrusive high resolution in-vitro measurement of regional drug powder deposition. Int J Pharm 2020; 582:119286. [PMID: 32278719 DOI: 10.1016/j.ijpharm.2020.119286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 01/15/2023]
Abstract
Optical Coherence Tomography (OCT) is a high-resolution and non-invasive cross-sectional imaging technique mainly used for medical imaging and industrial non-destructive testing. However, its feasibility in the quantification of pulmonary drug deposition has not been investigated. In this study, an optically accessible airway model of the upper airway and the tracheobronchial tree was used, and experiments were performed at flow rates of 40 L/min, 60 L/min and 80 L/min. Drug deposition in different regions of the airway cast has been determined and quantified from OCT images of the deposition layer. Regionally resolved measurement of deposition shows that flow rate has a significant effect (p = 0.04) on the average thickness of the deposition layer in the upper airway but not in the tracheobronchial tree under these test conditions. These localized and high-resolution measurements of deposition also demonstrate that the flow rate can influence the spatial uniformity of the deposition layer. The technique is able to provide significant regional drug deposition details, including the thickness, spatial deposition pattern and micro-cavities in the deposition layer, that would potentially serve to assess the efficacy of inhalation drug delivery systems.
Collapse
|
19
|
Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. Development of human respiratory airway models: A review. Eur J Pharm Sci 2020; 145:105233. [DOI: 10.1016/j.ejps.2020.105233] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
|
20
|
Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, Cossio U, Kassinos S, Verbanck S, Ruiz-Cabello J, Santos A, Koch E, Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur J Pharm Sci 2018; 113:95-131. [DOI: 10.1016/j.ejps.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
|
21
|
Koullapis P, Kassinos SC, Muela J, Perez-Segarra C, Rigola J, Lehmkuhl O, Cui Y, Sommerfeld M, Elcner J, Jicha M, Saveljic I, Filipovic N, Lizal F, Nicolaou L. Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. Eur J Pharm Sci 2017; 113:77-94. [PMID: 28890203 DOI: 10.1016/j.ejps.2017.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future.
Collapse
Affiliation(s)
- P Koullapis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - S C Kassinos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - J Muela
- Heat and Mass Transfer Technological Centre, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - C Perez-Segarra
- Heat and Mass Transfer Technological Centre, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - J Rigola
- Heat and Mass Transfer Technological Centre, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - O Lehmkuhl
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Y Cui
- Chair of Applied Mechanics, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - M Sommerfeld
- Institute of Process Engineering, Otto von Guericke-University Magdeburg, Halle, Germany
| | - J Elcner
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - M Jicha
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - I Saveljic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - N Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - F Lizal
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - L Nicolaou
- Department of Mechanical Engineering, Imperial College London, London, UK.
| |
Collapse
|
22
|
Nordlund M, Belka M, Kuczaj AK, Lizal F, Jedelsky J, Elcner J, Jicha M, Sauser Y, Le Bouhellec S, Cosandey S, Majeed S, Vuillaume G, Peitsch MC, Hoeng J. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract. Inhal Toxicol 2017; 29:113-125. [DOI: 10.1080/08958378.2017.1315196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Markus Nordlund
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Miloslav Belka
- Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Arkadiusz K. Kuczaj
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
- Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Frantisek Lizal
- Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Jedelsky
- Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jakub Elcner
- Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Jicha
- Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Youri Sauser
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Soazig Le Bouhellec
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stephane Cosandey
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Grégory Vuillaume
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
23
|
Lizal F, Elcner J, Belka M, Jedelsky J, Jicha M. Prediction of localized aerosol deposition in a realistic replica of human airways using experimental data and numerical simulation. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Kolanjiyil AV, Kleinstreuer C. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation. Comput Biol Med 2016; 79:193-204. [PMID: 27810625 DOI: 10.1016/j.compbiomed.2016.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/18/2023]
Abstract
Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing. In Part I, the present new whole-lung-airway model (WLAM) represents the actual lung geometry via a basic 3-D mouth-to-trachea configuration while all subsequent airways are lumped together, i.e., reduced to an exponentially expanding 1-D conduit. The diameter for each generation of the 1-D extension can be obtained on a subject-specific basis from the calculated total volume which represents each generation of the individual. The alveolar volume was added based on the approximate number of alveoli per generation. A wall-displacement boundary condition was applied at the bottom surface of the first-generation WLAM, so that any breathing pattern due to the negative alveolar pressure can be reproduced. Specifically, different inhalation/exhalation scenarios (rest, exercise, etc.) were implemented by controlling the wall/mesh displacements to simulate realistic breathing cycles in the WLAM. Total and regional particle deposition results agree with experimental lung deposition results. The outcomes provide critical insight to and quantitative results of aerosol deposition in human whole-lung airways with modest computational resources. Hence, the WLAM can be used in analyzing human exposure to toxic particulate matter or it can assist in estimating pharmacological effects of administered drug-aerosols. As a practical WLAM application, the transport and deposition of asthma drugs from a commercial dry-powder inhaler is discussed in Part II.
Collapse
Affiliation(s)
- Arun V Kolanjiyil
- Department of Mechanical & Aerospace Engineering, North Carolina State University Raleigh, NC 27695, USA
| | - Clement Kleinstreuer
- Department of Mechanical & Aerospace Engineering, North Carolina State University Raleigh, NC 27695, USA; Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University Raleigh, NC 27695, USA.
| |
Collapse
|