1
|
Fan XC, Zhao DW, Zhao YX, Liu F, Cheng L. Three-dimensional-printed guide plate for direct percutaneous pedicle screw implantation in minimally invasive transforaminal lumbar interbody fusion surgery: a retrospective study of 162 patients. J Orthop Surg Res 2024; 19:694. [PMID: 39456065 PMCID: PMC11520035 DOI: 10.1186/s13018-024-05135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND This study aimed to investigate the impact of three-dimensional (3D)-printed guide plate-assisted percutaneous pedicle screw implantation on minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) surgery. METHODS Overall, 162 patients who underwent MIS-TLIF at Tai'an City Central Hospital were retrospectively reviewed. The studied variables included operative time, volume of intraoperative blood loss, fluoroscopy time, postoperative drainage volume, visual analogue scale (VAS) score, Oswestry disability Index (ODI) score (preoperatively and at 2 weeks, 3 months, 6 months, and 12 months after surgery), and intervertebral fusion rate at 6 months after surgery. RESULTS The conventional group included 99 patients who underwent a conventional procedure, while the 3D printing group included 63 patients who underwent 3D-printed guide plate-assisted percutaneous pedicle screw implantation. The conventional group required more times of positioning needle punctures than the 3D printing group (22.2 ± 5.9 vs. 16.1 ± 4.9). The operation and fluoroscopy time were also longer in the former group (183.5 ± 51.1 min vs. 148.8 ± 40.3 min and 30.2 ± 5.9 s vs. 24.1 ± 4.9 s, respectively). In 3D printing group, lower back pain VAS scores and ODI scores at 2 weeks and 3 months after surgery were observed. There were no significant differences in terms of the volumes of intraoperative blood loss; postoperative lower limb pain VAS scores; and interbody fusion rate (P > 0.05). CONCLUSION The novel 3D-printed guide plate-assisted percutaneous pedicle screw implantation can achieve better amelioration of back pain and recovery of function. It also reduced the times of positioning needle puncture and fluoroscopy time during percutaneous screw placement surgery and reduced the duration of surgery.
Collapse
Affiliation(s)
- Xin-Cheng Fan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Orthopedics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yi-Xiang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Feng Liu
- Department of Orthopedics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China.
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
You KH, Cho SK, Hwang JY, Cha SH, Kang MS, Park SM, Park HJ. Effect of Cage Material and Size on Fusion Rate and Subsidence Following Biportal Endoscopic Transforaminal Lumbar Interbody Fusion. Neurospine 2024; 21:973-983. [PMID: 39363473 PMCID: PMC11456953 DOI: 10.14245/ns.2448244.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Biportal endoscopic transforaminal lumbar interbody fusion (BE-TLIF) is an emerging, minimally invasive technique performed under biportal endoscopic guidance. However, concerns regarding cage subsidence and sufficient fusion during BE-TLIF necessitate careful selection of an appropriate interbody cage to improve surgical outcomes. This study compared the fusion rate, subsidence, and other radiographic parameters according to the material and size of the cages used in BE-TLIF. METHODS In this retrospective cohort study, patients who underwent single-segment BE-TLIF between April 2019 and February 2023 were divided into 3 groups: group A, regular-sized three-dimensionally (3D)-printed titanium cages; group B, regular-sized polyetheretherketone cages; and group C, large-sized 3D-printed titanium cages. Radiographic parameters, including lumbar lordosis, segmental lordosis, anterior and posterior disc heights, disc angle, and foraminal height, were measured before and after surgery. The fusion rate and severity of cage subsidence were compared between the groups. RESULTS No significant differences were noted in the demographic data or radiographic parameters between the groups. The fusion rate on 1-year postoperative computed tomography was comparable between the groups. The cage subsidence rate was significantly lower in group C than in group A (41.9% vs. 16.7%, p=0.044). The severity of cage subsidence was significantly lower in group C (0.93±0.83) than in groups A (2.20±1.84, p=0.004) and B (1.79±1.47, p=0.048). CONCLUSION Cage materials did not affect the 1-year postoperative outcomes of BE-TLIF; however, subsidence was markedly reduced in large cages. Larger cages may provide more stable postoperative segments.
Collapse
Affiliation(s)
- Ki-Han You
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae-Yeun Hwang
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sun-Ho Cha
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min-Seok Kang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang-Min Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Jin Park
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
4
|
Sharma S, Pahuja S, Gupta V, Singh G, Singh J. 3D printing for spine pathologies: a state-of-the-art review. Biomed Eng Lett 2023; 13:579-589. [PMID: 37872993 PMCID: PMC10590361 DOI: 10.1007/s13534-023-00302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/25/2023] Open
Abstract
Three-Dimensional Printing has advanced throughout the years in the field of biomedical science with applications, especially in spine surgeries. 3D printing has the ability of fabricating highly complex structures with ease and high dimensional accuracy. The complexity of the spine's architecture and the inherent dangers of spinal surgery bring the evaluation of 3D printed models into consideration. This article summarizes the benefits of 3D printing based models for application in spine pathology. 3D printing technique is extensively used for fabrication of anatomical models, surgical guides and patient specific implants (PSI). The 3D printing based anatomical models assist in preoperative planning and training of students. Furthermore, 3D printed models can be used for improved communication and understanding of patients about the spinal disorders. The use of 3D printed surgical guides help in the stabilization of the spine during surgery, improving post procedural outcomes. Improved surgical results can be achieved by using PSIs that are tailored for patient specific needs. Finally, this review discusses the limitations and potential future scope of 3D printing in spine pathologies. 3D printing is still in its infancy, and further research would provide better understanding of the technology's true potential in spinal procedures.
Collapse
Affiliation(s)
- Shrutika Sharma
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Sanchita Pahuja
- Biomedical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Vishal Gupta
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Gyanendra Singh
- Physical Sciences, Inter University Centre for Teacher Education, Varanasi, 221005 India
| | - Jaskaran Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
5
|
Morris JM, Wentworth A, Houdek MT, Karim SM, Clarke MJ, Daniels DJ, Rose PS. The Role of 3D Printing in Treatment Planning of Spine and Sacral Tumors. Neuroimaging Clin N Am 2023; 33:507-529. [PMID: 37356866 DOI: 10.1016/j.nic.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Three-dimensional (3D) printing technology has proven to have many advantages in spine and sacrum surgery. 3D printing allows the manufacturing of life-size patient-specific anatomic and pathologic models to improve preoperative understanding of patient anatomy and pathology. Additionally, virtual surgical planning using medical computer-aided design software has enabled surgeons to create patient-specific surgical plans and simulate procedures in a virtual environment. This has resulted in reduced operative times, decreased complications, and improved patient outcomes. Combined with new surgical techniques, 3D-printed custom medical devices and instruments using titanium and biocompatible resins and polyamides have allowed innovative reconstructions.
Collapse
Affiliation(s)
- Jonathan M Morris
- Division of Neuroradiology, Department of Radiology, Anatomic Modeling Unit, Biomedical and Scientific Visualization, Mayo Clinic, 200 1st Street, Southwest, Rochester, MN, 55905, USA.
| | - Adam Wentworth
- Department of Radiology, Anatomic Modeling Unit, Mayo Clinic, Rochester, MN, USA
| | - Matthew T Houdek
- Division of Orthopedic Oncology, Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - S Mohammed Karim
- Division of Orthopedic Oncology, Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Peter S Rose
- Division of Orthopedic Oncology, Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
7
|
Yue J, Han Q, Chen H, Zhang A, Liu Y, Gong X, Wang Y, Wang J, Wu M. Artificial lamina after laminectomy: Progress, applications, and future perspectives. Front Surg 2023; 10:1019410. [PMID: 36816003 PMCID: PMC9932198 DOI: 10.3389/fsurg.2023.1019410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
In clinical practice, laminectomy is a commonly used procedure for spinal decompression in patients suffering from spinal disorders such as ossification of ligamentum flavum, lumbar stenosis, severe spinal fracture, and intraspinal tumors. However, the loss of posterior column bony support, the extensive proliferation of fibroblasts and scar formation after laminectomy, and other complications (such as postoperative epidural fibrosis and iatrogenic instability) may cause new symptoms requiring revision surgery. Implantation of an artificial lamina prosthesis is one of the most important methods to avoid post-laminectomy complications. Artificial lamina is a type of synthetic lamina tissue made of various materials and shapes designed to replace the resected autologous lamina. Artificial laminae can provide a barrier between the dural sac and posterior soft tissues to prevent postoperative epidural fibrosis and paravertebral muscle compression and provide mechanical support to maintain spinal alignment. In this paper, we briefly review the complications of laminectomy and the necessity of artificial lamina, then we review various artificial laminae from clinical practice and laboratory research perspectives. Based on a combination of additive manufacturing technology and finite element analysis for spine surgery, we propose a new designing perspective of artificial lamina for potential use in clinical practice.
Collapse
Affiliation(s)
- Jing Yue
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study. SURGERIES 2022. [DOI: 10.3390/surgeries3030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
More contemporary options have been presented in the last few years as surgical methods and materials have improved in patients with degenerative spine illnesses. The use of biologically integrated titanium cages of a unique design based on computer 3D modeling for the surgical treatment of patients with degenerative illnesses of the spine’s intervertebral discs has been proposed and experimentally tested. The goal of this study is to compare the radiographic and clinical outcomes of lumbar posterior interbody fusion with a 3D porous titanium alloy cage versus a titanium-coated polyetheretherketone (PEEK) cage, including fusion quality, time to fusion, preoperative and postoperative patient assessments, and the presence, severity, and other side effect characteristics. (1) Methods: According to the preceding technique, patients who were operated on with physiologically integrated titanium cages of a unique design based on 3D computer modeling were included in the study group. This post-surveillance study was conducted as a randomized, prospective, interventional, single-blind, center study to look at the difference in infusion rates and the difference compared to PEEK cages. The patients were evaluated using CT scans, Oswestry questionnaires (every 3, 6, and 12 months), and VAS scales. (2) Results: Six months following surgery, the symptoms of fusion and the degree of cage deflation in the group utilizing the porous titanium 3D cage were considerably lower than in the group using the PEEK cage (spinal fusion sign, p = 0.044; cage subsidence, p = 0.043). The control group had one case of cage migration into the spinal canal with screw instability, one case of screw instability without migration but with pseudoarthrosis formation and two surrounding segment syndromes with surgical revisions compared with the 3D porous titanium alloy cage group. (3) Conclusions: The technique for treating patients with degenerative disorders or lumbar spine instability with aspects of neural compression utilizing biologically integrated titanium cages of a unique design based on computer 3D printing from CT scans has been proven. This allows a new approach of spinal fusion to be used in practice, restoring the local sagittal equilibrium of the spinal motion segment and lowering the risk of pseudarthrosis and revision surgery.
Collapse
|
9
|
Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat 2022; 34:22-41. [PMID: 35615638 PMCID: PMC9117878 DOI: 10.1016/j.jot.2022.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background With increasing requirements for medical effects, and huge differences among individuals, traditional surgical instruments are difficult to meet the patients' growing medical demands. 3D printing is increasingly mature, which connects to medical services critically as well. The patient specific surgical guide plate provides the condition for precision medicine in orthopaedics. Methods In this paper, a systematic review of the orthopedic guide template is presented, where the history of 3D-printing-guided technology, the process of guides, and basic clinical applications of orthopedic guide templates are described. Finally, the limitations of the template and possible future directions are discussed. Results The technology of 3D printing surgical templates is increasingly mature, standard, and intelligent. With the help of guide templates, the surgeon can easily determine the direction and depth of the screw path, and choose the angle and range of osteotomy, increasing the precision, safety, and reliability of the procedure in various types of surgeries. It simplifies the difficult surgical steps and accelerates the growth of young and mid-career physicians. But some problems such as cost, materials, and equipment limit its development. Conclusions In different fields of orthopedics, the use of guide templates can significantly improve surgical accuracy, shorten the surgical time, and reduce intraoperative bleeding and radiation. With the development of 3D printing, the guide template will be standardized and simplified from design to production and use. 3D printing guides will be further sublimated in the application of orthopedics and better serve the patients. The translational potential of this paper Precision, intelligence, and individuation are the future development direction of orthopedics. It is more and more popular as the price of printers falls and materials are developed. In addition, the technology of meta-universe, digital twin, and artificial intelligence have made revolutionary effects on template guides. We aim to summarize recent developments and applications of 3D printing guide templates for engineers and surgeons to develop more accurate and efficient templates.
Collapse
|
10
|
|
11
|
Kozior T, Bochnia J, Gogolewski D, Zmarzły P, Rudnik M, Szot W, Szczygieł P, Musiałek M. Analysis of Metrological Quality and Mechanical Properties of Models Manufactured with Photo-Curing PolyJet Matrix Technology for Medical Applications. Polymers (Basel) 2022; 14:408. [PMID: 35160399 PMCID: PMC8839167 DOI: 10.3390/polym14030408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
This paper presents the metrological quality and mechanical properties of models in the form of hook holders manufactured from MED610 polymer material using PolyJet Matrix (PJM) technology. Measurements in the dimensional and shape analysis were made using the optical method with a microscope. The mechanical test was estimated by static tensile testing of the fabricated parts. A comprehensive approach to both the analysis of test results based on standardized samples and real hook models makes the presented results of great scientific and engineering value and creates the possibility of practical use in the medical industry, which has not been so comprehensively presented in the currently published research papers. Analyzing the results of measurements of the geometrical characteristics of the elements, it can be concluded that the PolyJet Matrix 3D printing technology has demonstrated a high level of precision in manufacturing the prototype parts. The static tensile test of samples, taking into account the printing directions, showed a high anisotropy of mechanical properties. The results of both strength and simulation tests indicate that it is necessary to assume a relatively high safety factor, the value of which depends on the direction of printing, which, in the case of such a responsible medical application, is very important.
Collapse
Affiliation(s)
- Tomasz Kozior
- Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland; (J.B.); (D.G.); (P.Z.); (M.R.); (W.S.); (P.S.); (M.M.)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koh JC, Jang YK, Seong H, Lee KH, Jun S, Choi JB. Creation of a three-dimensional printed spine model for training in pain procedures. J Int Med Res 2021; 49:3000605211053281. [PMID: 34743631 PMCID: PMC8579332 DOI: 10.1177/03000605211053281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Technological developments have made it possible to create simulation models to educate clinicians on surgical techniques and patient preparation. In this study, we created an inexpensive lumbar spine phantom using patient data and analyzed its usefulness in clinical education. METHODS This randomized comparative study used computed tomography and magnetic resonance imaging data from a single patient to print a three-dimensional (3D) bone framework and create a mold. The printed bones and structures made from the mold were placed in a simulation model that was used to train residents. The residents were divided into two groups: Group L, which received only an audiovisual lecture, and Group P, which received an additional 1 hour of training using the 3D phantom. The performance of both groups was evaluated using pretest and post-test analyses. RESULTS Both the checklist and global rating scores increased after training in both groups. However, some variables improved significantly only in Group P. The overall satisfaction score was also higher in Group P than in Group L. CONCLUSIONS We have described a method by which medical doctors can create a spine simulation phantom and have demonstrated its efficiency for procedural education.
Collapse
Affiliation(s)
- Jae Chul Koh
- Department of Anesthesiology and Pain Medicine, 37997Korea University Anam Hospital, Korea University Anam Hospital, Seoul, Korea
| | - Yoo Kyung Jang
- Department of Anesthesiology and Pain Medicine, 37997Korea University Anam Hospital, Korea University Anam Hospital, Seoul, Korea
| | - Hyunyoung Seong
- Department of Anesthesiology and Pain Medicine, 37997Korea University Anam Hospital, Korea University Anam Hospital, Seoul, Korea
| | - Kae Hong Lee
- Department of Anesthesiology and Pain Medicine, 37997Korea University Anam Hospital, Korea University Anam Hospital, Seoul, Korea
| | - Seungwoo Jun
- Department of Anesthesiology and Pain Medicine, 37997Korea University Anam Hospital, Korea University Anam Hospital, Seoul, Korea
| | - Jong Bum Choi
- Department of Anesthesiology and Pain Medicine, 65783Ajou University Hospital, Ajou University Hospital, Suwon, Korea
| |
Collapse
|
13
|
Canseco JA, Karamian BA, Patel PD, Divi SN, Timmons T, Hallman H, Nachwalter R, Lee JK, Kurd MF, Anderson DG, Rihn JA, Hilibrand AS, Kepler CK, Vaccaro AR, Schroeder GD. PEEK Versus Titanium Static Interbody Cages: A Comparison of 1-Year Clinical and Radiographic Outcomes for 1-Level TLIFs. Clin Spine Surg 2021; 34:E483-E493. [PMID: 34369911 DOI: 10.1097/bsd.0000000000001201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
STUDY DESIGN This was a retrospective cohort study. OBJECTIVE This study evaluates the patient-reported Health Related Quality of Life outcomes and radiographic parameters of patients who underwent a single level transforaminal lumbar interbody fusion with either a polyetheretherketone (PEEK) or titanium interbody cage. SUMMARY OF BACKGROUND DATA Spinal stenosis with instability is a common diagnosis that is often treated with interbody fusion, in particular transforaminal lumbar interbody fusion. Titanium and PEEK interbody cage properties have been extensively studied to understand their effect on fusion rates and subsidence. MATERIALS AND METHODS A retrospective cohort study was conducted from a single, high volume, academic hospital. Health Related Quality of Life outcomes were obtained from Outcomes Based Electronic Research Database and electronic medical record chart review. Subsidence was defined as a loss of 2 mm or more in the anterior or posterior disk height. Spinopelvic alignment parameters measured were sacral slope, pelvic tilt, pelvic incidence, lumbar lordosis, segmental lordosis, and pelvic incidence-lumbar lordosis mismatch. Fusion rates were assessed by the Brantigan-Steffee criteria. RESULTS The study included a total of 137 patients (108 PEEK, 29 titanium). Overall, no significant changes were noted between the 2 groups at 3 month or 1-year follow-up. Perioperatively, patients did report improvement in all outcome parameters within the PEEK and titanium groups. No significant difference was noted in subsidence rate between the 2 groups. Segmental lordosis significantly increased within the PEEK (+4.8 degrees; P<0.001) and titanium (+4.6 degrees; P=0.003) cage groups, however no difference was noted between groups. No significant difference was noted in fusion between the PEEK and titanium cage cohorts (92.6% vs. 86.2%; P=0.36). CONCLUSION Overall, while PEEK and titanium cages exhibit unique biomaterial properties, our study shows that there were no significant differences with respect to patient-reported outcomes or radiographic outcomes between the 2 groups at the 1-year follow-up time point. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Jose A Canseco
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meena VK, Kumar P, Kalra P, Sinha RK. Additive manufacturing for metallic spinal implants: A systematic review. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
15
|
A Systematic Review and Meta-Analysis of 3D Printing Technology for the Treatment of Acetabular Fractures. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5018791. [PMID: 34458367 PMCID: PMC8387177 DOI: 10.1155/2021/5018791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023]
Abstract
Purpose Three-dimensional (3D) printing technology has been widely used in orthopedics surgery. However, its efficacy in acetabular fractures remains unclear. The aim of this systematic review and meta-analysis was to examine the effect of using 3D printing technology in the surgery for acetabular fractures. Methods The systematic review was performed following the PRISMA guidelines. Four major electronic databases were searched (inception to February 2021). Studies were screened using a priori criteria. Data from each study were extracted by two independent reviewers and organized using a standardized table. Data were pooled and presented in forest plots. Results Thirteen studies were included in the final analysis. Four were prospective randomized trials, and nine used a retrospective comparative design. The patients aged between 32.1 (SD 14.6) years and 51.9 (SD 18.9) years. Based on the pooled analyses, overall, 3D printing-assisted surgery decreased operation time by 38.8 minutes (95% CI: -54.9, -22.8), intraoperative blood loss by 259.7 ml (95% CI: -394.6, -124.9), instrumentation time by 34.1 minutes (95% CI: -49.0, -19.1). Traditional surgery was less likely to achieve good/excellent function of hip (RR, 0.53; 95% CI: 0.34, 0.82) and more likely to have complications than 3D printing-assisted surgery (RR, 1.19; 95% CI: 1.07, 1.33). Conclusions 3D printing technology demonstrated efficacy in the treatment of acetabular fractures. It may improve surgery-related and clinical outcomes. More prospective studies using a rigorous design (e.g., randomized trial with blinding) are warranted to confirm the long-term effects of 3D printing technology in orthopedics surgeries.
Collapse
|
16
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
17
|
Wang W, Zhou C, Guo R, Cha T, Li G. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. J Mech Behav Biomed Mater 2021; 122:104661. [PMID: 34252706 DOI: 10.1016/j.jmbbm.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
This study investigated how variations of structural and material properties of human intervertebral discs (IVDs) affect the biomechanical responses of the IVDs under simulated physiological loading conditions using a stochastic finite element (SFE) model. An SFE method, which combined an anatomic FE model of human lumbar L3-4 segment and probabilistic analysis of its structural and material properties, was used to generate a dataset of 500 random disc samples with varying structural and material properties. The sensitivity of the biomechanical responses, including intervertebral displacements/rotations, intradiscal pressures (IDP), fiber stresses and matrix strains of annulus fibrosus (AF), were systematically quantified under various physiological loading conditions, including a 500N compression and 7.5Nm moments in the 3 primary rotations. Significant variations of the IDPs, IVD displacements/rotations, and stress/strain distributions were found using the dataset of 500 ramdom disc samples. Under all the loading conditions, the IDPs were positively correlated with the Poisson's ratio of the NP (r = 0.46 to 0.75, p = 0.004-0.001) and negatively with the Young's modulus of the annulus matrix (r = -0.48 to -0.65, p = 0.003-0.001). The primary intervertebral rotations were significantly affected by the Young's modulus of the annulus matrix (r = -0.44 to -0.71, p = 0.001-0.032) and the orientations of the annular fibers (r = -0.45 to -0.69, p = 0.001-0.029). The heterogeneity of structures and material properties of the IVD had distinct effects on the biomechanical performances of the IVD. These data could help improve our understanding of the intrinsic biomechanics of the IVD and provide references for optimal design of tissue engineered discs by controlling structural and material properties of the disc components.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
18
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
19
|
Fiani B, Newhouse A, Cathel A, Sarhadi K, Soula M. Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery. J Korean Neurosurg Soc 2021; 64:495-504. [PMID: 34139795 PMCID: PMC8273772 DOI: 10.3340/jkns.2020.0272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Alexander Newhouse
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Cathel
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Marisol Soula
- New York University School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Chen G, Muheremu A, Yang L, Wu X, He P, Fan H, Liu J, Chen C, Li Z, Wang F. Three-dimensional printed implant for reconstruction of pelvic bone after removal of giant chondrosarcoma: a case report. J Int Med Res 2021; 48:300060520917275. [PMID: 32290744 PMCID: PMC7160782 DOI: 10.1177/0300060520917275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Three-dimensional (3D) reconstruction has been used for various diseases, but
few reports have described its application in pelvic reconstruction after
removal of giant chondrosarcoma. Case reports describing the clinical
application of personalized 3D-printed titanium implants are needed for
future clinical reference. Case presentation: We herein describe a 29-year-old woman with a
giant chondrosarcoma treated with a personalized 3D titanium implant. The
surgery was successful, and the patient recovered with significant pain
relief and good functional recovery after the surgery. No implant-related
complications occurred during the 12-month follow-up. The current case
represents successful application of 3D printing technology to the treatment
of a massive bone defect due to the removal of a giant osteoporotic
tumor. Conclusions Personalized 3D titanium implants can be used in the reconstruction of
massive bone defects after the removal of giant pelvic sarcomas. The
methodology and results described in the current case report can be a used
as reference in the treatment of similar cases in future.
Collapse
Affiliation(s)
- Ge Chen
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P.R. China
| | | | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xianzhe Wu
- Chongqing Institute of Optics and Mechanics, Chongqing, P.R. China
| | - Peng He
- Chongqing ITMDC Technology Co., Ltd., Chongqing, P.R. China
| | - Huaquan Fan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Juncai Liu
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P.R. China
| | - Chang Chen
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P.R. China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P.R. China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
21
|
Murchio S, Dallago M, Zanini F, Carmignato S, Zappini G, Berto F, Maniglio D, Benedetti M. Additively manufactured Ti-6Al-4V thin struts via laser powder bed fusion: Effect of building orientation on geometrical accuracy and mechanical properties. J Mech Behav Biomed Mater 2021; 119:104495. [PMID: 33831659 DOI: 10.1016/j.jmbbm.2021.104495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Porous metal lattice structures have a very high potential in biomedical applications, setting as innovative new generation prosthetic devices. Laser powder bed fusion (L-PBF) is one of the most widely used additive manufacturing (AM) techniques involved in the production of Ti6Al4V lattice structures. The mechanical and failure behavior of lattice structures is strongly affected by geometrical imperfections and defects occurring during L-PBF process. Due to the influence of multiple process parameters and to their combined effect, the mechanical properties of these structures are not yet properly understood. Despite the major commitment to characterize and better comprehend lattice structures, little attention has been paid to the impact that single struts have on the overall lattice properties. In this work, the authors have investigated the tensile strength and fatigue behavior of thin L-PBF Ti6Al4V lattice struts at different building orientations (0°, 15°, 45°, and 90°). This investigation has been focused on the effect that microstructural defects (particularly porosity) and actual surface geometry (including surface texture and geometrical errors such as varying cross-section shape and size) have on the mechanical performances of the struts in relation to their building direction. The results have shown that there is a tendency, particularly for low printing angles, of fatigue life to decrease with decreasing of the building angle. This is mainly due to the surge in surface texture and loss in cross-sectional regularity. On the other hand, the monotonic tensile test results have shown a low sensitivity to these factors. The strut failure behavior has been examined employing dynamic digital image correlation (DIC) of tensile tests and scanning electron imaging (SEM) of the fracture surfaces.
Collapse
Affiliation(s)
- S Murchio
- Department of Industrial Engineering - DII, University of Trento, Trento, Italy; BIOtech Research Center, University of Trento, Trento, Italy.
| | - M Dallago
- Department of Industrial Engineering - DII, University of Trento, Trento, Italy
| | - F Zanini
- Department of Management and Engineering, University of Padua, Vicenza, Italy
| | - S Carmignato
- Department of Management and Engineering, University of Padua, Vicenza, Italy
| | - G Zappini
- Lincotek Medical Trento, Pergine Valsugana, Italy
| | - F Berto
- Department of Mechanical and Industrial Engineering, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - D Maniglio
- Department of Industrial Engineering - DII, University of Trento, Trento, Italy; BIOtech Research Center, University of Trento, Trento, Italy
| | - M Benedetti
- Department of Industrial Engineering - DII, University of Trento, Trento, Italy
| |
Collapse
|
22
|
Gao X, Wang H, Zhang X, Gu X, Liu Y, Zhou G, Luan S. Preparation of Amorphous Poly(aryl ether nitrile ketone) and Its Composites with Nano Hydroxyapatite for 3D Artificial Bone Printing. ACS APPLIED BIO MATERIALS 2020; 3:7930-7940. [PMID: 35019533 DOI: 10.1021/acsabm.0c01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEEK had been used to fabricate artificial bones by 3D printing widely, but it expressed unsatisfactory interlayer performance of 3D printing and weak compatibility with nano hydroxyapatite(nHA) due to the limits of molecular structures. Here an amorphous poly(aryl ether ketone) for 3D bone printing, PEK-CN, was designed and synthesized via nucleophilic substitution from 4,4'-difluorobenzophenone, phenolphthalein and 2,6-dichlorobenzonitrile, which possessed much stronger interlayer strength due to van der Waals force between polar groups(-CNs). Specifically, the stronger interlayer strength resulted in lower porosity(3% with 100% infill rate) and more comparable mechanical properties(the maximum tensile strength was ∼110 MPa) to cortical bone. Importantly, PEK-CN had passed in vitro cytotoxicity testing and samples of human mandible and maxillary bones based on PEK-CN were printed by fused deposition modeling(FDM) successfully. Moreover, PEK-CN/nHA composites were obtained to enhance bioactivity of resin, and PEK-CN without limits of crystal lattices expressed excellent compatibility with nano hydroxyapatite. Our work provided a high performance resin for 3D bone printing, which would bring better solutions for artificial bone materials.
Collapse
Affiliation(s)
- Xinshuai Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, Dalian 116023, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinming Gu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuzhe Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun 130022, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, Dalian 116023, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
23
|
Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT, Bowoto OK, Olawumi MA, Muhammad MA. 3D printing of PEEK–cHAp scaffold for medical bone implant. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00098-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Zhuang H, Wei F, Jiang L, Wang Y, Liu Z. Assessment of Spinal Tumor Treatment Using Implanted 3D-Printed Vertebral Bodies with Robotic Stereotactic Radiotherapy. Innovation (N Y) 2020; 1:100040. [PMID: 34557713 PMCID: PMC8454659 DOI: 10.1016/j.xinn.2020.100040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
To investigate the feasibility and early efficacy of 3D-printed vertebral body implantation combined with robotic radiosurgery in the treatment of spinal tumors. This study included 14 patients with spinal tumors from December 2017 to June 2018. Before surgery, all patients were subjected to CT scan and 3D data of the corresponding vertebral segments were collected. Titanium alloy formed 3D-printed vertebral body implantation and robotic stereotactic radiotherapy were performed because of the risk of postoperative residual, high risk of recovery, or recurrence after surgery. The main outcomes included the remission of symptoms, vertebral body stability, robotic stereotactic surgical precision, and local tumor control. All patients received complete and successful combination therapy, and all healed primarily without complications. The error of the coverage accuracy for robotic radiosurgery was less than 0.5 mm, and the error of the rotation angle was less than 0.5°. The therapeutic toxicity was limited (mainly in grades 1–2), and adverse events were uncommon. The evaluation of vertebral body stability and histocompatibility for all patients met the postoperative clinical requirements. For patients with post spinal injury, the pain symptoms were reduced or disappeared (93%), and nerve function was improved or even recovered after treatment (100%). During our follow-up period, most tumors were locally well controlled (93%). 3D- printed vertebral body implantation combined with robotic radiosurgery may offer a new treatment of spinal tumors. Chinese clinical trial registry: ChiCTR-ONN-17013946. With the development of 3D printing and robotic radiotherapy technology, the outcome of spinal tumors has been shown to have improving opportunities In this study, 14 patients with spinal tumor were treated by 3D printing vertebral body implantation combined with robotic radiotherapy, and the results showed that treatment could achieve requirements of spinal function perfectly and precisely kill the tumor 3D printing vertebral body implantation combined with robotic stereotactic radiotherapy might be a treatment revolution for spinal tumors
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, P.R. China
| | - Feng Wei
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, P.R. China
| | - Liang Jiang
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, P.R. China
| | - Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, P.R. China
| | - Zhongjun Liu
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, P.R. China
| |
Collapse
|
25
|
Sagittal en bloc resection of primary tumors in the thoracic and lumbar spine: feasibility, safety and outcome. Sci Rep 2020; 10:9108. [PMID: 32499491 PMCID: PMC7272461 DOI: 10.1038/s41598-020-65326-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
Abstract
This study is to test feasibility, safety and the outcome of sagittal en bloc resection of paravertebral primary tumors in the thoracic and the lumbar spine. Sagittal en bloc resection was planned based on WBB classification and performed via combined anterior-posterior or anterior-posterior-lateral approach in 9 consecutive patients with aggressive benign or malignant paravertebral primary tumors in the thoracic and lumbar spine. Surgical margins were evaluated both radiologically and histopathologically. Follow-up data regarding survival rate, local control, morbidity, hardware failure and postoperative function were collected at around 2 years after surgery. En bloc resection was achieved in all patient with wide margin in 7/9 patients, marginal and intralesional margin in 2/9 patients. Survival rate and local control rate were 100%. There were 4/9 cases of major complications and 2/9 cases of minor complications with an overall morbidity rate of 67% (6/9). All but one patient with intraoperative spinal cord injury were free of neurological deficits and fully mobile in absence of any indication of hardware failure. With a careful choice of surgical procedure, sagittal en bloc resection of paravertebral primary tumor in the thoracic and lumbar spine is feasible, safe and effective.
Collapse
|
26
|
Tong Y, Kaplan DJ, Spivak JM, Bendo JA. Three-dimensional printing in spine surgery: a review of current applications. Spine J 2020; 20:833-846. [PMID: 31731009 DOI: 10.1016/j.spinee.2019.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023]
Abstract
In recent years, the use of three-dimensional printing (3DP) technology has gained traction in orthopedic spine surgery. Although research on this topic is still primarily limited to case reports and small cohort studies, it is evident that there are many avenues for 3DP innovation in the field. This review article aims to discuss the current and emerging 3DP applications in spine surgery, as well as the challenges of 3DP production and limitations in its use. 3DP models have been presented as helpful tools for patient education, medical training, and presurgical planning. Intraoperatively, 3DP devices may serve as patient-specific surgical guides and implants that improve surgical outcomes. However, the time, cost, and learning curve associated with constructing a 3DP model are major barriers to widespread use in spine surgery. Considering the costs and benefits of 3DP along with the varying risks associated with different spine procedures, 3DP technology is likely most valuable for complex or atypical spine disorder cases. Further research is warranted to gain a better understanding of how 3DP can and will impact spine surgery.
Collapse
Affiliation(s)
- Yixuan Tong
- New York University Grossman School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel James Kaplan
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - Jeffrey M Spivak
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - John A Bendo
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA.
| |
Collapse
|
27
|
Basgul C, MacDonald DW, Siskey R, Kurtz SM. Thermal Localization Improves the Interlayer Adhesion and Structural Integrity of 3D printed PEEK Lumbar Spinal Cages. MATERIALIA 2020; 10:100650. [PMID: 32318685 PMCID: PMC7172383 DOI: 10.1016/j.mtla.2020.100650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Additive manufacturing (AM) is a potential application for polyetheretherketone (PEEK) spinal interbody fusion cages, which were introduced as an alternative to titanium cages because of their biocompatibility, radiolucency and strength. However, AM of PEEK is challenging due to high melting temperature and thermal gradient. Although fused filament fabrication (FFF) techniques have been shown to 3D print PEEK, layer delamination was identified in PEEK cages printed with a first generation FFF PEEK printer [1]. A standard cage design [2] was 3D printed with a second generation FFF PEEK printer. The effect of changing layer cooling time on FFF cages' mechanical strength was investigated by varying nozzle sizes (0.2 mm and 0.4 mm), print speeds (1500 and 2500 mm/min), and the number of cages printed in a single build (1, 4 and 8). To calculate the porosity percentage, FFF cages were micro-CT scanned prior to destructive testing. Mechanical tests were then conducted on FFF cages according to ASTM F2077 [2]. Although altering the cooling time of a layer was not able to change the failure mechanism of FFF cages, it was able to improve cages' mechanical strength. Printing a single cage per build caused a higher ultimate load than printing multiple cages per build. Regardless of the cage number printed per build, cages printed with bigger nozzle diameter achieved higher ultimate load compared to cages printed with smaller nozzle diameter. Printing with a bigger nozzle diameter resulted in less porosity, which might have an additional affect on the interlayer delamination failure mechanism.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Daniel W. MacDonald
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan Siskey
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| | - Steven M. Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| |
Collapse
|
28
|
Yu C, Ou Y, Xie C, Zhang Y, Wei J, Mu X. Pedicle screw placement in spinal neurosurgery using a 3D-printed drill guide template: a systematic review and meta-analysis. J Orthop Surg Res 2020; 15:1. [PMID: 31900192 PMCID: PMC6942326 DOI: 10.1186/s13018-019-1510-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Background Many surgeons believe that the use of a 3D-printed drill guide template shortens operative time and reduces intraoperative blood loss compared with those of the free-hand technique. In this study, we investigated the effects of a drill guide template on the accuracy of pedicle screw placement (the screw placed completely in the pedicle), operative time, and intraoperative blood loss. Materials/Methods We systematically searched the major databases, such as Medline via PubMed, EMBASE, Ovid, Cochrane Library, and Google Scholar, regarding the accuracy of pedicle screw placement, operative time, and intraoperative blood loss. The χ2 test and I2 statistic were used to examine heterogeneity. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the accuracy rate of pedicle screw placement, and weighted mean differences (WMDs) with 95% CIs were utilized to express operative time and intraoperative blood loss. Results This meta-analysis included 13 studies (seven randomized controlled trials and six prospective cohort studies) involving 446 patients and 3375 screws. The risk of research bias was considered moderate. Operative time (WMD = − 20.75, 95% CI − 33.20 ~ − 8.29, P = 0.001) and intraoperative blood loss (WMD = − 106.16, 95% CI − 185.35 ~ − 26.97, P = 0.009) in the thoracolumbar vertebrae, evaluated by a subgroup analysis, were significantly different between groups. The 3D-printed drill guide template has advantages over the free-hand technique and improves the accuracy of pedicle screw placement (OR = 2.88; 95% CI, 2.39~3.47; P = 0.000). Conclusion The 3D-printed drill guide template can improve the accuracy rate of pedicle screw placement, shorten operative time, and reduce intraoperative blood loss.
Collapse
Affiliation(s)
- Chengqiang Yu
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yufu Ou
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Chengxin Xie
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yu Zhang
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jianxun Wei
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China.
| | - Xiaoping Mu
- Department of Orthopaedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China.
| |
Collapse
|
29
|
The Accuracy of 3D Printing Assistance in the Spinal Deformity Surgery. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7196528. [PMID: 31828123 PMCID: PMC6885147 DOI: 10.1155/2019/7196528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/21/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022]
Abstract
Background The pedicle screw is one of the main tools used in spinal deformity correction surgery. Robotic and navigated surgeries are usually used, and they provide superior accuracy in pedicle screw placement than free-hand and fluoroscopy-guided techniques. However, their high cost and space limitation are problematic. We provide a new solution using 3D printing technology to facilitate spinal deformity surgery. Methods A workflow was developed to assist spinal deformity surgery using 3D printing technology. The trajectory and profile of pedicle screws were determined on the image system by the surgical team. The engineering team designed drill templates based on the bony surface anatomy and the trajectory of pedicle screws. Their effectiveness and safety were evaluated during a preoperative simulation surgery. The surgery consisted in making a pilot hole through the drill template on a computed tomography- (CT-) based, full-scale 3D spine model for every planned segment. Somatosensory evoke potential (SSEP) and motor evoke potential (MEP) were used for intraoperative neurophysiological monitoring. Postoperative CT was obtained 6 months after the correction surgery to confirm the screw accuracy. Results From July 2015 to November 2016, we performed 10 spinal deformity surgeries with 3D printing technology assistance. In total, 173 pedicle screws were implanted using drill templates. No notable change in SSEP and MEP or neurologic deficit was noted. Based on postoperative CT scans, the acceptable rate was 97.1% (168/173). We recorded twelve pedicle screws with medial breach, six with lateral breach, and five with inferior breach. Medial breach (12/23) was the main type of penetration. Lateral breach occurred mostly in the concave side (5/6). Most penetrations occurred above the T8 level (69.6%, 16/23). Conclusion 3D printing technology provides an effective alternative for spinal deformity surgery when expensive medical equipment, such as intraoperative navigation and robotic systems, is unavailable.
Collapse
|
30
|
López Gualdrón CI, Bravo Ibarra ER, Murillo Bohórquez AP, Garnica Bohórquez I. Present and future for technologies to develop patient-specific medical devices: a systematic review approach. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:253-273. [PMID: 31496840 PMCID: PMC6689557 DOI: 10.2147/mder.s215947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
The main purpose of this investigation was to systematically review the literature regarding case studies on patient-specific implants and devices, with the goal of analyzing the process of developing custom-made medical devices. A content analysis was performed to identify design processes and methodologies implemented to develop devices such as implants adapted to bone geometries. Reverse engineering, computer-aided design, simulation of assets, and rapid prototyping technologies were selected according to their interoperability in a process framework for developing new products. Finally, results from the case studies and process stages identified in the consulted research were analyzed. These results showed a relationship between the scope and complexity of the process and the stage of technology integration of the patient-specific device development. The analyzed case studies were characterized by technical, scientific, and multidisciplinary components to achieve research goals. Likewise, integration of technologies using patient-specific technologies is needed for product development that converges into designing devices, such as implants, biomodels, and cutting drilling guides.
Collapse
Affiliation(s)
| | - Edna-Rocío Bravo Ibarra
- Industrial and Business Studies School, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Israel Garnica Bohórquez
- Industrial and Business Studies School, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
31
|
|
32
|
Bouguéon G, Kauss T, Dessane B, Barthélémy P, Crauste-Manciet S. Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discov Today 2019; 24:163-178. [DOI: 10.1016/j.drudis.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
|
33
|
Wang Y, Chen X, Zhang C, Feng W, Zhang P, Chen Y, Huang J, Luo Y, Chen J. Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments. Proc Inst Mech Eng H 2018; 233:170-180. [PMID: 30565502 DOI: 10.1177/0954411918816114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomaterials have been widely used for stomatological reconstructive surgery in recent years. Many studies have demonstrated that the porous structure of an implant promotes bone ingrowth and its stiffness can be controlled via the design of the porosity. Although some researchers have paid attention to investigating the porous structure for dental implants, the biomechanical properties and osseointegration have not been well studied. In this study, finite element analysis and experiments have been used to evaluate the biomechanical performance and osseointegration of dental implants with porous/solid structures fabricated by selective laser melting using commercially pure titanium (CP-Ti, Grade 2). The implants were tested and the fracture surfaces were observed by scanning electron microscope to investigate the failure mechanisms. To reduce bone resorption, the porosity of dental implant was designed to optimize its stiffness. Finally, animal experiments revealed that bone tissue ingrowth was seen into the porous structure. It is believed that the porous dental implants have great potential in future applications.
Collapse
Affiliation(s)
- Yaling Wang
- The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
| | - Xianshuai Chen
- Guangzhou Janus Biotechnology Co., Ltd, Guangzhou, China
- The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunyu Zhang
- Foshan Angels Biotechnology Co., Ltd, Foshan, China
| | - Wei Feng
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Shenzhen, China
| | - Peng Zhang
- Foshan Stomatology Hospital, Foshan, China
| | - Yang Chen
- Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaming Huang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Shenzhen, China
| | - Yuanxin Luo
- The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
| | - Jianyu Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Development of a Virtual Reality Preoperative Planning System for Postlateral Endoscopic Lumbar Discectomy Surgery and Its Clinical Application. World Neurosurg 2018; 123:e1-e8. [PMID: 30144600 DOI: 10.1016/j.wneu.2018.08.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Percutaneous endoscopic lumbar discectomy is an effective way to treat lumbar disc herniation. Traditional preoperative planning based on a 2-dimensional method by magnetic resonance/computed tomography may cause inaccuracy of puncture during surgery. We used virtual reality to stimulate a surgery environment and measured relevant 3-dimensional data. We then explored its applicability for increasing puncture accuracy during actual surgeries. METHODS A prospective randomized trial of lumbar disc herniation was conducted. Both conventional and virtual reality methods were used for preoperative planning and relevant data (planned puncture point and entry angle) were measured. Data were used during surgery and adjusted to complete the operation. The final entry point and entry angle were recorded and compared with relevant planned data statistically. Fluoroscopic times and location time also were included to access the puncture accuracy during surgery. RESULTS Thirty cases were included in our study. Both groups achieved good results after surgery, except for 1 case of postoperative dysesthesia in the traditional planning group and 1 case of residual disc in the virtual reality group. The use of virtual reality can predict a surgery-related angle and distance accurately except for depth. Compared with the traditional planning group, the fluoroscopic time (13.18 ± 4.191 vs. 32.00 ± 4.52) and location time (17.91 ± 4.74 vs. 33.22 ± 3.90) were statistically different, which indicates that this method can increase puncture accuracy. CONCLUSIONS A virtual reality planning system is an accurate preoperative planning method that can significantly improve the puncture accuracy of percutaneous endoscopic lumbar discectomy and reduce fluoroscopic and location times.
Collapse
|
35
|
Basgul C, Yu T, MacDonald DW, Siskey R, Marcolongo M, Kurtz SM. Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication. JOURNAL OF MATERIALS RESEARCH 2018; 33:2040-2051. [PMID: 30555210 PMCID: PMC6289530 DOI: 10.1557/jmr.2018.178] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in additive manufacturing technology now enable fused filament fabrication (FFF) of Polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the print head nozzle to investigate whether 3D printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D printed cages were 63-71% of the machined cages, whereas the torsion strength was 92%. Printing speed is an important printing parameter for 3D printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Tony Yu
- Materials Science and Engineering, Drexel University, Philadelphia, PA
| | - Daniel W. MacDonald
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan Siskey
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| | | | - Steven M. Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| |
Collapse
|
36
|
Lopez CD, Witek L, Torroni A, Flores RL, Demissie DB, Young S, Cronstein BN, Coelho PG. The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Defects Res 2018; 110:1055-1064. [PMID: 29781248 DOI: 10.1002/bdr2.1345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Craniomaxillofacial congenital anomalies comprise approximately one third of all congenital birth defects and include deformities such as alveolar clefts, craniosynostosis, and microtia. Current surgical treatments commonly require the use of autogenous graft material which are difficult to shape, limited in supply, associated with donor site morbidity and cannot grow with a maturing skeleton. Our group has demonstrated that 3D printed bio-ceramic scaffolds can generate vascularized bone within large, critical-sized defects (defects too large to heal spontaneously) of the craniomaxillofacial skeleton. Furthermore, these scaffolds are also able to function as a delivery vehicle for a new osteogenic agent with a well-established safety profile. The same 3D printers and imaging software platforms have been leveraged by our team to create sterilizable patient-specific intraoperative models for craniofacial reconstruction. For microtia repair, the current standard of care surgical guide is a two-dimensional drawing taken from the contralateral ear. Our laboratory has used 3D printers and open source software platforms to design personalized microtia surgical models. In this review, we report on the advancements in tissue engineering principles, digital imaging software platforms and 3D printing that have culminated in the application of this technology to repair large bone defects in skeletally immature transitional models and provide in-house manufactured, sterilizable patient-specific models for craniofacial reconstruction.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Biomaterials, NYU College of Dentistry, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lukasz Witek
- Department of Biomaterials, NYU College of Dentistry, New York, New York
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| | - David B Demissie
- Department of Biomaterials, NYU College of Dentistry, New York, New York
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center, Houston, Texas
| | | | - Paulo G Coelho
- Department of Biomaterials, NYU College of Dentistry, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| |
Collapse
|
37
|
3D Printing Applications in Minimally Invasive Spine Surgery. Minim Invasive Surg 2018; 2018:4760769. [PMID: 29805806 PMCID: PMC5899854 DOI: 10.1155/2018/4760769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
3D printing (3DP) technology continues to gain popularity among medical specialties as a useful tool to improve patient care. The field of spine surgery is one discipline that has utilized this; however, information regarding the use of 3DP in minimally invasive spine surgery (MISS) is limited. 3D printing is currently being utilized in spine surgery to create biomodels, hardware templates and guides, and implants. Minimally invasive spine surgeons have begun to adopt 3DP technology, specifically with the use of biomodeling to optimize preoperative planning. Factors limiting widespread adoption of 3DP include increased time, cost, and the limited range of diagnoses in which 3DP has thus far been utilized. 3DP technology has become a valuable tool utilized by spine surgeons, and there are limitless directions in which this technology can be applied to minimally invasive spine surgery.
Collapse
|
38
|
Chatham LS, Patel VV, Yakacki CM, Dana Carpenter R. Interbody Spacer Material Properties and Design Conformity for Reducing Subsidence During Lumbar Interbody Fusion. J Biomech Eng 2017; 139:2613838. [PMID: 28334320 DOI: 10.1115/1.4036312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 11/08/2022]
Abstract
There is a need to better understand the effects of intervertebral spacer material and design on the stress distribution in vertebral bodies and endplates to help reduce complications such as subsidence and improve outcomes following lumbar interbody fusion. The main objective of this study was to investigate the effects of spacer material on the stress and strain in the lumbar spine after interbody fusion with posterior instrumentation. A standard spacer was also compared with a custom-fit spacer, which conformed to the vertebral endplates, to determine if a custom fit would reduce stress on the endplates. A finite element (FE) model of the L4-L5 motion segment was developed from computed tomography (CT) images of a cadaveric lumbar spine. An interbody spacer, pedicle screws, and posterior rods were incorporated into the image-based model. The model was loaded in axial compression, and strain and stress were determined in the vertebra, spacer, and rods. Polyetheretherketone (PEEK), titanium, poly(para-phenylene) (PPP), and porous PPP (70% by volume) were used as the spacer material to quantify the effects on stress and strain in the system. Experimental testing of a cadaveric specimen was used to validate the model's results. There were no large differences in stress levels (<3%) at the bone-spacer interfaces and the rods when PEEK was used instead of titanium. Use of the porous PPP spacer produced an 8-15% decrease of stress at the bone-spacer interfaces and posterior rods. The custom-shaped spacer significantly decreased (>37%) the stress at the bone-spacer interfaces for all materials tested. A 28% decrease in stress was found in the posterior rods with the custom spacer. Of all the spacer materials tested with the custom spacer design, 70% porous PPP resulted in the lowest stress at the bone-spacer interfaces. The results show the potential for more compliant materials to reduce stress on the vertebral endplates postsurgery. The custom spacer provided a greater contact area between the spacer and bone, which distributed the stress more evenly, highlighting a possible strategy to decrease the risk of subsidence.
Collapse
Affiliation(s)
- Lillian S Chatham
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80204
| | - Vikas V Patel
- Department of Orthopaedic Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Christopher M Yakacki
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80204
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80204
| |
Collapse
|
39
|
Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J Surg Res 2017; 223:115-122. [PMID: 29433862 DOI: 10.1016/j.jss.2017.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vascularized bone tissue transfer, commonly used to reconstruct large mandibular defects, is challenged by long operative times, extended hospital stay, donor-site morbidity, and resulting health care. 3D-printed osseoconductive tissue-engineered scaffolds may provide an alternative solution for reconstruction of significant mandibular defects. This pilot study presents a novel 3D-printed bioactive ceramic scaffold with osseoconductive properties to treat segmental mandibular defects in a rabbit model. METHODS Full-thickness mandibulectomy defects (12 mm) were created at the mandibular body of eight adult rabbits and replaced by 3D-printed ceramic scaffold made of 100% β-tricalcium phosphate, fit to defect based on computed tomography imaging. After 8 weeks, animals were euthanized, the mandibles were retrieved, and bone regeneration was assessed. Bone growth was qualitatively assessed with histology and backscatter scanning electron microscopy, quantified both histologically and with micro computed tomography and advanced 3D image reconstruction software, and compared to unoperated mandible sections (UMSs). RESULTS Histology quantified scaffold with newly formed bone area occupancy at 54.3 ± 11.7%, compared to UMS baseline bone area occupancy at 55.8 ± 4.4%, and bone area occupancy as a function of scaffold free space at 52.8 ± 13.9%. 3D volume occupancy quantified newly formed bone volume occupancy was 36.3 ± 5.9%, compared to UMS baseline bone volume occupancy at 33.4 ± 3.8%, and bone volume occupancy as a function of scaffold free space at 38.0 ± 15.4%. CONCLUSIONS 3D-printed bioactive ceramic scaffolds can restore critical mandibular segmental defects to levels similar to native bone after 8 weeks in an adult rabbit, critical sized, mandibular defect model.
Collapse
|
40
|
Ghizoni E, de Souza JPSAS, Raposo-Amaral CE, Denadai R, de Aquino HB, Raposo-Amaral CA, Joaquim AF, Tedeschi H, Bernardes LF, Jardini AL. 3D-Printed Craniosynostosis Model: New Simulation Surgical Tool. World Neurosurg 2017; 109:356-361. [PMID: 29061457 DOI: 10.1016/j.wneu.2017.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Craniosynostosis is a complex disease once it involves deep anatomic perception, and a minor mistake during surgery can be fatal. The objective of this report is to present novel 3-dimensional-printed polyamide craniosynostosis models that can improve the understanding and treatment complex pathologies. METHODS The software InVesalius was used for segmentation of the anatomy image (from 3 patients between 6 and 9 months old). Afterward, the file was transferred to a 3-dimensional printing system and, with the use of an infrared laser, slices of powder PA 2200 were consecutively added to build a polyamide model of cranial bone. RESULTS The 3 craniosynostosis models allowed fronto-orbital advancement, Pi procedure, and posterior distraction in the operating room environment. All aspects of the craniofacial anatomy could be shown on the models, as well as the most common craniosynostosis pathologic variations (sphenoid wing elevation, shallow orbits, jugular foramen stenosis). Another advantage of our model is its low cost, about 100 U.S. dollars or even less when several models are produced. CONCLUSIONS Simulation is becoming an essential part of medical education for surgical training and for improving surgical safety with adequate planning. This new polyamide craniosynostosis model allowed the surgeons to have realistic tactile feedback on manipulating a child's bone and permitted execution of the main procedures for anatomic correction. It is a low-cost model. Therefore our model is an excellent option for training purposes and is potentially a new important tool to improve the quality of the management of patients with craniosynostosis.
Collapse
Affiliation(s)
- Enrico Ghizoni
- Department of Neurology, University of Campinas, São Paulo, Brazil.
| | | | | | - Rafael Denadai
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, São Paulo, Brazil
| | | | | | | | - Helder Tedeschi
- Department of Neurology, University of Campinas, São Paulo, Brazil
| | - Luís Fernando Bernardes
- National Institute of Biofabrication, Department of Chemical Engineering, University of Campinas, São Paulo, Brazil
| | - André Luiz Jardini
- National Institute of Biofabrication, Department of Chemical Engineering, University of Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. JOURNAL OF SPINE SURGERY 2017; 3:433-443. [PMID: 29057355 DOI: 10.21037/jss.2017.09.01] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three-dimensional printing (3DP), also known as "Additive Manufacturing", is a rapidly growing industry, particularly in the area of spinal surgery. Given the complex anatomy of the spine and delicate nature of surrounding structures, 3DP has the potential to aid surgical planning and procedural accuracy. We perform a systematic review of current literature on the applications of 3DP in spinal surgery. Six electronic databases were searched for original published studies reporting cases or outcomes for 3DP surgical models, guides or implants for spinal surgery. The findings of these studies were synthesized and summarized. These searches returned a combined 2,411 articles. Of these, 54 were included in this review. 3DP is currently used for surgical planning, intra-operative surgical guides, customised prostheses as well as "Off-the-Shelf" implants. The technology has the potential for enhanced implant properties, as well as decreased surgical time and better patient outcomes. The majority of the data thus far is from low-quality studies with inherent biases linked with the excitement of a new field. As the body of literature continues to expand, larger scale studies to evaluate advantages and disadvantages, and longer-term follow up will enhance our knowledge of the effect 3DP has in spinal surgery. In addition, issues such as financial impact, time to design and print, materials selection and bio-printing will evolve as this rapidly expanding field matures.
Collapse
Affiliation(s)
- Ben Wilcox
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ai-Min Wu
- Department of Spine Surgery, Orthopaedic Hospital, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, The Second Medical School of the Wenzhou Medical University, Zhejiang Spine Center, Wenzhou 325027, China
| | - Kevin Phan
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| |
Collapse
|
42
|
Parwani R, Curto M, Kao AP, Rowley PJ, Pani M, Tozzi G, Barber AH. Morphological and Mechanical Biomimetic Bone Structures. ACS Biomater Sci Eng 2017; 3:2761-2767. [DOI: 10.1021/acsbiomaterials.6b00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Parwani
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - M. Curto
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - A. P. Kao
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - P. J. Rowley
- School
of Earth and Environmental Sciences, Burnaby Building, Burnaby Road, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| | - M. Pani
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - G. Tozzi
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - A. H. Barber
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| |
Collapse
|
43
|
Phan K, Sgro A, Maharaj MM, D'Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. JOURNAL OF SPINE SURGERY 2016; 2:314-318. [PMID: 28097249 DOI: 10.21037/jss.2016.12.06] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study aims to describe a three-dimensional printed (3DP) posterior fixation implant used for C1/C2 fusion in a 65-year-old female. Spinal fusion remains a common intervention for a range of spinal pathologies including degenerative disc and facet disease when conservative methods are unsuccessful. However, fusion devices are not always entirely efficacious in providing the desired fixation, and surgeons rely on 'off the shelf' implants which may not provide an anatomical fit to address the particular pathology. 3DP refers to a process where three-dimensional objects are created through successive layering of material, so called 'additive manufacturing'. Although this technology enables accurate fabrication of patient-specific orthopaedic and spinal implants, literature on its utilization in this regard is rare. A 65-year-old female, with severe facet arthropathy at the C1/C2 level, osteophyte formation and impingement of the exiting C2 nerve root underwent a C1/C2 posterior fusion and rhizolysis of the C2 nerve roots. A custom posterior fixation implant was designed and on-laid over the C2 spinous process and lamina, with screw holes made to a depth and angulation that was pre-calculated based on the preoperative CT based 3D modelling. The patient had an uneventful recovery and reported a significant reduction in occipital neuralgia and sub-occipital pain and 2-month follow-up. We report the first case of a customized 3DP spinal prosthesis for posterior C1/C2 fusion. The implant added significant value reducing the overall time of the procedure, and safety with a reduced risk of neurovascular compromise.
Collapse
Affiliation(s)
- Kevin Phan
- Neuro Spine Surgery Research Group (NSURG), Sydney, Australia;; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Alessandro Sgro
- Neuro Spine Surgery Research Group (NSURG), Sydney, Australia
| | - Monish M Maharaj
- Neuro Spine Surgery Research Group (NSURG), Sydney, Australia;; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | - Ralph J Mobbs
- Neuro Spine Surgery Research Group (NSURG), Sydney, Australia;; Faculty of Medicine, University of New South Wales, Sydney, Australia;; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|