1
|
Dos Santos P, Alves B, Inocêncio S, Nunes P, Richardson SM, Gloria A, Serra A, Fonseca AC, Domingos M. Synthesis and characterization of poly(ester amide)-based materials for 3D printing of tissue engineering scaffolds. J Mater Chem B 2025; 13:3049-3066. [PMID: 39898666 DOI: 10.1039/d4tb02220c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The fabrication of three-dimensional (3D) scaffolds with imprinted physical, chemical and topographical cues is instrumental in tissue engineering strategies to instruct cell function and guide the regeneration of tissues. α-Amino acids based poly(ester amide)s (AAA-PEAs), combining the biocompatibility and biodegradability of polyesters with the superior mechanical properties of polyamides, have emerged as promising scaffolding materials. However, their processing via extrusion-based 3D printing remains challenging due to the lack of polymeric structures with suitable molecular weight and thermal stability. Here, we develop a new library of high molecular weight AAA-PEAs based on L-alanine (PEA-ala), L-alanine/glycine (PEA-ala-gly (75 : 25)) and L-alanine/glycine/jeffamine (PEA-ala-gly-jeff (50 : 25 : 25)) and investigate their performance as polymeric materials for 3D printing against commercially available poly(ε-caprolactone) (PCL). Thermogravimetric analysis reveals the stability of AAA-PEAs at high temperatures, enabling their processing via melt-extrusion printing. Despite differences in complex viscosity between PCL and AAA-PEAs, highlighted by oscillatory rheology measurements, the printability of AAA-PEAs does not seem to be compromised, resulting in 3D scaffolds with good shape-fidelity. Additional physicochemical characterisation of synthesised materials also confirm the possibility of fabricating two-dimensional (2D) films and 3D scaffolds with different mechanical properties, wettability and degradation profiles, depending on the AAA-PEA used. Biological tests carried out in vitro confirm the ability of synthesised materials to support the adhesion and function of metabolically active human bone marrow derived mesenchymal stem cells (hBM-MSCs). The newly synthesised AAA-PEAs expand the range of processable materials via melt-extrusion and contribute to the fabrication of scaffolds with tuneable physicochemical properties for improved tissue regeneration.
Collapse
Affiliation(s)
- Patrícia Dos Santos
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, M13 9PL, Manchester, UK.
| | - Beatriz Alves
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
| | - Sara Inocêncio
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
| | - Pedro Nunes
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
| | - Stephen M Richardson
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, The University of Manchester, M13 9PL, Manchester, UK.
| | - Antonio Gloria
- Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.
| | - Arménio Serra
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
| | - Ana Clotilde Fonseca
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790, Coimbra, Portugal.
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, M13 9PL, Manchester, UK.
| |
Collapse
|
2
|
Mostofizadeh M, Kainz M, Alihosseini F, Haudum S, Youssefi M, Bauer P, Gnatiuk I, Brüggemann O, Zembsch K, Rinner U, Coelho C, Guillén E, Teasdale I. Phosphoramide Hydrogels as Biodegradable Matrices for Inkjet Printing and Their Nano-Hydroxyapatite Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52902-52910. [PMID: 39297790 PMCID: PMC11450719 DOI: 10.1021/acsami.4c10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Inkjet printing is a leading technology in the biofabrication of three-dimensional biomaterials, offering digital, noncontact deposition with micron-level precision. Among these materials, hydroxyapatite is widely recognized for its use in bone tissue engineering. However, most hydroxyapatite-laden inks are unsuitable for inkjet printing. To address this, we developed photocurable and biodegradable phosphoramide-based hydrogels containing thiol-functionalized polyethylene glycol via click chemistry. These hydrogels degrade into phosphates, the natural component of bone. The rheological properties of the inks are finely tuned through chemical design to meet the requirements of nanohydroxyapatite composite inks for piezoelectric inkjet printing. We demonstrated their printability using simple geometric patterns, showcasing a versatile and efficient solution for the precise inkjet printing of biomaterial composites.
Collapse
Affiliation(s)
- Mahsa Mostofizadeh
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
- Institute
of Polymer Chemistry, Johannes Kepler University, Linz 4040, Austria
| | - Michael Kainz
- Functional
Surfaces and Nanostructures, Profactor GmbH, Steyr-Gleink 4407, Austria
| | - Farzaneh Alihosseini
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Stephan Haudum
- Institute
of Polymer Chemistry, Johannes Kepler University, Linz 4040, Austria
| | - Mostafa Youssefi
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Peter Bauer
- Functional
Surfaces and Nanostructures, Profactor GmbH, Steyr-Gleink 4407, Austria
| | | | - Oliver Brüggemann
- Institute
of Polymer Chemistry, Johannes Kepler University, Linz 4040, Austria
| | - Katja Zembsch
- Institute
of Applied Chemistry, IMC University of
Applied Sciences Krems, Piaristengasse 1, Krems 3500, Austria
| | - Uwe Rinner
- Institute
of Applied Chemistry, IMC University of
Applied Sciences Krems, Piaristengasse 1, Krems 3500, Austria
| | | | - Elena Guillén
- Functional
Surfaces and Nanostructures, Profactor GmbH, Steyr-Gleink 4407, Austria
| | - Ian Teasdale
- Institute
of Polymer Chemistry, Johannes Kepler University, Linz 4040, Austria
| |
Collapse
|
3
|
Kirmanidou Y, Chatzinikolaidou M, Michalakis K, Tsouknidas A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. BIOMATERIALS ADVANCES 2024; 162:213902. [PMID: 38823255 DOI: 10.1016/j.bioadv.2024.213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The craniofacial region is characterized by its intricate bony anatomy and exposure to heightened functional forces presenting a unique challenge for reconstruction. Additive manufacturing has revolutionized the creation of customized scaffolds with interconnected pores and biomimetic microarchitecture, offering precise adaptation to various craniofacial defects. Within this domain, medical-grade poly(ε-caprolactone) (PCL) has been extensively used for the fabrication of 3D printed scaffolds, specifically tailored for bone regeneration. Its adoption for load-bearing applications was driven mainly by its mechanical properties, adjustable biodegradation rates, and high biocompatibility. The present review aims to consolidating current insights into the clinical translation of PCL-based constructs designed for bone regeneration. It encompasses recent advances in enhancing the mechanical properties and augmenting biodegradation rates of PCL and PCL-based composite scaffolds. Moreover, it delves into various strategies improving cell proliferation and the osteogenic potential of PCL-based materials. These strategies provide insight into the refinement of scaffold microarchitecture, composition, and surface treatments or coatings, that include certain bioactive molecules such as growth factors, proteins, and ceramic nanoparticles. The review critically examines published data on the clinical applications of PCL scaffolds in both extraoral and intraoral craniofacial reconstructions. These applications include cranioplasty, nasal and orbital floor reconstruction, maxillofacial reconstruction, and intraoral bone regeneration. Patient demographics, surgical procedures, follow-up periods, complications and failures are thoroughly discussed. Although results from extraoral applications in the craniofacial region are encouraging, intraoral applications present a high frequency of complications and related failures. Moving forward, future studies should prioritize refining the clinical performance, particularly in the domain of intraoral applications, and providing comprehensive data on the long-term outcomes of PCL-based scaffolds in bone regeneration. Future perspective and limitations regarding the transition of such constructs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Y Kirmanidou
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece
| | - M Chatzinikolaidou
- Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece; Foundation for Research and Technology Hellas (FO.R.T.H), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| | - K Michalakis
- Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA
| | - A Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece; Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA.
| |
Collapse
|
4
|
de Melo E, Cavalcanti P, Pires C, Tostes B, Miranda J, Barbosa A, da Rocha S, Deama N, Alves S, Gerbi M. Influence of the addition of nanohydroxyapatite to scaffolds on proliferation and differentiation of human mesenchymal stem cells: a systematic review of in vitro studies. Braz J Med Biol Res 2024; 57:e13105. [PMID: 38265343 PMCID: PMC10802233 DOI: 10.1590/1414-431x2023e13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
One of the main challenges of tissue engineering in dentistry is to replace bone and dental tissues with strategies or techniques that simulate physiological tissue repair conditions. This systematic review of in vitro studies aimed to evaluate the influence of the addition of nanohydroxyapatite (NHap) to scaffolds on cell proliferation and osteogenic and odontogenic differentiation of human mesenchymal stem cells. In vitro studies on human stem cells that proliferated and differentiated into odontogenic and osteogenic cells in scaffolds containing NHap were included in this study. Searches in PubMed/MEDLINE, Scopus, Web of Science, OpenGrey, ProQuest, and Cochrane Library electronic databases were performed. The total of 333 articles was found across all databases. After reading and analyzing titles and abstracts, 8 articles were selected for full reading and extraction of qualitative data. Results showed that despite the large variability in scaffold composition, NHap-containing scaffolds promoted high rates of cell proliferation, increased alkaline phosphatase (ALP) activity during short culture periods, and induced differentiation, as evidenced by the high expression of genes involved in osteogenesis and odontogenesis. However, further studies with greater standardization regarding NHap concentration, type of scaffolds, and evaluation period are needed to observe possible interference of these criteria in the action of NHap on the proliferation and differentiation of human stem cells.
Collapse
Affiliation(s)
- E.L. de Melo
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | | | - C.L. Pires
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - B.V.A. Tostes
- Programa de Pós-graduação em Química, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - J.M. Miranda
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - A.A. Barbosa
- Universidade Federal do Vale do São Francisco, Senhor do Bonfim, BA, Brasil
| | - S.I.S. da Rocha
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - N.S. Deama
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - S. Alves
- Programa de Pós-graduação em Química, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - M.E.M.M. Gerbi
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
5
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 2023; 9:e19363. [PMID: 37662765 PMCID: PMC10474476 DOI: 10.1016/j.heliyon.2023.e19363] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
The osseous tissue can be classified as a nanocomposite that encompasses a complex interweaving of organic and inorganic matrices. This intricate amalgamation consists of a collagen component and a mineral phase that are intricately arranged to form elaborate and perforated configurations. Hydroxyapatite, whether synthesized artificially or obtained from natural sources, has garnered considerable attention as a composite material in the field of bone tissue engineering due to its striking resemblance to bone in terms of structure and characteristics. Hydroxyapatite (HA) constitutes the predominant ceramic biomaterial for biomedical applications due to its ability to replicate the mineral composition of vertebrate bone. Nonetheless, it is noteworthy that the present biomimetic substance exhibits unfavorable mechanical characteristics, characterized by insufficient tensile and compressive strength, thus rendering it unsuitable for effective employment in the field of bone tissue engineering. Due to its beneficial attributes, hydroxyapatite (HA) is frequently employed in conjunction with various polymers and crosslinkers as composites to enhance mechanical properties and overall efficacy of implantable biomaterials engineered. The restoration of skeletal defects through the use of customized replacements is an effective way to replace damaged or lost bone structures. This method not only restores the bones' original functions but also reinstates their initial aesthetic appearance. The utilization of hydroxyapatite-polymer composites within 3D-printed grafts necessitates meticulous optimization of both mechanical and biological properties, in order to ensure their suitability for employment in medical devices. The utilization of 3D-printing technology represents an innovative approach in the manufacturing of HA-based scaffolds, which offers advantageous prospects for personalized bone regeneration. The expeditious prototyping method, with emphasis on the application of 3D printing, presents a viable approach in the development of bespoke prosthetic implants, grounded on healthcare data sets. 4D printing approach is an evolved form of 3D printing that utilizes programmable materials capable of altering the intended shape of printed structures, contingent upon single or dual stimulating factors. These factors include aspects such as pH level, temperature, humidity, crosslinking degree, and leaching factors.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
7
|
Effects of Sterilization and Hydrolytic Degradation on the Structure, Morphology and Compressive Strength of Polylactide-Hydroxyapatite Composites. Int J Mol Sci 2022; 23:ijms231810454. [PMID: 36142380 PMCID: PMC9499569 DOI: 10.3390/ijms231810454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Composites based on polylactide (PLA) and hydroxyapatite (HA) were prepared using a thermally induced phase separation method. In the experimental design, the PLA with low weight-average molar mass (Mw) and high Mw were tested with the inclusion of HA synthesized as whiskers or hexagonal rods. In addition, the structure of HA whiskers was doped with Zn, whereas hexagonal rods were mixed with Sr salt. The composites were sterilized and then incubated in phosphate-buffered saline for 12 weeks at 37 °C, followed by characterization of pore size distribution, molecular properties, density and mechanical strength. Results showed a substantial reduction of PLA Mw for both polymers due to the preparation of composites, their sterilization and incubation. The distribution of pore size effectively increased after the degradation process, whereas the sterilization, furthermore, had an impact on pore size distribution depending on HA added. The inclusion of HA reduced to some extent the degradation of PLA quantitatively in the weight loss in vitro compared to the control without HA. All produced materials showed no cytotoxicity when validated against L929 mouse skin fibroblasts and hFOB 1.19 human osteoblasts. The lack of cytotoxicity was accompanied by the immunocompatibility with human monocytic cells that were able to detect pyrogenic contaminants.
Collapse
|
8
|
Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022; 299:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM Orsellinic acid (2,4-Dimethoxy-6-methylbenzoic acid) (OA) is a hydrophobic polyphenolic compound with therapeutic potential, but its impact on actuating osteogenesis remains unknown. The bioavailability of OA is hampered by its hydrophobic nature. This study aimed to fabricate nano-drug delivery system-based scaffolds for OA and test its potential for osteogenesis in vitro. MATERIALS AND METHODS OA was loaded into chitosan nanoparticles (nCS + OA) using the ionic gelation technique at different concentrations. nCS + OA were incorporated onto the scaffolds containing gelatin (Gel) and nanohydroxyapatite (nHAp) by the lyophilization method. Biocomposite scaffolds were examined for their physicochemical and material characteristic properties. The effect of OA in the scaffolds for osteoblast differentiation was determined by alizarin red and von Kossa staining at the cellular level and by reverse transcriptase-qPCR and western blot analysis at the molecular level. KEY FINDINGS The scaffolds showed excellent physiochemical and material characteristics and remained cyto-friendly to mouse mesenchymal stem cells (mMSCs, C3H10T1/2). The release of OA from Gel/nHAp/nCS scaffolds enhanced the differentiation of mMSCs towards osteoblasts, as observed through cellular and molecular studies. Moreover, the osteogenic potential of OA was mediated by the activation of FAK and ERK signaling pathways through integrins. SIGNIFICANCE The inclusion of OA into Gel/nHAp/nCS biocomposite scaffolds at 80 μM concentration promoted osteoblast differentiation via cell adhesion mediated signaling, compared with that shown by Gel/nHAp/nCS alone. Overall, this study identified the potential therapeutic OA containing Gel/nHAp/nCS scaffolds, accelerating its potential for clinical application towards bone regeneration.
Collapse
Affiliation(s)
- L Roshini Yadav
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Iglesias-Mejuto A, García-González CA. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112525. [PMID: 34857304 DOI: 10.1016/j.msec.2021.112525] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023]
Abstract
3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO2 drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13162754. [PMID: 34451293 PMCID: PMC8400029 DOI: 10.3390/polym13162754] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Wang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| | - Qianbing Wan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| |
Collapse
|
11
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
12
|
Tripathi Y, Shukla M, Bhatt AD. Idealization through interactive modeling and experimental assessment of 3D-printed gyroid for trabecular bone scaffold. Proc Inst Mech Eng H 2021; 235:1025-1034. [PMID: 34058889 DOI: 10.1177/09544119211022988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Porous scaffolds assisted bone tissue engineering is a viable alternative for reconstruction of large segmental bone defects caused by bone pathologies or trauma. In the current study, we intend to develop trabecular bone scaffolds using gyroid architecture. An interactive modeling framework is developed for the design of three-dimensional gyroid scaffolds using advanced generative tools including K3DSurf, MeshLab, and Netfabb. The suggested modeling approach resulted in uniform and interconnected pores. Subsequently, fused deposition modeling 3D-printing is employed to fabricate the scaffolds using poly lactic acid material. The pores interconnectivity, porosity, and surface finish of the fabricated scaffolds are characterized using micro-computer tomography and scanning electron microscopy. Additionally, to assess the performance of scaffolds as a bone substitute, compression, and in-vitro biocompatibility tests on sterilized scaffolds are conducted. Compression tests reveal mechanical strength in the range of native bone while human adipose-derived mesenchymal stem cells show high proliferation after 72 h of incubation. Based on these results, the fabricated gyroid scaffolds can be said to possess favorable properties for trabecular bone scaffold.
Collapse
Affiliation(s)
- Yogesh Tripathi
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| | - Mukul Shukla
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| | - Amba D Bhatt
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| |
Collapse
|
13
|
A Paradigm Shift in Tissue Engineering: From a Top–Down to a Bottom–Up Strategy. Processes (Basel) 2021. [DOI: 10.3390/pr9060935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering (TE) was initially designed to tackle clinical organ shortage problems. Although some engineered tissues have been successfully used for non-clinical applications, very few (e.g., reconstructed human skin) have been used for clinical purposes. As the current TE approach has not achieved much success regarding more broad and general clinical applications, organ shortage still remains a challenging issue. This very limited clinical application of TE can be attributed to the constraints in manufacturing fully functional tissues via the traditional top–down approach, where very limited cell types are seeded and cultured in scaffolds with equivalent sizes and morphologies as the target tissues. The newly proposed developmental engineering (DE) strategy towards the manufacture of fully functional tissues utilises a bottom–up approach to mimic developmental biology processes by implementing gradual tissue assembly alongside the growth of multiple cell types in modular scaffolds. This approach may overcome the constraints of the traditional top–down strategy as it can imitate in vivo-like tissue development processes. However, several essential issues must be considered, and more mechanistic insights of the fundamental, underpinning biological processes, such as cell–cell and cell–material interactions, are necessary. The aim of this review is to firstly introduce and compare the number of cell types, the size and morphology of the scaffolds, and the generic tissue reconstruction procedures utilised in the top–down and the bottom–up strategies; then, it will analyse their advantages, disadvantages, and challenges; and finally, it will briefly discuss the possible technologies that may overcome some of the inherent limitations of the bottom–up strategy.
Collapse
|
14
|
Li W, Liu W, Wang W, Wang J, Ma T, Chen J, Wu H, Liu C. Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2021; 12:234. [PMID: 33849651 PMCID: PMC8042357 DOI: 10.1186/s13287-021-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyuan Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Mokhtarzadegan M, Zebarjad SM, Bahrololoom ME, Modarres M. Effect of sodium chloride as a porogen agent in mechanical properties of PLGA/HA nanocomposite scaffolds. Biomed Phys Eng Express 2021; 7:035009. [PMID: 33843657 DOI: 10.1088/2057-1976/ab61c1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the novel poly (lactic-co-glycolic acid)-Hydroxyapatite nanoparticles (PLGA/HA) nanocomposite scaffolds were fabricated with solvent casting and particulate leaching (SCPL) method. The role of sodium chloride (NaCl) particles with diameters of 250-400 μm as porogen agent in the mechanical strength of the produced scaffolds was evaluated. The prepared scaffolds were characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and compressive tests. The results showed the high compressive strength and homogenous porous structures for PLGA/HA nanocomposite scaffolds compared to pure PLGA due to the presence of HA nanoparticles in nanocomposites. Furthermore, the compressive strength of nanocomposite scaffolds increased by varying the weight ratio of hydroxyapatite nanoparticles to polymer (0, 20, 40 wt%) at constant salt ratio and decreased by increasing the weight ratio of salt particles to polymer from 1 to 3 wt% due to more porosity in nanocomposite scaffolds. These results confirmed that not only the nanocomposite scaffolds exhibited high mechanical properties, homogenous structures, as well as good porosity but also, they could be useful for bone tissue application.
Collapse
Affiliation(s)
- M Mokhtarzadegan
- Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
16
|
Laird NZ, Acri TM, Chakka JL, Quarterman JC, Malkawi WI, Elangovan S, Salem AK. Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur J Pharm Biopharm 2021; 161:15-28. [PMID: 33549706 PMCID: PMC7969465 DOI: 10.1016/j.ejpb.2021.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Tissue engineering is an interdisciplinary field that aims to combine life sciences and engineering to create therapies that regenerate functional tissue. Early work in tissue engineering mostly used materials as inert scaffolding structures, but research has shown that constructing scaffolds from biologically active materials can help with regeneration by enabling cell-scaffold interactions or release of factors that aid in regeneration. Three-dimensional (3D) printing is a promising technique for the fabrication of structurally intricate and compositionally complex tissue engineering scaffolds. Such scaffolds can be functionalized with techniques developed by nanotechnology research to further enhance their ability to stimulate regeneration and interact with cells. Nanotechnological components, nanoscale textures, and microscale/nanoscale printing can all be incorporated into the manufacture of 3D printed scaffolds. This review discusses recent advancements in the merging of nanotechnology with 3D printed tissue engineering scaffolds, with a focus on applications of nanoscale components, nanoscale texture, and innovative printing techniques and the effects observed in vitro and in vivo.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Jaidev L Chakka
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Juliana C Quarterman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Walla I Malkawi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Satheesh Elangovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA; Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA; Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Li W, Huang C, Ma T, Wang J, Liu W, Yan J, Sheng G, Zhang R, Wu H, Liu C. Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion. Stem Cell Res Ther 2021; 12:143. [PMID: 33597006 PMCID: PMC7890873 DOI: 10.1186/s13287-021-02207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Background Intervertebral fusion is the most common surgery to treat lumbar degenerative disease (LDD). And the graft material used in the operation is derived from the iliac crest to promote fusion. However, autografts possess the fatal disadvantage of lack of source. Therefore, economical and practical bone substitutes are urgently needed to be developed. Sinusoidal electromagnetic fields (EMF) combined with tissue engineering techniques may be an appropriate way to promote intervertebral fusion. Methods In this research, porous scaffolds made of polycaprolactone (PCL) and nano-hydroxyapatite (nHA) were used as cell carriers. Then, the scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were treated with sinusoidal electromagnetic field and the osteogenic capability of BMSCs was tested later. In addition, an intervertebral disc of the tail vertebra of the rat was removed to construct a spinal intervertebral fusion model with a cell-scaffold implanted. The intervertebral fusion was observed and analyzed by X-ray, micro-CT, and histological methods. Results BMSCs stimulated by EMF possess splendid osteogenic capability under an osteogenic medium (OM) in vitro. And the conditioned medium of BMSCs treated with EMF can further promote osteogenic differentiation of the primitive BMSCs. Mechanistically, EMF regulates BMSCs via BMP/Smad and mitogen-activated protein kinase (MAPK)-associated p38 signaling pathways. In vivo experiments revealed that the scaffold loaded with BMSCs stimulated by EMF accelerated intervertebral fusion successfully. Conclusion In summary, EMF accelerated intervertebral fusion by improving the osteogenic capacity of BMSCs seeded on scaffolds and might boost the paracrine function of BMSCs to promote osteogenic differentiation of the homing BMSCs at the injured site. EMF combined with tissue engineering techniques may become a new clinical treatment for LDD.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chunwei Huang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Juhl OJ, Latifi SM, Donahue HJ. Effect of carbonated hydroxyapatite submicron particles size on osteoblastic differentiation. J Biomed Mater Res B Appl Biomater 2021; 109:1369-1379. [PMID: 33506619 DOI: 10.1002/jbm.b.34797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 01/09/2021] [Indexed: 01/08/2023]
Abstract
Synthetic biomimetic carbonated hydroxyapatite (CHA) has shown significant promise in bone tissue engineering for its mechanical and chemical biocompatibility and osteogenic potential. Variations in the size of hydroxyapatite particles have also been shown to contribute to the hydroxyapatite's osteogenic success. However, synthesizing biomimetic CHA with optimal osteogenic properties using a simple synthesis methodology to make highly reproducible, biomimetic, and osteogenic CHA has not been evaluated fully. The objective of this study was to synthesize submicron CHA particles using a nanoemulsion method. We hypothesized that by varying the synthesis technique we could control particle size while still creating highly biomimetic CHA typically produced during nanoemulsion synthesis. Furthermore, we hypothesized that 500 nm CHA particles would induce greater osteoblastic differentiation compared to larger or smaller CHA particles. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dynamic light scattering were used to characterize the chemical composition, shape, and size of CHA synthesized through variations in pH, temperature and stirring speed during synthesis. Manipulation of pH showed the ability to selectively tailor CHA particle size from 200-900 nm in a reproducible manner while maintaining the chemical composition. In addition, 500 nm particles elicited the most rapid increase in osteoblastic differentiation and did not decrease cell viability compared to 200 and 900 nm particles.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Seyed Mohsen Latifi
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Cometa S, Bonifacio MA, Tranquillo E, Gloria A, Domingos M, De Giglio E. A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization. Polymers (Basel) 2021; 13:polym13010150. [PMID: 33401469 PMCID: PMC7795460 DOI: 10.3390/polym13010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Additive manufacturing (AM) is changing our current approach to the clinical treatment of bone diseases, providing new opportunities to fabricate customized, complex 3D structures with bioactive materials. Among several AM techniques, the BioCell Printing is an advanced, integrated system for material manufacture, sterilization, direct cell seeding and growth, which allows for the production of high-resolution micro-architectures. This work proposes the use of the BioCell Printing to fabricate polymer-based scaffolds reinforced with ceramics and loaded with bisphosphonates for the treatment of osteoporotic bone fractures. In particular, biodegradable poly(ε-caprolactone) was blended with hydroxyapatite particles and clodronate, a bisphosphonate with known efficacy against several bone diseases. The scaffolds' morphology was investigated by means of Scanning Electron Microscopy (SEM) and micro-Computed Tomography (micro-CT) while Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) revealed the scaffolds' elemental composition. A thermal characterization of the composites was accomplished by Thermogravimetric analyses (TGA). The mechanical performance of printed scaffolds was investigated under static compression and compared against that of native human bone. The designed 3D scaffolds promoted the attachment and proliferation of human MSCs. In addition, the presence of clodronate supported cell differentiation, as demonstrated by the normalized alkaline phosphatase activity. The obtained results show that the BioCell Printing can easily be employed to generate 3D constructs with pre-defined internal/external shapes capable of acting as a temporary physical template for regeneration of cancellous bone tissues.
Collapse
Affiliation(s)
| | - Maria Addolorata Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Elisabetta Tranquillo
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (M.D.); (E.D.G.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- Correspondence: (M.D.); (E.D.G.)
| |
Collapse
|
20
|
Ryu JH, Kang TY, Shin H, Kim KM, Hong MH, Kwon JS. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Int J Mol Sci 2020; 21:ijms21228501. [PMID: 33198074 PMCID: PMC7696815 DOI: 10.3390/ijms21228501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Min-Ho Hong
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
21
|
Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - María Elena Alemán-Domínguez
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| |
Collapse
|
22
|
Cho YS, Quan M, Kang NU, Jeong HJ, Hong MW, Kim YY, Cho YS. Strategy for enhancing mechanical properties and bone regeneration of 3D polycaprolactone kagome scaffold: Nano hydroxyapatite composite and its exposure. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Allafchian A, Jalali SAH, Mousavi SE, Hosseini SS. Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Int J Biol Macromol 2020; 155:1270-1276. [DOI: 10.1016/j.ijbiomac.2019.11.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
|
24
|
Singh J, Kaur T, Singh N, Pandey PM. Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional printing for cardiovascular stent application. Proc Inst Mech Eng H 2020; 234:975-987. [DOI: 10.1177/0954411920936055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological and mechanical properties of biodegradable polymeric composite materials are strongly influenced by the choice of appropriate reinforcement in the polymer matrix. Non-compatibility of material in the vascular system could obstruct the way of the biological fluids. The concept of development of polymeric composite material for vascular implants is to provide enough support to the vessel and to restore the vessel in the natural state after degradation. In this research, the polycaprolactone composite materials (carbonyl iron powder/polycaprolactone) were developed by reinforcement of the 0%–2% of carbonyl iron powder using the solvent cast three-dimensional printing technique. The physicochemical properties of developed composites were characterized in conjunction with mechanical and biological properties. The mechanical characterizations were assessed by uniaxial tensile testing as well as flexibility testing. The results of mechanical testing assured that carbonyl iron powder/polycaprolactone composites have shown desirable properties for vascular implants. Besides the mechanical characterization, in vitro biological investigations of carbonyl iron powder/polycaprolactone were done for analyzing blood compatibility and cytocompatibility. The results revealed that the materials developed were biocompatible, less hemolytic, and having non-thrombogenic properties indicating the promising applications in the field of cardiovascular applications.
Collapse
Affiliation(s)
- Jasvinder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
25
|
Moxon SR, Ferreira MJ, dos Santos P, Popa B, Gloria A, Katsarava R, Tugushi D, Serra AC, Hooper NM, Kimber SJ, Fonseca AC, Domingos MAN. A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds. Polymers (Basel) 2020; 12:E1478. [PMID: 32630145 PMCID: PMC7408263 DOI: 10.3390/polym12071478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of articular cartilage (AC) is a common healthcare issue that can result in significantly impaired function and mobility for affected patients. The avascular nature of the tissue strongly burdens its regenerative capacity contributing to the development of more serious conditions such as osteoarthritis. Recent advances in bioprinting have prompted the development of alternative tissue engineering therapies for the generation of AC. Particular interest has been dedicated to scaffold-based strategies where 3D substrates are used to guide cellular function and tissue ingrowth. Despite its extensive use in bioprinting, the application of polycaprolactone (PCL) in AC is, however, restricted by properties that inhibit pro-chondrogenic cell phenotypes. This study proposes the use of a new bioprintable poly(ester urea) (PEU) material as an alternative to PCL for the generation of an in vitro model of early chondrogenesis. The polymer was successfully printed into 3D constructs displaying adequate substrate stiffness and increased hydrophilicity compared to PCL. Human chondrocytes cultured on the scaffolds exhibited higher cell viability and improved chondrogenic phenotype with upregulation of genes associated with type II collagen and aggrecan synthesis. Bioprinted PEU scaffolds could, therefore, provide a potential platform for the fabrication of bespoke, pro-chondrogenic tissue engineering constructs.
Collapse
Affiliation(s)
- Samuel R. Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Miguel J.S. Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Patricia dos Santos
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Bogdan Popa
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials—National Research Council of Italy, V.le J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - Armenio C. Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Ana C. Fonseca
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Marco A. N. Domingos
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
- The Henry Royce Institute, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
26
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
27
|
Bertassoli BM, Silva GAB, Albergaria JD, Jorge EC. In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells. Cell Tissue Bank 2020; 21:479-493. [PMID: 32385788 DOI: 10.1007/s10561-020-09834-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Grafting based on both autogenous and allogenous human bone is widely used to replace areas of critical loss to induce bone regeneration. Allogenous bones have the advantage of unlimited availability from tissue banks. However, their integration into the remaining bone is limited because they lack osteoinduction and osteogenic properties. Here, we propose to induce the demineralization of the allografts to improve these properties by exposing the organic components. Allografts fragments were demineralized in 10% EDTA at pH 7.2 solution. The influence of the EDTA-DAB and MAB fragments was evaluated with respect to the adhesion, growth and differentiation of MC3'T3-E1 osteoblasts, primary osteoblasts and dental pulp stem cells (DPSC). Histomorphological analyses showed that EDTA-demineralized fragments (EDTA-DAB) maintained a bone architecture and porosity similar to those of the mineralized (MAB) samples. BMP4, osteopontin, and collagen III were also preserved. All the cell types adhered, grew and colonized both the MAB and EDTA-DAB biomaterials after 7, 14 and 21 days. However, the osteoblastic cell lines showed higher viability indexes when they were cultivated on the EDTA-DAB fragments, while the MAB fragments induced higher DPSC viability. The improved osteoinductive potential of the EDTA-DAB bone was confirmed by alkaline phosphatase activity and calcium deposition analyses. This work provides guidance for the choice of the most appropriate allograft to be used in tissue bioengineering and for the transport of specific cell lineages to the surgical site.
Collapse
Affiliation(s)
| | | | - Juliano Douglas Albergaria
- Laboratório de Biologia Oral E Do Desevolvimento, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Liao Y, Li H, Shu R, Chen H, Zhao L, Song Z, Zhou W. Mesoporous Hydroxyapatite/Chitosan Loaded With Recombinant-Human Amelogenin Could Enhance Antibacterial Effect and Promote Periodontal Regeneration. Front Cell Infect Microbiol 2020; 10:180. [PMID: 32411618 PMCID: PMC7201038 DOI: 10.3389/fcimb.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
The recovery of impaired periodontium is still a challenge to the treatment of periodontitis. This study was the first to apply the mesoporous hydroxyapatites/chitosan (mHA/CS) composite scaffold to periodontal regeneration. The aim of our study is to evaluate the biological effects of mesoporous hydroxyapatite/chitosan (mHA/CS) loaded with recombinant human amelogenin (rhAm) on periodontal regeneration. The physicochemical properties of mHA/CS scaffolds were examined by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. Then, the biological effects of the mHA/CS loaded with rhAm were evaluated, including antibacterial effect, controlled-release capacity, osteogenic and cementogenic effects in vitro and in vivo. The antibacterial effect was tested on 1.5 mg/mL CS; 3 mg/mL mHA; 2.25 mg/mL mHA/CS; 4.5 mg/mL mHA/CS and 20 μg/mL rhAm. Tryptic Soy Broth culture medium was used as a baseline control. Osteogenic effect of rhAm (20 μg/mL rhAm), mHA/CS (4.5 mg/mL mHA/CS), and mHA/CS-rhAm (4.5 mg/mL mHA/CS and 20 μg/mL rhAm) on human periodontal ligament cells (hPDLCs) was evaluated in osteogenic media. The hPDLCs treated either with osteogenic media or Dulbecco's modified Eagle's medium (DMEM) alone were used as the baseline control. In the animal model, 4-week-old nude mice (BALB/c) (n = 6) implanted with root slices subcutaneously were used to observe the cementogenic effect in vivo. The root slices were treated with rhAm (20 μg/mL rhAm), mHA/CS (4.5 mg/mL mHA/CS), and mHA/CS-rhAm (4.5 mg/mL mHA/CS and 20 μg/mL rhAm). The root slices treated with osteogenic medium alone were used as the baseline control. The analyses showed that the mHA/CS particles were 2 μm in diameter and had a uniform pore size. The mesoporous structure was 7 nm in diameter and its surface area was 33.95 m2/g. The scaffold exhibited antibacterial effects against Fusobacterium nucleatum and Porphyromonas gingivalis. The mHA/CS scaffold sustainably released rhAm. The mHA/CS loaded with 20 μg/mL rhAm upregulated ALP activity, the expression levels of osteogenesis-related genes and proteins in vitro. Additionally, it promoted the formation of cementum-like tissue in vivo. Our findings suggest that mHA/CS loaded with 20 μg/mL rhAm could inhibit the growth of periodontal pathogens and promote the formation of bone and cementum-like tissue.
Collapse
Affiliation(s)
- Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huxiao Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Liping Zhao
- State Key Laboratory for Metallic Matrix Composite Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Disease, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Yang X, Chen S, Liu X, Yu M, Liu X. Drug Delivery Based on Nanotechnology for Target Bone Disease. Curr Drug Deliv 2020; 16:782-792. [PMID: 31530265 DOI: 10.2174/1567201816666190917123948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Bone diseases are a serious problem in modern human life. With the coming acceleration of global population ageing, this problem will become more and more serious. Due to the specific physiological characteristics and local microenvironment of bone tissue, it is difficult to deliver drugs to the lesion site. Therefore, the traditional orthopedic medicine scheme has the disadvantages of high drug frequency, large dose and relatively strong side effects. How to target deliver drugs to the bone tissue or even target cells is the focus of the development of new drugs. Nano drug delivery system with a targeting group can realize precise delivery of orthopedic drugs and effectively reduce the systemic toxicity. In addition, the application of bone tissue engineering scaffolds and biomedical materials to realize in situ drug delivery also are research hotspot. In this article, we briefly review the application of nanotechnology in targeted therapies for bone diseases.
Collapse
Affiliation(s)
- Xiaosong Yang
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China
| | - Shizhu Chen
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Liu
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China
| | - Miao Yu
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Liu
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
30
|
Establishment of Collagen: Hydroxyapatite/BMP-2 Mimetic Peptide Composites. MATERIALS 2020; 13:ma13051203. [PMID: 32155998 PMCID: PMC7085073 DOI: 10.3390/ma13051203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Extensive efforts were undertaken to develop suitable biomaterials for tissue engineering (TE) applications. To facilitate clinical approval processes and ensure the success of TE applications, bioinspired concepts are currently focused on. Working on bone tissue engineering, we describe in the present study a method for biofunctionalization of collagen/hydroxyapatite composites with BMP-2 mimetic peptides. This approach is expected to be fundamentally transferable to other tissue engineering fields. A modified BMP-2 mimetic peptide containing a negatively charged poly-glutamic acid residue (E7 BMP-2 peptide) was used to bind positively charged hydroxyapatite (HA) particles by electrostatic attraction. Binding efficiency was biochemically detected to be on average 85% compared to 30% of BMP-2 peptide without E7 residue. By quartz crystal microbalance (QCM) analysis, we could demonstrate the time-dependent dissociation of the BMP-2 mimetic peptides and the stable binding of the E7 BMP-2 peptides on HA-coated quartz crystals. As shown by immunofluorescence staining, alkaline phosphatase expression is similar to that detected in jaw periosteal cells (JPCs) stimulated with the whole BMP-2 protein. Mineralization potential of JPCs in the presence of BMP-2 mimetic peptides was also shown to be at least similar or significantly higher when low peptide concentrations were used, as compared to JPCs cultured in the presence of recombinant BMP-2 controls. In the following, collagen/hydroxyapatite composite materials were prepared. By proliferation analysis, we detected a decrease in cell viability with increasing HA ratios. Therefore, we chose a collagen/hydroxyapatite ratio of 1:2, similar to the natural composition of bone. The following inclusion of E7 BMP-2 peptides within the composite material resulted in significantly elevated long-term JPC proliferation under osteogenic conditions. We conclude that our advanced approach for fast and cost-effective scaffold preparation and biofunctionalization is suitable for improved and prolonged JPC proliferation. Further studies should prove the functionality of composite scaffolds in vivo.
Collapse
|
31
|
Lei T, Zhang W, Qian H, Lim PN, Thian ES, Lei P, Hu Y, Wang Z. Silicon-incorporated nanohydroxyapatite-reinforced poly(ε-caprolactone) film to enhance osteogenesis for bone tissue engineering applications. Colloids Surf B Biointerfaces 2020; 187:110714. [DOI: 10.1016/j.colsurfb.2019.110714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
|
32
|
Parisi C, Salvatore L, Veschini L, Serra MP, Hobbs C, Madaghiele M, Sannino A, Di Silvio L. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J Tissue Eng 2020; 11:2041731419896068. [PMID: 35003613 PMCID: PMC8738858 DOI: 10.1177/2041731419896068] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Abstract
Osteochondral defects remain a major clinical challenge mainly due to the
combined damage to the articular cartilage and the underlying bone, and the
interface between the two tissues having very different properties. Current
treatment modalities have several limitations and drawbacks, with limited
capacity of restoration; however, tissue engineering shows promise in improving
the clinical outcomes of osteochondral defects. In this study, a novel gradient
scaffold has been fabricated, implementing a gradient structure in the design to
mimic the anatomical, biological and physicochemical properties of bone and
cartilage as closely as possible. Compared with the commonly studied multi-layer
scaffolds, the gradient scaffold has the potential to induce a smooth transition
between cartilage and bone and avoid any instability at the interface, mimicking
the natural structure of the osteochondral tissue. The scaffold comprises a
collagen matrix with a gradient distribution of low-crystalline hydroxyapatite
particles. Physicochemical analyses confirmed phase and chemical compositions of
the gradient scaffold and the distribution of the mineral phase along the
gradient scaffold. Mechanical tests confirmed the gradient of stiffness
throughout the scaffold, according to its mineral content. The gradient scaffold
exhibited good biological performances both in vitro and in vivo. Biological
evaluation of the scaffold, in combination with human bone-marrow–derived
mesenchymal stem cells, demonstrated that the gradient of composition and
stiffness preferentially increased cell proliferation in different sub-regions
of the scaffold, according to their high chondrogenic or osteogenic
characteristics. The in vivo biocompatibility of the gradient scaffold was
confirmed by its subcutaneous implantation in rats. The gradient scaffold was
significantly colonised by host cells and minimal foreign body reaction was
observed. The scaffold’s favourable chemical, physical and biological properties
demonstrated that it has good potential as an engineered osteochondral analogue
for the regeneration of damaged tissue.
Collapse
Affiliation(s)
- Cristian Parisi
- Centre of Oral, Clinical & Translational Sciences, King’s College London, London, UK
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Lorenzo Veschini
- Centre of Oral, Clinical & Translational Sciences, King’s College London, London, UK
| | - Maria Paola Serra
- Centre for Stem Cells & Regenerative Medicine, King’s College London, London, UK
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Lucy Di Silvio
- Centre of Oral, Clinical & Translational Sciences, King’s College London, London, UK
| |
Collapse
|
33
|
3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. J Mech Behav Biomed Mater 2020; 104:103638. [PMID: 32174396 DOI: 10.1016/j.jmbbm.2020.103638] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/23/2023]
Abstract
In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.
Collapse
|
34
|
Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110153. [PMID: 31753368 DOI: 10.1016/j.msec.2019.110153] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 01/04/2023]
|
35
|
Perale G, Monjo M, Ramis JM, Øvrebø Ø, Betge F, Lyngstadaas P, Haugen HJ. Biomimetic Biomolecules in Next Generation Xeno-Hybrid Bone Graft Material Show Enhanced In Vitro Bone Cells Response. J Clin Med 2019; 8:jcm8122159. [PMID: 31817744 PMCID: PMC6947180 DOI: 10.3390/jcm8122159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bone defects resulting from trauma, disease, surgery or congenital malformations are a significant health problem worldwide. Consequently, bone is the second most transplanted tissue just after blood. Although bone grafts (BGs) have been used for decades to improve bone repairs, none of the currently available BGs possesses all the desirable characteristics. One way to overcome such limitations is to introduce the feature of controlled release of active bone-promoting biomolecules: however, the administration of, e.g., recombinant Bone morphogenetic proteins (BMPs) have been used in concentrations overshooting physiologically occurring concentrations and has thus raised concerns as documented side effects were recorded. Secondly, most such biomolecules are very sensitive to organic solvents and this hinders their use. Here, we present a novel xeno-hybrid bone graft, SmartBonePep®, with a new type of biomolecule (i.e., intrinsically disordered proteins, IDPs) that is both resistant to processing with organic solvent and both triggers bone cells proliferation and differentiation. SmartBonePep® is an advanced and improved modification of SmartBone®, which is a bone substitute produced by combining naturally-derived mineral bone structures with resorbable polymers and collagen fragments. Not only have we demonstrated that Intrinsically Disordered Proteins (IDPs) can be successfully and safely loaded onto a SmartBonePep®, withstanding the hefty manufacturing processes, but also made them bioavailable in a tuneable manner and proved that these biomolecules are a robust and resilient biomolecule family, being a better candidate with respect to other biomolecules for effectively producing the next generation bone grafts. Most other biomolecules which enhances bone formation, e.g., BMP, would not have tolerated the organic solvent used to produce SmartBonePep®.
Collapse
Affiliation(s)
- Giuseppe Perale
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland; (Ø.Ø.); (F.B.)
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
- Correspondence:
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands. Ctra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain; (M.M.); (J.M.R.)
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma de Mallorca, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands. Ctra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain; (M.M.); (J.M.R.)
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma de Mallorca, Spain
| | - Øystein Øvrebø
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland; (Ø.Ø.); (F.B.)
- Corticalis AS, Oslo Sciencepark, Gaustadallen 21, 0349 Oslo, Norway; (P.L.); (H.J.H.)
| | - Felice Betge
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland; (Ø.Ø.); (F.B.)
| | - Petter Lyngstadaas
- Corticalis AS, Oslo Sciencepark, Gaustadallen 21, 0349 Oslo, Norway; (P.L.); (H.J.H.)
| | - Håvard J. Haugen
- Corticalis AS, Oslo Sciencepark, Gaustadallen 21, 0349 Oslo, Norway; (P.L.); (H.J.H.)
| |
Collapse
|
36
|
Bains PS, Bahraminasab M, Sidhu SS, Singh G. On the machinability and properties of Ti-6Al-4V biomaterial with n-HAp powder-mixed ED machining. Proc Inst Mech Eng H 2019; 234:232-242. [PMID: 31804148 DOI: 10.1177/0954411919891887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nano-hydroxyapatite powder was used in electric discharge machining to modify the surface of Ti-6Al-4V medical alloy. Herein, electric discharge machining was performed, with and without powder-mixed flushing for evaluation of the material erosion rate and surface roughness. In addition to dielectric type, several process parameters including current, pulse-on duration, pulse-off duration, and electrode hole diameter were considered. The experiments were planned by Taguchi design technique and conducted to analyze the material erosion rate and surface roughness. After machining, scanning electron microscope, energy-dispersive X-ray spectrometry, and X-ray diffraction techniques were used to evaluate the surfaces of the samples. Furthermore, wear and corrosion tests were also carried out on the Ti alloy with modified surfaces. The influential factors were identified based on analysis of variance results. Current and dielectric type were the significant factors, both for the material erosion rate and surface roughness. The scanning electron microscope images of Ti-6Al-4V samples highlighted that the process parameters exhibited a vital influence on the topology and microstructure of machined surface. Furthermore, energy-dispersive X-ray spectrometry and X-ray diffraction analyses confirmed the presence of hydroxyapatite on Ti alloy surface after machining. Moreover, the results of wear and corrosion tests revealed lower wear and corrosion rates of the surface-treated workpiece with nano-hydroxyapatite.
Collapse
Affiliation(s)
- Preetkanwal Singh Bains
- Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur, India
| | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sarabjeet Singh Sidhu
- Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur, India
| | - Gurpreet Singh
- Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur, India
| |
Collapse
|
37
|
Zhou Z, Wang Y, Qian Y, Pan X, Zhu J, Zhang Z, Qian Z, Sun Z, Pi B. Cystine dimethyl ester cross-linked PEG-poly(urethane-urea)/nano-hydroxyapatite composited biomimetic scaffold for bone defect repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:407-422. [PMID: 31747530 DOI: 10.1080/09205063.2019.1696004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polyurethane (PU) and polyurea (PUA) materials have shown significant potential for application in tissue repair. Herein, we design a glycerol ethoxylate (PEG)-based poly(urethane-urea) for bone tissue repair. The polymer precursor was prepared from the reaction of PEG and isophorone diisocyanate (IPDI). The cystine dimethyl ester was used as a cross-linker for the preparation of poly(urethane-urea) elastomers. The material was further strengthened by physical blending of nano-hydroxyapatite (nHA). The physical and biological properties of final material were evaluated by mechanical testing, scanning electron microscopy characterization, degradation tests, cell proliferation and cell differentiation assays. The obtained scaffolds showed good mechanical strength, excellent biocompatibility and osteogenic capability. All the evidences demonstrated that this type of materials has good prospects for bone tissue repair application.
Collapse
Affiliation(s)
- Zhangzhe Zhou
- The Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yimeng Wang
- The Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhonglai Qian
- The Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyong Sun
- The Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Pi
- The Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Fabrication and Histological Evaluation of Porous Carbonate Apatite Block from Gypsum Block Containing Spherical Phenol Resin as a Porogen. MATERIALS 2019; 12:ma12233997. [PMID: 31810192 PMCID: PMC6926850 DOI: 10.3390/ma12233997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/23/2022]
Abstract
The utility of carbonate apatite (CO3Ap) as a bone substitute has been demonstrated. The feasibility of fabricating macroporous CO3Ap was evaluated through a two-step dissolution–precipitation reaction using gypsum as the precursor and spherical phenol resin as the porogen. Porogen-containing gypsum was heated to burn out the porogen and to fabricate macroporous structures. Gypsum transformed into CaCO3 upon immersion in a sodium carbonate solution, while maintaining its macroporous structure. Next, CaCO3 transformed into CO3Ap upon immersion in a Na2HPO4 solution while maintaining its macroporous structure. The utility of the macroporous CO3Ap for histologically reconstructing bone defects was evaluated in rabbit femurs. After 4 weeks, a much larger bone was formed inside the macroporous CO3Ap than that inside non-macroporous CO3Ap and macroporous hydroxyapatite (HAp). A larger amount of bone was observed inside non-macroporous CO3Ap than inside macroporous HAp. The bone defects were completely reconstructed within 12 weeks using macroporous CO3Ap. In conclusion, macroporous CO3Ap has good potential as an ideal bone substitute.
Collapse
|
39
|
Filament Extrusion and Its 3D Printing of Poly(Lactic Acid)/Poly(Styrene-co-Methyl Methacrylate) Blends. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the melt blending of amorphous poly(lactide acid) (PLA) with poly(styrene-co-methyl methacrylate) (poly(S-co-MMA)). The PLAx/poly(S-co-MMA)y blends were made using amorphous PLA compositions from 50, 75, and 90wt.%, namely PLA50/poly(S-co-MMA)50, PLA75/poly(S-co-MMA)25, and PLA90/poly(S-co-MMA)10, respectively. The PLAx/poly(S-co-MMA)y blend pellets were extruded into filaments through a prototype extruder at 195 °C. The 3D printing was done via fused deposition modeling (FDM) at the same temperature and a 40 mm/s feed rate. Furthermore, thermogravimetric curves of the PLAx/poly(S-co-MMA)y blends showed slight thermal decomposition with less than 0.2% mass loss during filament extrusion and 3D printing. However, the thermal decomposition of the blends is lower when compared to amorphous PLA and poly(S-co-MMA). On the contrary, the PLAx/poly(S-co-MMA)y blend has a higher Young’s modulus (E) than amorphous PLA, and is closer to poly(S-co-MMA), in particular, PLA90/poly(S-co-MMA)10. The PLAx/poly(S-co-MMA)y blends proved improved properties concerning amorphous PLA through mechanical and rheological characterization.
Collapse
|
40
|
Fibrous Materials Made of Poly( ε-caprolactone)/Poly(ethylene oxide) -b-Poly( ε-caprolactone) Blends Support Neural Stem Cells Differentiation. Polymers (Basel) 2019; 11:polym11101621. [PMID: 31597231 PMCID: PMC6835932 DOI: 10.3390/polym11101621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, we design and produce micron-sized fiber mats by blending poly(ε-caprolactone) (PCL) with small amounts of block copolymers poly(ethylene oxide)m-block-poly(ε-caprolactone)n (PEOm-b-PCLn) using electrospinning. Three different PEOm-b-PCLn block copolymers, with different molecular weights of PEO and PCL, were synthesized by ring opening polymerization of ε-caprolactone using PEO as initiator and stannous octoate as catalyst. The polymer blends were prepared by homogenous solvent mixing using dichloromethane for further electrospinning procedures. After electrospinning, it was found that the addition to PCL of the different block copolymers produced micron-fibers with smaller width, equal or higher hydrophilicity, lower Young modulus, and rougher surfaces, as compared with micron-fibers obtained only with PCL. Neural stem progenitor cells (NSPC), isolated from rat brains and grown as neurospheres, were cultured on the fibrous materials. Immunofluorescence assays showed that the NSPC are able to survive and even differentiate into astrocytes and neurons on the synthetic fibrous materials without any growth factor and using the fibers as guidance. Disassembling of the cells from the NSPC and acquisition of cell specific molecular markers and morphology progressed faster in the presence of the block copolymers, which suggests the role of the hydrophilic character and porous topology of the fiber mats.
Collapse
|
41
|
Zheng P, Hu X, Lou Y, Tang K. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Med Sci Monit 2019; 25:7361-7369. [PMID: 31570688 PMCID: PMC6784681 DOI: 10.12659/msm.915441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate a rabbit model of osteochondral regeneration using three-dimensional (3-D) printed polycaprolactone-hydroxyapatite (PCL-HA) scaffolds coated with umbilical cord blood mesenchymal stem cells (UCB-MSCs) and chondrocytes. MATERIAL AND METHODS Nine female New Zealand white rabbits were included in the study. The 3-D PCL-HA scaffolds were prepared using fused deposition modeling 3-D printing technology. Seeding cells were prepared by co-culture of rabbit UCB-MSCs and chondrocytes with a ratio of 3: 1. A total of 4×10⁶ cells were seeded on 3-D PCL-HA scaffolds and implanted into rabbits with femoral trochlear defects. After 8 weeks of in vivo implantation, 12 specimens were sampled and examined using histology and scanning electron microscopy (SEM). The International Cartilage Repair Society (ICRS) macroscopic scores and histological results were recorded and compared with those of the unseeded PCL-HA scaffolds. RESULTS Mean ICRS scores for the UCB-MSCs and chondrocyte-seeded PCL-HA scaffolds (group A) were significantly higher than the normal unseeded control (NC) PCL-HA scaffold group (group B) (P<0.05). Histology with safranin-O and fast-green staining showed that the UCB chondrocyte-seeded PCL-HA scaffolds significantly promoted bone and cartilage regeneration. CONCLUSIONS In a rabbit model of osteochondral regeneration using 3-D printed PCL-HA scaffolds, the UCB chondrocyte-seeded PCL-HA scaffold promoted articular cartilage repair when compared with the control or non-seeded PCL-HA scaffolds.
Collapse
|
42
|
Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109857. [DOI: 10.1016/j.msec.2019.109857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 05/12/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
|
43
|
Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats. J Mech Behav Biomed Mater 2019; 101:103449. [PMID: 31563845 DOI: 10.1016/j.jmbbm.2019.103449] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers was analyzed through scanning electron microscopy and it was correlated with the viscosity of polymeric solutions studied by rheological measurements. Scaffolds were mechanical characterized with tensile tests in order to find a correlation between the preparation method and the strength of the mats. The influence of hydroxyapatite particles on the crystallinity of the composites was investigated by differential scanning calorimetry. Finally, cell culture assays with pre-osteoblatic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of polylactic acid scaffolds. Based on the results, we can prove that polylactic acid/hydroxyapatite composites can be one of the biomaterials with the greatest potential for bone tissue regeneration.
Collapse
|
44
|
Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proc Inst Mech Eng H 2019; 233:1165-1174. [PMID: 31545134 DOI: 10.1177/0954411919877277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to produce a composite of poly(propylene fumarate)/magnesium calcium phosphate as a substitutional implant in the treatment of trabecular bone defects. So, the effect of magnesium calcium phosphate particle size, magnesium calcium phosphate:poly(propylene fumarate) weight ratio on compressive strength, Young's modulus, and toughness was assessed by considering effective fracture mechanisms. Micro-sized (∼30 µm) and nano-sized (∼50 nm) magnesium calcium phosphate particles were synthesized via emulsion precipitation and planetary milling methods, respectively, and added to poly(propylene fumarate) up to 20 wt.%. Compressive strength, Young's modulus, and toughness of the composites were measured by compressive test, and effective fracture mechanisms were evaluated by imaging fracture surface. In both micro- and nano-composites, the highest compressive strength was obtained by adding 10 wt.% magnesium calcium phosphate particles, and the enhancement in nano-composite was superior to micro-one. The micrographs of fracture surface revealed different mechanisms such as crack pinning, void plastic growth, and particle cleavage. According to the results, the produced composite can be considered as a candidate for substituting hard tissue.
Collapse
Affiliation(s)
- Masoud Karfarma
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Hamid Reza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
45
|
A Further Analysis on Ti6Al4V Lattice Structures Manufactured by Selective Laser Melting. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3212594. [PMID: 31662833 PMCID: PMC6778933 DOI: 10.1155/2019/3212594] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022]
Abstract
Mechanical and architectural features play an important role in designing biomedical devices. The use of materials (i.e., Ti6Al4V) with Young's modulus higher than those of natural tissues generally cause stress shielding effects, bone atrophy, and implant loosening. However, porous devices may be designed to reduce the implant stiffness and, consequently, to improve its stability by promoting tissue ingrowth. If porosity increases, mass transport properties, which are crucial for cell behavior and tissue ingrowth, increase, whereas mechanical properties decrease. As reported in the literature, it is always possible to tailor mass transport and mechanical properties of additively manufactured structures by varying the architectural features, as well as pore shape and size. Even though many studies have already been made on different porous structures with controlled morphology, the aim of current study was to provide only a further analysis on Ti6Al4V lattice structures manufactured by selective laser melting. Experimental and theoretical analyses also demonstrated the possibility to vary the architectural features, pore size, and geometry, without dramatically altering the mechanical performance of the structure.
Collapse
|
46
|
Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2491. [PMID: 31390733 PMCID: PMC6696326 DOI: 10.3390/ma12152491] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Inspired by electrically active tissues, conductive materials have been extensively developed for electrically active tissue engineering scaffolds. In addition to excellent conductivity, nanocomposite conductive materials can also provide nanoscale structure similar to the natural extracellular microenvironment. Recently, the combination of three-dimensional (3D) printing and nanotechnology has opened up a new era of conductive tissue engineering scaffolds exhibiting optimized properties and multifunctionality. Furthermore, in the case of two-dimensional (2D) conductive film scaffolds such as periosteum, nerve membrane, skin repair, etc., the traditional preparation process, such as solvent casting, produces 2D films with defects of unequal bubbles and thickness frequently. In this study, poly-l-lactide (PLLA) conductive scaffolds incorporated with polypyrrole (PPy) nanoparticles, which have multiscale structure similar to natural tissue, were prepared by combining extrusion-based low-temperature deposition 3D printing with freeze-drying. Furthermore, we creatively integrated the advantages of 3D printing and solvent casting and successfully developed a 2D conductive film scaffold with no bubbles, uniform thickness, and good structural stability. Subsequently, the effects of concentration and morphology of PPy nanoparticles on electrical properties and mechanical properties of 3D conductive scaffolds and 2D conductive films scaffolds have been studied, which provided a new idea for the design of both 2D and 3D electroactive tissue engineering scaffolds.
Collapse
Affiliation(s)
- Chunyang Ma
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingjin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Rogowska-Tylman J, Locs J, Salma I, Woźniak B, Pilmane M, Zalite V, Wojnarowicz J, Kędzierska-Sar A, Chudoba T, Szlązak K, Chlanda A, Święszkowski W, Gedanken A, Łojkowski W. In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:669-684. [DOI: 10.1016/j.msec.2019.01.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022]
|
48
|
Gloria A, Frydman B, Lamas ML, Serra AC, Martorelli M, Coelho JF, Fonseca AC, Domingos M. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:994-1004. [DOI: 10.1016/j.msec.2019.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
49
|
Perea-Lowery L, Vallittu PK. Resin adjustment of three-dimensional printed thermoset occlusal splints: Bonding properties - Short communication. J Mech Behav Biomed Mater 2019; 95:215-219. [PMID: 31015140 DOI: 10.1016/j.jmbbm.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To evaluate the interfacial adhesion of an autopolymerizing acrylic resin to 3D printed thermoset occlusal splints compared to thermoplastic occlusal splints. MATERIALS AND METHODS Cylinders made of an autopolymerizing acrylic resin were adhered to 3D printed thermoset and also to thermoplastic plates. A different surface treatment and three storage conditions were used: dry, 7 days water-storage and 14 days water-storage. Bond strength test (so-called shear-bond strength test) was afterward performed. RESULTS ANOVA (R2 = 0.764) revealed significant differences in bond strength according to material (p < 0.001) and storage (p < 0.001) but not for surface treatment (p = 0.202). CONCLUSIONS The bond strength of autopolymerizing acrylic resin to 3D printed thermoset plates is higher when compared to thermoplastic plates. Bonding between acrylic resin and 3D printed splints was high enough for clinical applications.conclusion CLINICAL RELEVANCE: The bond strength values obtained in this study with 3D printed plates were at the level of generally accepted adequate bonding values for prosthetic materials.
Collapse
Affiliation(s)
- Leila Perea-Lowery
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland, Itäinen Pitkäkatu 4 B (2nd floor), Turku, FI-20520, Finland.
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku and City of Turku Welfare Division, Oral Health Care, Finland, Lemminkäisenkatu 2, Turku, FI-20520, Finland
| |
Collapse
|
50
|
Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym 2019; 216:1-16. [PMID: 31047045 DOI: 10.1016/j.carbpol.2019.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Sinapic acid (SA) is a plant-derived phenolic compound known for its multiple biological properties, but its role in the promotion of bone formation is not yet well-studied. Moreover, the delivery of SA is hindered by its complex hydrophobic nature, limiting its bioavailability. In this study, we fabricated a drug delivery system using chitosan nanoparticles (nCS) loaded with SA at different concentrations. These were incorporated into polycaprolactone (PCL) fibers via an electrospinning method. nCS loaded with 50 μM SA in PCL fibers promoted osteoblast differentiation. Furthermore, SA treatment activated the osteogenesis signaling pathways in mouse mesenchymal stem cells. A critical-sized rat calvarial bone defect model system identified that the inclusion of SA into PCL/nCS fibers accelerated bone formation. Collectively, these data suggest that SA promoted osteoblast differentiation in vitro and bone formation in vivo, possibly by activating the TGF-β1/BMP/Smads/Runx2 signaling pathways, suggesting SA might have therapeutic benefits in bone regeneration.
Collapse
Affiliation(s)
- Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow 226031, Uttar Pradesh, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|