1
|
Aly NM, Mahmoud AK, Mosallam EM. Biochemical targets of chick embryos affected by sub-lethal concentrations of lambda-cyhalothrin and imidacloprid. Res Vet Sci 2025; 184:105538. [PMID: 39793169 DOI: 10.1016/j.rvsc.2025.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The insecticides Lambda-cyhalothrin (LCT) and imidacloprid (IMD) are extensively utilized in Egyptian agriculture. Embryonic chicken is a readily accessible model organism commonly employed in various studies. Eggs of (Gallus Gallus) chicken were immersed in an aqueous solution of two sub-lethal concentrations (0.375 and 0.0375 mg/L for LCT; 0.05 and 0.005 mg/L for IMD) for 30 sec on the fourth day of incubation of chick embryos. Significant reductions of acetylcholinesterase (AChE) activity of brain 18- and 21-day chicks were observed in the groups treated with LCT and IMD dependent on concentrations. There were significant changes (reduction or enhancement) in serum activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) by LCT and IMD at the used concentrations, while non-significant stimulation in the AST/ALT ratio (AAR) was found. In 18th - day embryos, the activities of glutathione S-transferase (GST) and acid phosphatase (ACP) were not significantly changed by LCT but were significantly increased by IMD. Liver alkaline phosphatase (ALP) activity showed no significant change except IMD at 0.05 mg/L. However, serum enzyme activity was significantly reduced in all groups. In addition, the tested insecticides caused notable increases in the creatinine and total protein content. The protein profile; proteins separation with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed an increase in four bands that are consistent with the results of the biomarkers level. Findings indicate that even the pesticide's low concentrations are not safe and may lead to severe damage to the embryos and may lead to significant harm or developmental disruption in the embryos.
Collapse
Affiliation(s)
- Nagat M Aly
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticide Lab, Agricultural Research Center, Alexandria, Egypt.
| | - Anter K Mahmoud
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticide Lab, Agricultural Research Center, Alexandria, Egypt
| | - Eman M Mosallam
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticide Lab, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
2
|
Makhlouf C, Khaldoun H, Béchohra L, Djennane N, Settar A, Tarzaali D, Oularbi Y, Krabi S, Bokreta S, Daoudi NZ. Ampligo® 150 ZC affect the expression of sex hormone receptors and cell proliferation marker in female rabbit ovary: Protective effects of thyme essential oil and vitamin C. Reprod Toxicol 2025; 132:108833. [PMID: 39788439 DOI: 10.1016/j.reprotox.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Pesticides tend to cause serious reproductive defects, disturbing endocrine functions and reducing fertility, especially in females. The objective of this work was to identify the reprotoxic effects of Ampligo® 150 ZC (AP), a mixture formulation of lambda cyhalothrin and chlorantraniliprole, on the ovary of female rabbits (Oryctolagus cuniculus) and the possible protective effect of co-treatment with thyme essential oil (TEO), extracted from (Thymus vulgaris) species, and vitamin C (vit C). Twenty female rabbits were divided into four equal groups (n=5): Control (distilled water), AP (20mg/ kg bw of the insecticide mixture every other day, by gavage for 28 days), AP+TEO (20mg/ kg bw of AP + 0.5mg/ kg bw of TEO every other day), and AP+TEO+Vit C (20mg/ kg bw of AP + 0.5mg/ kg bw of TEO + 200mg/ kg bw of vitamin C every other day). The effects were tested on body weight, ovary histomorphometry, and immunohistochemical expression of AFP, estrogen receptor (ER), and progesterone receptor (PR). The results revealed that AP decreased body and ovarian weights, caused ovarian histological damages, and increased collagen fiber deposition. The immunostaining of the ovary showed a significant (p <.001) increase in AFP and decrease in both ER and PR expressions. In the opposite, co-administration of TEO and vitamin C was effective in improving all caused alterations. In conclusion, combined use of TEO and vitamin C ameliorated the toxic effects of Ampligo® on the ovary in female rabbits.
Collapse
Affiliation(s)
- Chahrazed Makhlouf
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria.
| | - Hassina Khaldoun
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Louisa Béchohra
- USTHB, Faculty of Biological Sciences, Laboratory of cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Nacima Djennane
- Department of Pathological Anatomy, Centre Hospitalo-Universitaire Bab El Oued, Algiers, Algeria
| | - Amina Settar
- Department of Agri-food, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Dalila Tarzaali
- Institute of Veterinary Sciences, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | | | - Smail Krabi
- SARL 2SP, Holding SAES, Chéraga, Algiers, Algeria
| | - Soumya Bokreta
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | | |
Collapse
|
3
|
Settar A, Khaldoun H, Tarzaali D, Djennane N, Makhlouf C, Selmani I, Yasmine O, Amel K. Lambda cyhalothrin and chlorantraniliprole caused biochemical, histological, and immunohistochemical alterations in male rabbit liver: Ameliorative effect of vitamins A, D, E, C mixture. Toxicology 2023; 487:153464. [PMID: 36813254 DOI: 10.1016/j.tox.2023.153464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Pesticides can cause serious environmental and human health consequences such as metabolic disruption and even cancers. Preventive molecules such as vitamins can be an effective solution. The present study aimed to investigate the toxic effect of an insecticide mixture formulation of lambda cyhalothrin and chlorantraniliprole (Ampligo® 150 ZC), on the liver of male rabbits (Oryctolagus cuniculus) and the possible ameliorative effect of vitamins A, D3, E, and C mixture. For that, 18 male rabbits were divided into 3 equal groups: Control (distilled water), AP (20 mg/Kg bw of the insecticide mixture every other day, orally for 28 days), AP+ADEC (20 mg/Kg bw of the insecticide mixture + 0,5 ml of vitamin AD3E+ 200 mg/kg bw of vitamin C every other day). The effects were evaluated on body weight, food intake changes, biochemical parameters, liver histology, and immunohistochemical expression of AFP, Bcl2, E-cadherin, Ki67, and P53. Results indicated that AP reduced weight gain (6.71%) and feed intake, increased ALT, ALP, and TC plasma levels, and caused hepatic tissular damages such as dilatation and congestion of the central vein, sinusoidal dilatation, inflammatory cells infiltration, and collagen deposition. Hepatic immunostaining showed an increase in the tissular expression of AFP, Bcl2, Ki67, and P53 and a significant (p < 0,05) decrease in E-cadherin expression. In contrast, supplementation of vitamins A, D3, E, and C mixture improved the previous observed alterations. Our study revealed that a sub-acute exposure to an insecticide mixture of lambda cyhalothrin and chlorantraniliprole induced numerous functional and structural disorders in the rabbit liver and the addition of vitamins ameliorated these damages.
Collapse
Affiliation(s)
- Amina Settar
- Laboratory of Biotechnology, Environment and Health, Department of Agri-food, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria.
| | - Hassina Khaldoun
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Dalila Tarzaali
- Institute of Veterinary Sciences, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Nacima Djennane
- Department of Pathological Anatomy, Centre Hospitalo-Universitaire Bab El Oued, Algiers, Algeria
| | - Chahrazed Makhlouf
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Ichrak Selmani
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | | | - Khaldoune Amel
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| |
Collapse
|
4
|
Al Malahi NM, Al Jumaily MM, Al-shaibani EA, Alajmi RA, Alkhuriji AF, Al-Tamimi J, Alhimaidi AR. Ameliorative effect of L-carnitine on lambda-cyhalothrin-induced anatomical and reproductive aberrations in albino mice. Saudi J Biol Sci 2022; 29:103373. [PMID: 35865321 PMCID: PMC9293953 DOI: 10.1016/j.sjbs.2022.103373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022] Open
Abstract
The objective of this research was to look at how the pesticide lambda-cyhalothrin (LCT) affected the liver, kidney, testis, and ovary of albino mice; and on morphological and skeletal features of the newborn of treated females. The study also aimed to test the ameliorative effects of L-carnitine (LC) against (LCT). Five sets of mice were created, Group 1 acted as the control, while Group 2 received a high dose of LCT, Group 3 received a high dose of LCT + LC, Group 4 received a low dose of LCT that was a residue of in khat (Qat), and Group 5 received a low dose of LCT + LC. The findings revealed that the treated groups' body weights were reduced significantly, whereas the absolute and relative weights of the liver in all groups were statistically decreased insignificantly. There were histopathological changes in the tissues in groups 2 and 4. While the tissues of the ovary and testis showed recovery in groups 3 and 5. When compared to the control group, the values of the seminiferous tubules parameters were statistically significant in the 3 and 5 groups. The newborn had a high dose of pesticides and showed some malformations in the skeleton. However, in group 3 the skeletal malformation was minimized and in-group 5 the skeleton malformations had completely disappeared. It could be concluded that LCT is highly harmful to mouse tissues and caused neonatal malformations, whereas LC has a marked protective effect against LCT.
Collapse
Affiliation(s)
- Nawal M. Al Malahi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Masaa M. Al Jumaily
- Biological Science Department, College of Science, Sana'a University, Sana'a, Yemen
| | | | - Reem A. Alajmi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afrah F. Alkhuriji
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad R Alhimaidi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Abdul-Hamid M, Mohamed HM, Abd El-Twab SM, Zaied K. Histological, ultrastructural, and biochemical study on the possible role of Panax ginseng in ameliorating liver injury induced by Lambda cyhalotherin. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lambda-cyhalotherin (LCT) is a pyrithroid type 2 pesticide that is broadly utilized in pest control in public health, animal health, and agriculture. Although claiming that LCT has a low mammalian toxicity, several investigations reported its mammalian hepatotoxicity by mediating oxidative stress causes severe hepatotoxicity and liver damage.
Results
LCT significantly decreased catalase (CAT), superoxide dismutase (SOD), and total thiol (T. thiol) and increased lipid peroxidation (LPO). mRNA and protein expression levels of p53 were upregulated, whereas Bcl-2 mRNA and protein expression levels were downregulated in LCT-intoxicated animals. Also, light microscopic and ultrastructure studies for liver tissues of LCT-intoxicated animals showed mononuclear leukocytic infiltration in the parenchyma, congested portal vein with thickened wall, and proliferation of bile duct and hepatocytes with cytoplasmic vacuolations, fatty changes, and collagen fibers. Panax ginseng co-treatment attenuated oxidative stress biomarkers. Both tested doses of Panax ginseng (100 and 200 mg /kg b. wt./day) significantly decreased p53 and elevate Bcl-2 mRNA and protein expression levels and reveals significant amelioration and restoration of normal histology and ultrastructure of liver, but 200 mg/kg b. wt. of Panax ginseng seems to be more potent.
Conclusion
Panax ginseng exhibited ameliorative effect against hepatic oxidative stress, apoptosis, histopathological, and ultrastructural changes induced by LCT.
Collapse
|
6
|
Verma G, Sethi RS. Study of ethion and lipopolysaccharide interaction on lung in a mouse model. Lab Anim Res 2020; 36:22. [PMID: 32742976 PMCID: PMC7390112 DOI: 10.1186/s42826-020-00055-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Ethion is an organophosphate used commonly in India despite being banned in many other countries. The present study was designed to study the interaction of ethion and lipopolysaccharide (LPS) together on lung after single low dose ethion exposure. Mice (n = 20) were alienated into control and treatment groups (n = 10 each). The treatment group was orally fed ethion (8 mg/kg/animal/day) dissolved in corn oil. The animals (n = 5 each) from both the groups were challenged with 80 μg Escherichia coli lipopolysaccharide (LPS) intranasally and the remaining animals (n = 5 each) were administered normal saline solution after 24 h. Ethion along with LPS induced lung inflammation as indicated by increased neutrophils and total leukocyte count (TLC) in broncheoalveolar lavage fluid. Ethion induced histomorphological alterations in lung as shown by increased pulmonary inflammation score in histopathology. Real time PCR analysis showed that ethion followed by LPS resulted significant (p < 0.05) increase in pulmonary Toll-like receptor (TLR)-4 (48.53 fold), interleukin (IL)-1β (7.05 fold) and tumor necrosis factor (TNF)-α (5.74 fold) mRNA expression. LPS co-exposure suggested synergistic effect on TLR4 and TNF-α mRNA expression. Ethion alone or in combination with LPS resulted genotoxicity in blood cells as detected by comet assay. The data suggested single dietary ethion exposure alone or in conjunction with LPS causes lung inflammation and genotoxicity in blood cells.
Collapse
Affiliation(s)
- Geetika Verma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - R S Sethi
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| |
Collapse
|
7
|
Hsu SS, Jan CR, Liang WZ. The investigation of the pyrethroid insecticide lambda-cyhalothrin (LCT)-affected Ca 2+ homeostasis and -activated Ca 2+-associated mitochondrial apoptotic pathway in normal human astrocytes: The evaluation of protective effects of BAPTA-AM (a selective Ca 2+ chelator). Neurotoxicology 2018; 69:97-107. [PMID: 30292652 DOI: 10.1016/j.neuro.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
Exposure to insecticides has been found to have deleterious effects on human health. Lambda-cyhalothrin (LCT), a mixture of isomers of cyhalothrin, is a pyrethroid insecticide routinely used in pest control programs. LCT was reported to cause neurotoxic effects in various models. However, the mechanism of underlying effect of LCT on cytotoxicity in normal human brain cells is still elusive. This study examined whether LCT affected Ca2+ homeostasis and Ca2+-related physiology in Gibco® Human Astrocytes (GHA cells), and explored whether BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid), a selective Ca2+ chelator, has protective effects on LCT-treated GHA cells. The data show that LCT (10-15 μM) concentration-dependently induced cytotoxicity in both GHA cells and DI TNC1 normal rat astrocytes but only induced intracellular Ca2+ concentration ([Ca2+]i) rises in GHA cells. In terms of Ca2+ signaling in GHA cells, LCT-induced [Ca2+]i rises were reduced by removing extracellular Ca2+ and were inhibited by store-operated Ca2+ channel modulators (2-APB, econazole or SKF96365). In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished LCT-induced [Ca2+]i rises. Conversely, incubation with LCT abolished thapsigargin-induced [Ca2+]i rises. Regarding cytotoxicity, LCT evoked apoptosis by regulating apoptotic protein expressions (Bax, BCl-2, cleaved caspase-9/-3). This apoptotic response was significantly inhibited by prechelating cytosolic Ca2+ with BAPTA-AM. Together, in GHA cells, LCT induced [Ca2+]i rises by inducing Ca2+ entry via store-operated Ca2+ channels and Ca2+ release from the endoplasmic reticulum. Moreover, BAPTA-AM has a protective effect on inhibiting LCT-activated mitochondrial apoptotic pathway. This study provided new insights into the molecular protective mechanism of LCT-induced cytotoxicity in normal human astrocytes.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Surgery, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Nursing, Meiho University, Pingtung, 91202, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.
| |
Collapse
|
8
|
Long-term exposures to ethion and endotoxin cause lung inflammation and induce genotoxicity in mice. Cell Tissue Res 2018; 375:493-505. [DOI: 10.1007/s00441-018-2912-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
|
9
|
Dhuriya YK, Srivastava P, Shukla RK, Gupta R, Singh D, Parmar D, Pant AB, Khanna VK. Prenatal exposure to lambda-cyhalothrin alters brain dopaminergic signaling in developing rats. Toxicology 2017; 386:49-59. [PMID: 28495607 DOI: 10.1016/j.tox.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/28/2017] [Indexed: 11/25/2022]
Abstract
The present study is focused to decipher the molecular mechanisms associated with dopaminergic alterations in corpus striatum of developing rats exposed prenatally to lambda-cyhalothrin (LCT), a new generation type II synthetic pyrethroid. There was no significant change in the mRNA and protein expression of DA-D1 receptors at any of the doses of LCT (0.5, 1 and 3mg/kg body weight) in corpus striatum of developing rats exposed prenatally to LCT on PD22 and PD45. Prenatal exposure to LCT (1 and 3mg/kg body weight) resulted to decrease the levels of mRNA and protein of DA-D2 receptors in corpus stratum of developing rats on PD22 as compared to controls. Decrease in the binding of 3H-Spiperone in corpus striatum, known to label DA-D2 receptors was also distinct in developing rats on PD22. These rats also exhibited decrease in the expression of proteins - TH, DAT and VMAT2 involved in pre-dopaminergic signaling. Further, decrease in the expression of DARPP-32 and pCREB associated with increased expression of PP1α was evident in developing rats on PD22 as compared to controls. Interestingly, a trend of recovery in the expression of these proteins was observed in developing rats exposed to LCT at moderate dose (1.0mg/kg body weight) while alteration in the expression of these proteins continued to persist in those exposed at high dose (3.0mg/kg body weight) on PD45 as compared to respective controls. No significant change in the expression of any of these proteins was observed in corpus striatum of developing rats prenatally exposed to LCT at low dose (0.5mg/kg body weight) on PD22 and PD45 as compared to respective controls. The results provide interesting evidence that alterations in dopaminergic signaling on LCT exposure are due to selective changes in DA-D2 receptors in corpus striatum of developing rats. Further, these changes could be attributed to impairment in spontaneous motor activity on LCT exposure in developing rats.
Collapse
Affiliation(s)
- Yogesh K Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Lucknow Campus, India
| | - Pranay Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Rajendra K Shukla
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Richa Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Animal Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Aditya B Pant
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Vinay K Khanna
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India.
| |
Collapse
|
10
|
Pawar NN, Badgujar PC, Sharma LP, Telang AG, Singh KP. Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure. Toxicol Ind Health 2016; 33:277-286. [PMID: 26989158 DOI: 10.1177/0748233715627736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lambda cyhalothrin (LCT), a broad-spectrum type II (α-cyano) synthetic pyrethroid pesticide, is widely employed in various agricultural and animal husbandry practices for the control of pests. Acute and chronic exposure to LCT can elicit several adverse effects including oxidative stress. With the objective to investigate nephrotoxicity and neurotoxicity of LCT in mice, we evaluated oxidative stress parameters and histological changes in the kidney and brain of LCT exposed mice. Swiss albino mice were divided randomly into four groups ( n = 6 per group) as: (A) corn oil/vehicle control; (B) 0.5 mg/kg body weight (b.w.) LCT; (C) 1 mg/kg b.w. LCT; (D) 2 mg/kg b.w. LCT. Mice were treated orally for 28 days. LCT exposure significantly increased serum urea nitrogen, creatinine and urea levels. LCT exposure also increased lipid peroxidation, superoxide anion generation, nitrite level and decreased the level of reduced glutathione. The activities of superoxide dismutase, catalase and glutathione- S-transferase were depleted significantly in both kidney and brain. Histological examination revealed marked histopathological changes in the kidney and brain of mice that were more pronounced at high dose of LCT. Thus, results of the present study indicate that 28 days oral exposure of LCT causes oxidative damage to the kidney and brain of mice which in turn could be responsible for nephrotoxicity and neurotoxicity. Nevertheless, further detailed studies are required to prove these effects especially after long-term exposure.
Collapse
Affiliation(s)
- Nitin Nanasaheb Pawar
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Prarabdh Chandrakant Badgujar
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
- 2 Department of Food Science and Technology, Food Toxicology Section, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Laxman Prasad Sharma
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Avinash Gopal Telang
- 3 Toxicology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Karam P Singh
- 4 Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
11
|
Gill KK, Sandhu HS, Kaur R. Haematological alterations induced by oral subacute exposure to fenvalerate, nitrate and their combination in domestic buffalo, Bubalus bubalis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:703-707. [PMID: 24687223 DOI: 10.1007/s00128-014-1261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
The present study investigated haematological alterations induced by oral subacute exposure to fenvalerate, nitrate and their combination in the domestic buffalo, Bubalus bubalis. Fenvalerate exposure produced significant declines in haemoglobin (Hb), total leukocyte count (TLC), total erythrocyte count (TEC) and mean corpuscular haemoglobin concentration (MCHC), and a corresponding elevation in mean corpuscular volume (MCV). Following oral exposure to sodium nitrate, significant declines in blood Hb, TLC, TEC, MCH and MCHC, and a significant elevation in MCV occurred. Combined exposure to fenvalerate and sodium nitrate produced severe effects with an appreciably more prominent decline in Hb, TLC, TEC and MCHC and a significant elevation in MCV. The percentage of methaemoglobin was observed to follow an elevating trend in animals exposed to sodium nitrate alone (0.69 %-13.8 %) and in combination with fenvalerate (0.75 %-13.7 %).
Collapse
Affiliation(s)
- Kamalpreet Kaur Gill
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India,
| | | | | |
Collapse
|
12
|
Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI, Al-Ghothemi M. Reproductive toxicity and histopathological changes induced by lambda-cyhalothrin in male mice. ENVIRONMENTAL TOXICOLOGY 2014; 29:750-762. [PMID: 22865375 DOI: 10.1002/tox.21802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 06/01/2023]
Abstract
Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide. Oral LCT administration to adult male mice at 3 doses (0.2, 0.4, and 0.8 mg/kg/day) for 6 weeks caused a significant reduction in the weight of the seminal vesicles. The epididymal sperm count was lower in mice that received at the highest dose than in control mice. However, the proportions of live and motile spermatozoa were reduced at both the medium and the high doses compared with control mice. All doses induced an increase in the number of morphologically abnormal spermatozoa. Histopathological observations of the testes, liver, kidneys, and spleen showed dose-related degenerative damage in LCT-treated mice. The results indicate that LCT has reproductive toxicity, hepatotoxicity, nephrotoxicity, and splenotoxicity in male mice at the tested doses. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 750-762, 2014.
Collapse
Affiliation(s)
- Ali S Al-Sarar
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | | | | | | |
Collapse
|
13
|
Chernaki-L AM, Bueno R, Raspantini LE, Gorniak SL. Effects of Exposure of Higher Doses of Cypermethrin in Layers Hens. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ijps.2013.362.366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Ansari RW, Shukla RK, Yadav RS, Seth K, Pant AB, Singh D, Agrawal AK, Islam F, Khanna VK. Involvement of dopaminergic and serotonergic systems in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Toxicol Lett 2012; 211:1-9. [PMID: 22366556 DOI: 10.1016/j.toxlet.2012.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
In view of extensive uses of lambda-cyhalothrin, a new generation type II synthetic pyrethroid, human exposure is quite imminent. The present study has therefore been carried out to investigate effect of lambda-cyhalothrin on brain dopaminergic and serotonergic systems and functional alterations associated with them. Post-lactational exposure to lambda-cyhalothrin (1.0 mg/kg or 3.0 mg/kg body weight, p.o.) from PD22 to PD49 caused a significant decrease in the motor activity and rota-rod performance in rats on PD50 as compared to controls. Decrease in motor activity in lambda-cyhalothrin treated rats was found to persist 15 days after withdrawal of exposure on PD65 while a trend of recovery in rota-rod performance was observed. A decrease in the binding of ³H-Spiperone, known to label dopamine-D2 receptors in corpus striatum associated with decreased expression of tyrosine hydroxylase (TH)-immunoreactivity and TH protein was observed in lambda-cyhalothrin treated rats on PD50 and PD65 compared to controls. Increase in the binding of ³H-Ketanserin, known to label serotonin-2A receptors in frontal cortex was observed in lambda-cyhalothrin exposed rats on PD50 and PD65 as compared to respective controls. The changes were more marked in rats exposed to lambda-cyhalothrin at a higher dose (3.0 mg/kg) and persisted even 15 days after withdrawal of exposure. The results exhibit vulnerability of developing rats to lambda-cyhalothrin and suggest that striatal dopaminergic system is a target of lambda-cyhalothrin. Involvement of serotonin-2A receptors in the neurotoxicity of lambda-cyhalothrin is also suggested. The results further indicate that neurobehavioral changes may be more intense in case exposure to lambda-cyhalothrin continues.
Collapse
Affiliation(s)
- Reyaz W Ansari
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Post Box 80, MG Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | | | |
Collapse
|