1
|
|
2
|
Jin CY, Du JY, Zeng C, Zhao XH, Cao YX, Zhang XZ, Lu XY, Fan CA. Hypervalent Iodine(III)-Mediated Oxidative Dearomatizing Cyclization of Arylamines. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
|
4
|
Wang S, Sugamori KS, Brenneman D, Hsu I, Calce A, Grant DM. Influence of arylamine N-acetyltransferase, sex, and age on 4-aminobiphenyl-induced in vivo mutant frequencies and spectra in mouse liver. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:350-357. [PMID: 22508569 DOI: 10.1002/em.21695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/31/2023]
Abstract
One model for cancer initiation by 4-aminobiphenyl (ABP) involves N-oxidation by cytochrome P450 CYP1A2 followed by O-conjugation by N-acetyltransferase(s) NAT1 and/or NAT2 and decomposition to a DNA-binding nitrenium ion. We recently observed that neonatal ABP exposure produced liver tumors in male but not in female mice, and that NAT deficiency reduced liver tumor incidence. However, ABP-induced liver tumor incidence did not correlate with liver levels of N-(deoxyguanosin-8-yl)-ABP adducts 24 hr after exposure. In this study, we compared in vivo ABP-induced DNA mutant frequencies and spectra between male and female wild-type and NAT-deficient Muta™Mouse using both the tumor-inducing neonatal exposure protocol and a 28-day repetitive dosing adult exposure protocol. ABP produced an increase in liver DNA mutant frequencies in both neonates and adults. However, we observed no sex or strain differences in mutant frequencies in neonatally exposed mice, and higher frequencies in adult females than males. Neonatal ABP exposure of wild-type mice increased the proportion of G-T transversions in both males and females, while exposure of Nat1/2(-/-) mice produced increased G-T transversions in males and a decrease in females, even though females had higher levels of N-(deoxyguanosin-8-yl)-4-ABP adducts. There was no correlation of mutant frequencies or spectra between mice dosed as neonates or as adults. These results suggest that observed sex- and NAT-dependent differences in ABP-induced liver tumor incidence in mice are not due to differences in either mutation rates or mutational spectra, and that mechanisms independent of carcinogen bioactivation, covalent DNA binding and mutation may be responsible for these differences.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
5
|
Detection of endogenous and immuno-bound peroxidase — The status Quo in histochemistry. ACTA ACUST UNITED AC 2010; 45:81-139. [DOI: 10.1016/j.proghi.2009.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2009] [Indexed: 11/22/2022]
|
6
|
Hlavica P. Functional interaction of nitrogenous organic bases with cytochrome P450: A critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:645-70. [PMID: 16503427 DOI: 10.1016/j.bbapap.2006.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 02/02/2023]
Abstract
The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction of more efficient P450s for activation of amine drugs and/or bioremediation.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, D-80336 München, Germany.
| |
Collapse
|
7
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
8
|
Stiborová M, Miksanová M, Sulc M, Rýdlová H, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for the carcinogenicity of the environmental pollutant and suspected human carcinogen o-anisidine. Int J Cancer 2005; 116:667-78. [PMID: 15828049 DOI: 10.1002/ijc.21122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-methoxyaniline (o-anisidine) is an industrial and environmental pollutant and a bladder carcinogen for rodents. The mechanism of its carcinogenicity was investigated with 2 independent methods, 32P-postlabeling and 14C-labeled o-anisidine, to show that o-anisidine binds covalently to DNA in vitro after its activation by human hepatic microsomes. We also investigated the capacity of o-anisidine to form DNA adducts in vivo. Rats were treated i.p. with o-anisidine (0.15 mg/kg daily for 5 days) and DNA from several organs was analyzed by 32P-postlabeling. Two o-anisidine-DNA adducts, identical to those found in DNA incubated with o-anisidine and human microsomes in vitro, were detected in urinary bladder (4.1 adducts per 10(7) nucleotides), the target organ, and, to a lesser extent, in liver, kidney and spleen. These DNA adducts were identified as deoxyguanosine adducts derived from a metabolite of o-anisidine, N-(2-methoxyphenyl)hydroxylamine. This metabolite was identified in incubations with human microsomes. With 9 human hepatic microsomal preparations, we identified the specific CYP catalyzing the formation of the o-anisidine metabolites by correlation studies and by examining the effects of CYP inhibitors. On the basis of these analyses, oxidation of o-anisidine was attributed mainly to CYP2E1. Using recombinant human CYP (in Supersomes) and purified CYPs, the participation of CYP2E1 in o-anisidine oxidation was confirmed. In Supersomes, CYP1A2 was even more efficient in oxidizing o-anisidine than CYP2E1, followed by CYP2B6, 1A1, 2A6, 2D6 and 3A4. The results, the first report on the potential of the human microsomal CYP enzymes to activate o-anisidine, strongly suggest a carcinogenic potential of this rodent carcinogen for humans.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 2005; 44:279-304. [PMID: 15762770 DOI: 10.2165/00003088-200544030-00005] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)). Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs. Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
11
|
Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 2005; 106:357-87. [PMID: 15922018 PMCID: PMC1828602 DOI: 10.1016/j.pharmthera.2005.01.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Flavin-containing monooxygenase (FMO) oxygenates drugs and xenobiotics containing a "soft-nucleophile", usually nitrogen or sulfur. FMO, like cytochrome P450 (CYP), is a monooxygenase, utilizing the reducing equivalents of NADPH to reduce 1 atom of molecular oxygen to water, while the other atom is used to oxidize the substrate. FMO and CYP also exhibit similar tissue and cellular location, molecular weight, substrate specificity, and exist as multiple enzymes under developmental control. The human FMO functional gene family is much smaller (5 families each with a single member) than CYP. FMO does not require a reductase to transfer electrons from NADPH and the catalytic cycle of the 2 monooxygenases is strikingly different. Another distinction is the lack of induction of FMOs by xenobiotics. In general, CYP is the major contributor to oxidative xenobiotic metabolism. However, FMO activity may be of significance in a number of cases and should not be overlooked. FMO and CYP have overlapping substrate specificities, but often yield distinct metabolites with potentially significant toxicological/pharmacological consequences. The physiological function(s) of FMO are poorly understood. Three of the 5 expressed human FMO genes, FMO1, FMO2 and FMO3, exhibit genetic polymorphisms. The most studied of these is FMO3 (adult human liver) in which mutant alleles contribute to the disease known as trimethylaminuria. The consequences of these FMO genetic polymorphisms in drug metabolism and human health are areas of research requiring further exploration.
Collapse
Key Words
- flavin monooxygenase
- drug metabolism
- fmo
- bvmos, baeyer–villiger monooxygenases
- cyp, cytochrome p450
- dbm, dinucleotide-binding motif
- fadpnr, fad-dependent pyridine nucleotide reductase prints signature
- fmo, flavin-containing monooxygenase
- fmoxygenase, fmo prints signature
- gr, glutathione reductase
- pamo, phenylacetone monooxygenase
- pndrdtasei, pyridine nucleotide disulfide reductase class-i prints signature
- ros, reactive oxygen species
- snp, single-nucleotide polymorphism
- tmau, trimethylaminuria
Collapse
Affiliation(s)
- Sharon K. Krueger
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| | - David E. Williams
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| |
Collapse
|
12
|
Meisel P, Heins G, Carlsson LE, Giebel J, John U, Schwahn C, Kocher T. Impact of genetic polymorphisms on the smoking-related risk of periodontal disease: the population-based study SHIP. Tob Induc Dis 2003; 1:197. [PMID: 19570260 PMCID: PMC2671548 DOI: 10.1186/1617-9625-1-3-197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a bacterial inflammatory disease leading to attachment loss with the consequence of tooth loss. There exists a multifactorial risk pattern including bacterial challenge, smoking, age, sex, diabetes, socio-economic and genetic factors. Smoking has the highest impact on the course of the disease modulated by all the other factors. Here, we report the relationship between smoking and the polymorphisms of genetic polymorphisms inflicted in the pathogenesis. In a randomly selected population-based study, 1083 subjects were typed for the polymorphisms of the IL-1 genotype, Fcγ RIIIb receptor gene, myeloperoxidase and N-acetyltransferase (NAT2) and related to their periodontal state. Smoking behavior was assessed including present and past quality and quantity of smoking. There is a significant dose-effect relationship between the exposure to tobacco smoke and the extent of periodontal disease assessed as attachment loss and tooth loss. Moreover, there are gene-environmental interactions as subjects bearing variant genotypes show an enhanced smoking-associated risk of the disease modulated by these genotypes. In non-smokers, the impact of these genetic polymorphisms is mostly negligible. This study provides support for the hypothesis that subjects bearing genetic variants of polymorphically expressed phenotypes are at an increased risk of periodontitis when smoking. Mostly, this may be accomplished via the influence of smoking-related impairment on defense mechanisms rather than on the pathogenic pathways.
Collapse
Affiliation(s)
- P Meisel
- Department of Pharmacology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Garrigós MC, Reche F, Marín ML, Jiménez A. Determination of aromatic amines formed from azo colorants in toy products. J Chromatogr A 2002; 976:309-17. [PMID: 12462623 DOI: 10.1016/s0021-9673(02)01162-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A study for the determination of the aromatic amines formed after reduction of the azo colorants mostly used in toys was conducted. Sodium dithionite was used in the reductive cleavage of the azo group for the dyes, and the released amines were subsequently analysed by high-performance liquid chromatography with UV detection. The influence of different variables related to the reduction process was investigated by the use of a full-level factorial design, where most significant parameters as well as order interactions were studied. Reduction profiles for each colorant were obtained by studying the changes in the amount of amine obtained with different dithionite/colorant ratios. The expected aromatic amines forming azo colorants were detected, and in the presence of a nitro group a further reduction was observed. The yield of the total reduction process was determined by using standard addition of different quantities of amines to the colorants.
Collapse
Affiliation(s)
- M C Garrigós
- Department of Analytical Chemistry, University of Alicante, PO Box 99, 03080 Alicante, Spain
| | | | | | | |
Collapse
|
14
|
Hlavica P. N-oxidative transformation of free and N-substituted amine functions by cytochrome P450 as means of bioactivation and detoxication. Drug Metab Rev 2002; 34:451-77. [PMID: 12214660 DOI: 10.1081/dmr-120005646] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Indirect evidence for the participation of cytochrome P450 (P450) in the microsomal N-oxygenation of primary and N-substituted amine functions is presented by studies employing diagnostic modifiers of the hemoprotein system as well as immunochemical approaches. Experiments with recombinant hemoproteins or isozymes purified from the tissues of various animal species support the results obtained by the inhibitor assays. Amine substrates and the redox proteins of the microsomal electron transfer chain reveal to be mutually beneficial in interactions with P450s. Numerous N-substituted amines undergo P450-catalyzed N-oxidative transformation despite the presence of accessible alpha-C hydrogens in these structures rather thought to favor N-dealkylation. In these instances, stabilization of the initially formed aminium radicals by the specific active site orientation of the particular P450s obviously permits oxygen rebound. Apart from common iron-oxenoid chemistry involving a (FeO)3+ species, iron-bound hydroperoxide, (FeO2H)3+, appears to act as an electrophilic oxidant with certain N-substituted amines and P450 subforms. Generally, P450-mediated N-oxygenation of amines can produce cytotoxic and mutagenic metabolites, but equally can well yield hydrophilic products, that are readily excreted and thus promote detoxication.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| |
Collapse
|
15
|
Abstract
Arylamine N-acetyltransferases (NATs) play an important role in the interaction of competing metabolic pathways determining the fate of and response to xenobiotics as therapeutic drugs, occupational chemicals and carcinogenic substances. Individual susceptibility for drug response and possible adverse drug reactions are modulated by the genetic predisposition (manifested for example, by polymorphisms) and the phenotype of these enzymes. For all drugs metabolized by NATs, the impact of different in vivo enzyme activities is reviewed with regard to therapeutic use, prevention of side effects and possible indications for risk assessment by phenotyping and/or genotyping. As genes of NATs are susceptibility genes for multifactorial adverse effects and xenobiotic-related diseases, risk prediction can only be made possible by taking the complexity of events into consideration.
Collapse
Affiliation(s)
- Peter Meisel
- Department of Pharmacology, Ernst Moritz Arndt University Greifswald, F-Loeffler-Str. 23d, D-17487 Greifswald, Germany.
| |
Collapse
|
16
|
Kocher T, Sawaf H, Fanghänel J, Timm R, Meisel P. Association between bone loss in periodontal disease and polymorphism of N-acetyltransferase (NAT2). J Clin Periodontol 2002; 29:21-7. [PMID: 11846845 DOI: 10.1034/j.1600-051x.2002.290104.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The individual susceptibility to periodontal disease is probably the result of an interaction of multiple genetic and environmental influences. Polymorphism of the N-acetyltransferase (NAT 2) modifies the individual susceptibility to toxicity from certain therapeutic drugs or heterocyclic amines including substances from cigarette smoke. Subjects are to be classified as 'slow' or 'rapid' acetylators according to how fast their bodies metabolise such xenobiotics. Differences in their ability to detoxify these substances may contribute to an increased risk for periodontitis in subjects exposed to cigarette smoke or other xenobiotics. OBJECTIVE The purpose of this study was to assess whether the NAT2 genotype is a risk factor for periodontal disease in Caucasian patients suffering from adult periodontitis. MATERIAL AND METHODS 154 Caucasian subjects were assigned to one of the 3 groups: no, moderate, and severe periodontal disease based on bone and attachment loss. In all subjects, genotyping for mutations on the N-acetyltransferase (NAT2) gene was performed by means of PCR and RFLP analysis. RESULTS Comparison of frequency distribution of NAT2 acetylation types between the most diseased group and not or moderately affected subjects showed a tendency to over-representation of slow acetylators with severe disease. When using bone loss as measure of periodontitis, this over-representation shows a significant association with the disease (odds ratio=2.13, p=0.025). In the logistic regression analysis, adjusted for age and smoking, NAT2 slow phenotype was significantly associated with the severity of bone loss, the odds ratio being 2.09 (95% C.I. 1.02-4.26, p=0.043). In a case-control analysis (controlled for smoking, gender and age) mean bone loss showed a significant difference between the 2 NAT2-type groups (Mann-Whitney test p=0.041). CONCLUSION The data suggest that the slow acetylator phenotype may be associated with a higher risk of periodontitis, especially in smokers. Possible explanations regarding the mechanism are discussed; however, such attempts are highly speculative at this time.
Collapse
Affiliation(s)
- Thomas Kocher
- Unit of Periodontics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
17
|
Ferrer M, Sánchez-Lamar A, Fuentes JL, Barbé J, Llagostera M. Studies on the antimutagenesis of Phyllanthus orbicularis: mechanisms involved against aromatic amines. Mutat Res 2001; 498:99-105. [PMID: 11673075 DOI: 10.1016/s1383-5718(01)00270-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phyllanthus orbicularis is a medicinal plant, endemic to Cuba, whose aqueous extract has proven antiviral properties. This plant extract is being studied for treatment of viral diseases in animals and humans. Antimutagenic activities of this plant aqueous extract have been investigated as an additional and possible valuable property. Antimutagenesis was assayed against the mutagenic activity of m-phenylenediamine (m-PDA), 2-aminofluorene (2-AF), 1-aminopyrene (1-AP), 2-aminoanthracene (2-AA) and 9-aminophenantrene (9-AP) in Salmonella typhimurium (S. typhimurium) YG1024, in different co-treatment approaches. This plant extract produced a significant decrease of the mutagenesis mediated by these aromatic amines (AA) in the following order: m-PDA>2-AA>2-AF>9-AP>1-AP. Interactions with S9 enzymes and transformation of promutagenic amines and their mutagenic metabolites by chemical reactions to non-mutagenic compounds are proposed as possible mechanisms of antimutagenesis. Mutagenesis mediated by m-PDA was almost completely abolished when S9 mixture was co-incubated with the plant extract during 40 min, previous to the addition of the m-PDA and bacterial cells to the assay. Similar results were found with 2-AA and 1-AP, but the reduction of the mutation rate was not so dramatic. In contrast, the most significant antimutagenic effect against 2-AF and 9-AP was seen when these chemicals were co-incubated with the plant extract, before addition of the S9 mixture and bacterial cells to the assay. Therefore, inhibition or competition for S9 enzymes seems to be the main antimutagenic mechanism of this plant extract against m-PDA, 2-AA and 1-AP, whilst a chemical modification of 2-AF and 9-AP into non-promutagenic derivatives is likely to be the main mechanism of antimutagenesis against both compounds.
Collapse
Affiliation(s)
- M Ferrer
- Dpto de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Baker DG, Taylor HW, Lee SP, Barker SA, Goad ME, Means JC. Hepatic toxicity and recovery of Fischer 344 rats following exposure to 2-aminoanthracene by intraperitoneal injection. Toxicol Pathol 2001; 29:328-32. [PMID: 11442019 DOI: 10.1080/019262301316905282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Humans may be exposed to 2-aminoanthracene (2-AA), a substituted polycyclic aromatic hydrocarbon, and a recognized mutagen and carcinogen, through oral and respiratory routes from contact with a variety of environmental sources. For the present study, we sought to evaluate hepatic damage and recovery in Fischer 344 rats following multiple i.p. injections of 5 mg of 2-AA. Rats were injected weekly for up to 5 weeks. Subgroups were then allowed to recover for 1, 5, or 9 weeks, and biochemical and pathologic changes were evaluated. We observed that weight gains were reduced relative to controls for all groups receiving > or = 2 injections. Serum enzyme levels indicative of liver damage were evident and included alterations in serum aspartate aminotransferase, alkaline phosphatase, total protein, albumin, and globulin. These alterations usually returned to normal by 5 weeks following cessation of 2-AA administration. In contrast, histologic liver changes, including hepatocyte hypertrophy, biliary hyperplasia with oval cell proliferation, altered foci, nodular hyperplasia, and one hepatocellular adenoma became more severe with time. This experiment demonstrates patterns of hepatic damage and recovery in rats exposed to 2-AA.
Collapse
Affiliation(s)
- D G Baker
- Department of Veterinary Pathology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Inflammatory skin diseases account for a large proportion of all skin disorders and constitute a major health problem worldwide. Contact dermatitis, atopic dermatitis, and psoriasis represent the most prevalent inflammatory skin disorders and share a common efferent T-lymphocyte mediated response. Oxidative stress and inflammation have recently been linked to cutaneous damage in T-lymphocyte mediated skin diseases, particularly in contact dermatitis. Insights into the pathophysiology responsible for contact dermatitis can be used to better understand the mechanism of other T-lymphocyte mediated inflammatory skin diseases, and may help to develop novel therapeutic approaches. This review focuses on redox sensitive events in the inflammatory scenario of contact dermatitis, which comprise for example, several kinases, transcription factors, cytokines, adhesion molecules, dendritic cell surface markers, the T-lymphocyte receptor, and the cutaneous lymphocyte-associated antigen (CLA). In vitro and animal studies clearly point to a central role of several distinct but interconnected redox-sensitive pathways in the pathogenesis of contact dermatitis. However, clinical evidence that modulation of the skin's redox state can be used therapeutically to modulate the inflammatory response in contact dermatitis is presently not convincing. The rational for this discrepancy seems to be multi-faceted and complex and will be discussed.
Collapse
Affiliation(s)
- J Fuchs
- Department of Dermatology, Medical School, J. W. Goethe University, Frankfurt, Germany
| | | | | | | |
Collapse
|
20
|
Chiapella C, Cárdenas M, Barbé J, Llagostera M. Molecular analysis at the hisD3052 allele of S. typhimurium of mutations induced by aromatic amines, activated by mixed-function oxidases from plants. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:80-82. [PMID: 11473391 DOI: 10.1002/em.1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- C Chiapella
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona., Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|