1
|
Aramburu IV, Hoving D, Vernardis SI, Tin MCF, Ioannou M, Temkin MI, De Vasconcelos NM, Demichev V, Helbig ET, Lippert L, Stahl K, White M, Radbruch H, Ihlow J, Horst D, Chiesa ST, Deanfield JE, David S, Bode C, Kurth F, Ralser M, Papayannopoulos V. Functional proteomic profiling links deficient DNA clearance with increased mortality in individuals with severe COVID-19 pneumonia. Immunity 2022; 55:2436-2453.e5. [PMID: 36462503 PMCID: PMC9671605 DOI: 10.1016/j.immuni.2022.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.
Collapse
Affiliation(s)
| | - Dennis Hoving
- The Francis Crick Institute, Antimicrobial Defence Laboratory, London, UK
| | - Spyros I Vernardis
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK
| | - Martha C F Tin
- The Francis Crick Institute, Antimicrobial Defence Laboratory, London, UK
| | - Marianna Ioannou
- The Francis Crick Institute, Antimicrobial Defence Laboratory, London, UK
| | - Mia I Temkin
- The Francis Crick Institute, Antimicrobial Defence Laboratory, London, UK
| | | | - Vadim Demichev
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK
| | - Elisa Theresa Helbig
- Charité - Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Lena Lippert
- Charité - Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Matthew White
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK
| | - Helena Radbruch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jana Ihlow
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Scott T Chiesa
- Institute of Cardiovascular Science, University College London, London, UK
| | - John E Deanfield
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sascha David
- Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Christian Bode
- Department of Anaesthesiology and Critical Care, University Hospital Bonn, Bonn, Germany
| | - Florian Kurth
- Charité - Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK; Charité - Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | |
Collapse
|
2
|
Dhawan UK, Margraf A, Lech M, Subramanian M. Hypercholesterolemia promotes autoantibody production and a lupus-like pathology via decreased DNase-mediated clearance of DNA. J Cell Mol Med 2022; 26:5267-5276. [PMID: 36098213 PMCID: PMC9575094 DOI: 10.1111/jcmm.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Hypercholesterolemia exacerbates autoimmune response and accelerates the progression of several autoimmune disorders, but the mechanistic basis is not well understood. We recently demonstrated that hypercholesterolemia is associated with increased serum extracellular DNA levels secondary to a defect in DNase-mediated clearance of DNA. In this study, we tested whether the impaired DNase response plays a causal role in enhancing anti-nuclear antibody levels and renal immune complex deposition in an Apoe-/- mouse model of hypercholesterolemia. We demonstrate that hypercholesterolemic mice have enhanced anti-ds-DNA and anti-nucleosome antibody levels which is associated with increased immune complex deposition in the renal glomerulus. Importantly, treatment with DNase1 led to a decrease in both the autoantibody levels as well as renal pathology. Additionally, we show that humans with hypercholesterolemia have decreased systemic DNase activity and increased anti-nuclear antibodies. In this context, our data suggest that recombinant DNase1 may be an attractive therapeutic strategy to lower autoimmune response and disease progression in patients with autoimmune disorders associated with concomitant hypercholesterolemia.
Collapse
Affiliation(s)
- Umesh Kumar Dhawan
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Margraf
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maciej Lech
- LMU Hospital Department of Medicine, Munich, Germany
| | - Manikandan Subramanian
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Ahmad A, Mandwie M, O'Sullivan KM, Smyth C, York J, Doyle H, Holdsworth S, Pickering MC, Lachmann PJ, Alexander IE, Logan G. Conversion of the liver into a biofactory for DNaseI using adeno-associated virus vector gene transfer reduces neutrophil extracellular traps in a model of Systemic Lupus Erythematosus. Hum Gene Ther 2022; 33:560-571. [PMID: 35293226 DOI: 10.1089/hum.2021.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are proving to be clinically transformative tools in the treatment of monogenic genetic disease. Rapid ongoing development of this technology promises to not only increase the number of monogenic disorders amenable to this approach, but also to bring diseases with complex multigenic and non-genetic aetiologies within therapeutic reach. Here we explore the broader paradigm of converting the liver into a biofactory for systemic output of therapeutic molecules using AAV-mediated delivery of DNaseI as an exemplar. DNaseI can clear neutrophil extracellular traps (NETs), which are nuclear-protein structures possessing anti-microbial action that are also involved in the pathophysiology of clinically troubling immune-mediated diseases. However, a translational challenge is short half-life of the enzyme in vivo (<5 hours). The current study demonstrates that AAV-mediated liver-targeted gene transfer stably induces serum DNaseI activity to >190-fold above physiological levels. In lupus-prone mice (NZBWF1) activity was maintained for longer than 6 months, the latest time point tested, and resulted in a clear functional effect with reduced renal presence of neutrophils, NETs, IgG and complement C3. However, treatment in this complex disease model did not extend life-span, improve serological endpoints or preserve renal function indicating there are elements of pathophysiology not accessible to DNaseI in the NZBWF1 model. We conclude that a translational solution to the challenge of short half-life of DNaseI is AAV-mediated gene delivery and that this may be efficacious in treating disease where NETs are a dominant pathological mechanism.
Collapse
Affiliation(s)
- Amina Ahmad
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, Westmead, Australia;
| | - Mawj Mandwie
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, Westmead, Australia;
| | | | - Christine Smyth
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, 214 Hawkesbury Road, Westmead, NSW, Sydney, Westmead, New South Wales, Australia, 2145;
| | - Jarrod York
- The University of Sydney, 4334, Sydney, New South Wales, Australia;
| | - Helen Doyle
- The Sydney Children's Hospitals Network Randwick and Westmead, 371501, Pathology, Westmead, New South Wales, Australia;
| | - Stephen Holdsworth
- Monash University, 2541, Department of Medicine, Clayton, Victoria, Australia;
| | - Matthew C Pickering
- Imperial College London, 4615, Centre of Inflammatory Disease, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Peter J Lachmann
- University of Cambridge, 2152, Department of Veterinary Medicine, Cambridge, Cambridgeshire, United Kingdom of Great Britain and Northern Ireland;
| | - Ian Edward Alexander
- Sydney Children's Hospitals Network and Children's Medical Research Institute, Corner Hawkesbury Rd & Hainsworth St, Locked Bag 4001, Westmead, New South Wales, Australia, 2145 Sydney;
| | - Grant Logan
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, 214 Hawkesbury Road, Westmead, Australia, 2145;
| |
Collapse
|
4
|
Mathapathi S, Chu CQ. Contribution of Impaired DNASE1L3 Activity to Anti-DNA Autoantibody Production in Systemic Lupus Erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:17-22. [PMID: 36467024 PMCID: PMC9524810 DOI: 10.2478/rir-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 06/17/2023]
Abstract
Anti-DNA autoantibodies are pathogenic in systemic lupus erythematosus (SLE). Cell-free chromatin associated long DNA fragments are antigens for anti-DNA antibodies. In health state, released by cell death and actively secreted by live cells, these cell-free DNA are cleared by deoxyribonucleases (DNASES). In SLE, cell-free DNA are accumulated. The defective clearance of long fragments of cell-free DNA in SLE is largely attributed to impaired deoxyribonuclease 1 like 3 (DNASE1L3). DNASE1L3 null mutation results in monogenic SLE. The SLE risk single-nucleotide polymorphism (rs35677470) encodes R260C variant DNASE1L3, which is defective in secretion, leading to reduced levels of DNASE1L3. In addition, neutralizing autoantibodies to DNASE1L3 are produced in SLE to inhibit its enzymatic activity.
Collapse
Affiliation(s)
- Samarth Mathapathi
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
5
|
Verhülsdonk L, Mannherz HG, Napirei M. Comparison of the secretory murine DNase1 family members expressed in Pichia pastoris. PLoS One 2021; 16:e0253476. [PMID: 34329318 PMCID: PMC8323900 DOI: 10.1371/journal.pone.0253476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Soluble nucleases of the deoxyribonuclease 1 (DNase1) family facilitate DNA and chromatin disposal (chromatinolysis) during certain forms of cell differentiation and death and participate in the suppression of anti-nuclear autoimmunity as well as thrombotic microangiopathies caused by aggregated neutrophil extracellular traps. Since a systematic and direct comparison of the specific activities and properties of the secretory DNase1 family members is still missing, we expressed and purified recombinant murine DNase1 (rmDNase1), DNase1-like 2 (rmDNase1L2) and DNase1-like 3 (rmDNase1L3) using Pichia pastoris. Employing different strategies for optimizing culture and purification conditions, we achieved yields of pure protein between ~3 mg/l (rmDNase1L2 and rmDNase1L3) and ~9 mg/l (rmDNase1) expression medium. Furthermore, we established a procedure for post-expressional maturation of pre-mature DNase still bound to an unprocessed tri-N-glycosylated pro-peptide of the yeast α-mating factor. We analyzed glycosylation profiles and determined specific DNase activities by the hyperchromicity assay. Additionally, we evaluated substrate specificities under various conditions at equimolar DNase isoform concentrations by lambda DNA and chromatin digestion assays in the presence and absence of heparin and monomeric skeletal muscle α-actin. Our results suggest that due to its biochemical properties mDNase1L2 can be regarded as an evolutionary intermediate isoform of mDNase1 and mDNase1L3. Consequently, our data show that the secretory DNase1 family members complement each other to achieve optimal DNA degradation and chromatinolysis under a broad spectrum of biological conditions.
Collapse
Affiliation(s)
- Lukas Verhülsdonk
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Molecular and Experimental Cardiology, St. Josef-Hospital, Clinics of the Ruhr University Bochum, Bochum, Germany
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
The Nexus of cfDNA and Nuclease Biology. Trends Genet 2021; 37:758-770. [PMID: 34006390 DOI: 10.1016/j.tig.2021.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA) is a widely used noninvasive biomarker for diagnosis and prognosis of multiple disease states. Emerging evidence suggests that cfDNA might not just be passive waste products of cell death but could have a physiological and pathological function in inflammation and autoimmunity. The balance of cfDNA generation and clearance may thus be vital in health and disease. In particular, plasma nuclease activity has been linked to multiple pathologies including cancer and systemic lupus erythematosus (SLE) and associated with profound changes in the nonrandom fragmentation of cfDNA. Lastly, in this review, we explore the effects of DNA fragmentation factor B (DFFB), DNASE1L3, and DNASE1 on cfDNA levels and their fragmentomic profiles, and what these recent insights reveal about the biology of cfDNA.
Collapse
|
7
|
Hartl J, Serpas L, Wang Y, Rashidfarrokhi A, Perez OA, Sally B, Sisirak V, Soni C, Khodadadi-Jamayran A, Tsirigos A, Caiello I, Bracaglia C, Volpi S, Ghiggeri GM, Chida AS, Sanz I, Kim MY, Belmont HM, Silverman GJ, Clancy RM, Izmirly PM, Buyon JP, Reizis B. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med 2021; 218:e20201138. [PMID: 33783474 PMCID: PMC8020718 DOI: 10.1084/jem.20201138] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.
Collapse
Affiliation(s)
- Johannes Hartl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Oriana A. Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Benjamin Sally
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Vanja Sisirak
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Le Centre national de la recherche scientifique - unité mixte de recherche 5164, ImmunoConcEpt, Universite ´de Bordeaux, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Ivan Caiello
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefano Volpi
- Centro per le Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
| | - Asiya Seema Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Mimi Y. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - H. Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Gregg J. Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Robert M. Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Peter M. Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill P. Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
8
|
Bryzgunova OE, Konoshenko MY, Laktionov PP. Concentration of cell-free DNA in different tumor types. Expert Rev Mol Diagn 2020; 21:63-75. [PMID: 33270495 DOI: 10.1080/14737159.2020.1860021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Cell-free DNA (cfDNA) circulates in the blood for a long time. The levels of cfDNA in the blood are assayed in cancer diagnostics because they are closely related to the tumor burden of patients.Areas covered: cfDNA escapes the action of DNA-hydrolyzing enzymes, being a part of supramolecular complexes or interacting with the plasma membrane of blood cells. cfDNA has heterogeneous size and composition, which impose various restrictions on both isolation methods and subsequent analysis. cfDNA concentration and structural changes with the development of diseases highlight the high potential of cfDNA as a diagnostic and prognostic marker. The concentration of cfDNA released in the blood by tumor cells determines the specificity of such diagnostics and the required blood volume. The present review aimed to synthesize the available data on cfDNA concentration in the cancer patient's blood as well as pre-analytical, analytical, and biological factors, which interfere with cfDNA concentration.Expert opinion: The concentration of cfDNA and tumor cell DNA (ctDNA), and the over-presentation of DNA loci in cfDNA must be considered when looking for tumor markers. Some inconsistent data on cfDNA concentrations (like those obtained by different methods) suggest that the study of cfDNA should be continued.
Collapse
Affiliation(s)
- O E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - M Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - P P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
9
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
11
|
Ueki M, Kimura-Kataoka K, Fujihara J, Iida R, Kawai Y, Kusaka A, Sasaki T, Takeshita H, Yasuda T. Evaluation of the functional effects of genetic variants‒missense and nonsense SNPs, indels and copy number variations‒in the gene encoding human deoxyribonuclease I potentially implicated in autoimmunity. Sci Rep 2019; 9:13660. [PMID: 31541133 PMCID: PMC6754452 DOI: 10.1038/s41598-019-49935-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023] Open
Abstract
Genetic variants, such as single nucleotide polymorphisms (SNPs), in the deoxyribonuclease I (DNase I) gene which remarkably reduce or abolish the activity are assumed to be substantially responsible for the genetic backgrounds determining susceptibility to autoimmune dysfunction. Here, we evaluated many genetic variants, including missense and nonsense SNPs, and indel (inframe) variants in the gene, potentially implicated in autoimmune diseases as functional variants resulting in altered activity levels. Eighteen missense and 7 nonsense SNPs, and 9 indel (inframe) variants were found to result in loss of function and disappearance of DNase I activity. Furthermore, considering the positions in the DNase I protein corresponding to the various nonsense SNPs, all of the other nonsense SNPs and frameshift variants registered in the Ensembl database (https://asia.ensembl.org) appear likely to exert a pathogenetic effect through loss of the activity. Accordingly, a total of 60 genetic variants in the DNase 1 gene (DNASE1) inducing abolishment or marked reduction of the DNase I activity could be identified as genetic risk factors for autoimmunity, irrespective of how sparsely they were distributed in the population. It was noteworthy that SNP p.Gln244Arg, reportedly associated with autoimmunity and reducing the activity to about half of that of the wild type, and SNP p.Arg107Gly, abolishing the activity completely, were distributed worldwide and in African populations at the polymorphic level, respectively. On the other hand, with regard to copy number variations in DNASE1 where loss of copy leads to a reduction of the in vivo enzyme activity, only 2 diploid copy numbers were distributed in Japanese and German populations, demonstrating no loss of copy. These exhaustive data for genetic variants in DNASE1 resulting in loss or marked reduction of the DNase I activity are highly informative when considering genetic predisposition leading to autoimmune dysfunction.
Collapse
Affiliation(s)
- Misuzu Ueki
- Department of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Junko Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Reiko Iida
- Department of Life Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Akari Kusaka
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Takamitsu Sasaki
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan.
| | - Toshihiro Yasuda
- Department of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
12
|
Jeremic I, Djuric O, Nikolic M, Vlajnic M, Nikolic A, Radojkovic D, Bonaci-Nikolic B. Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosus. Rheumatol Int 2019; 39:1849-1857. [PMID: 31444555 DOI: 10.1007/s00296-019-04426-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are the main source of autoantigens in systemic lupus erythematosus (SLE). The aim of this study was to evaluate the clinical importance of NETs-associated markers in SLE. We compared NETs-associated markers in SLE patients (n = 111) with healthy controls (n = 50). Moreover, in 35 patients with drug-naïve SLE (n = 35), we investigated correlation between NETs-associated markers [DNase I concentration, myeloperoxidase (MPO) activity, anti-MPO antibodies, cell-free DNA (cfDNA), NETolytic activity] with serological parameters [anti-dsDNA antibodies, C3, C4 and B-cell activating factor (BAFF) levels] and disease activity measured by modified SLE Disease Activity Index (M-SLEDAI-2K). In comparison with healthy controls, SLE patients had higher cfDNA, MPO activity, anti-MPO antibodies (p < 0.001), BAFF and DNase I concentration (p < 0.01). Contrary, NETolytic activity was lower in SLE patients (p < 0.05), despite higher concentration of DNase I. MPO activity and cfDNA levels showed correlation with DNase I concentration (p < 0.001, p < 0.01, respectively). BAFF levels correlated with cfDNA, DNase I concentration and MPO activity (p < 0.05). Anti-dsDNA antibodies showed correlation with MPO activity (p < 0.01), cfDNA and BAFF levels (p < 0.001). Anti-dsDNA and C3 levels were independent predictors of M-SLEDAI-2K in multivariate analysis (p < 0.01). We demonstrated that sera of SLE patients have decreased NETolytic activity, leading to increased levels of various NETs-associated markers, which correlate with anti-dsDNA antibodies in drug-naïve SLE. We showed that BAFF participates in a complex relationship between NETosis and anti-dsDNA antibodies production. These findings have important implications for a better understanding of SLE pathogenesis and development of therapy that inhibits NETs persistence and disease progression.
Collapse
Affiliation(s)
- Ivica Jeremic
- School of Medicine, Institute of Rheumatology, University of Belgrade, Resavska 69, Belgrade, 11000, Serbia.
| | - Olivera Djuric
- School of Medicine, Institute of Epidemiology, University of Belgrade, Belgrade, Serbia
| | - Milos Nikolic
- School of Medicine, Clinic of Dermatovenereology, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Vlajnic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Bonaci-Nikolic
- School of Medicine, Clinic of Allergy and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Günther C. Nucleic Acid Immunity in the Pathogenesis of Cutaneous Lupus Erythematosus. Front Immunol 2019; 10:1636. [PMID: 31379837 PMCID: PMC6646723 DOI: 10.3389/fimmu.2019.01636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous lupus erythematosus can be a devastating painful and mutilating disease that is associated with an inflammatory response in the skin driven by type I interferon activation. Clearance defects in the extra- and intracellular space lead to an enhanced prevalence of nucleic acids that represent danger signals for the innate immune system. Self nucleic acids can stimulate DNA and RNA sensors that have originally evolved to ensure viral defense. Their activation can induce a type I interferon dominated response in resident skin cells, macrophages and dendritic cells that subsequently progresses to adaptive immune stimulation. The genetic exploration of rare monogenic type I interferon driven diseases helped to identify these pathogenic concepts. Based on a genetic susceptibility lupus patients are more vulnerable to environmental trigger factors such as UV-irradiation that can provoke inflammation with local tissue destruction and eventually systemic disease. Understanding of these pathogenic concepts is a prerequisite for development of targeted therapies.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
14
|
Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40:6-16. [DOI: 10.1016/j.smim.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
15
|
Meng Y, Deng S, Huang Z, Hu J, Zhang J, Xu D, Qin S, Tan C, Wu Y. Evaluating the diagnostic and prognostic value of lone anti-Sm for autoimmune diseases using Euroimmun line immunoassays. Clin Rheumatol 2018; 37:3017-3023. [PMID: 30003440 DOI: 10.1007/s10067-018-4197-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023]
Abstract
To investigate the value of lone anti-Smith antibody (anti-Sm) using Euroimmun line immunoassay (LIA) in a Chinese population. One thousand two hundred eight of 39,766 patients who were analyzed for anti-Sm had positive anti-Sm, and were divided into true group (having both positive Sm and nRNP/Sm bands) and lone group (only having Sm band without nRNP/Sm band). The proportions of clinical diagnosis of autoimmune diseases (AIDs), non-autoimmune diseases (NAIDs), concentration of C3, C4, and rheumatoid factor (RF), positive rate of autoantibodies of antinuclear antibody (ANA) profile, and titer of anti-Sm and ANA in systemic lupus erythematosus (SLE) patients were analyzed. Lone anti-Sm was evident in 271/1208 (22.42%) of all positive cases. One hundred seventy-five of them had definitive diagnoses with AIDs being the most prominent (69.71%, 122/175). Compared to the true group, SLE patients in the lone group showed significantly lower ANA and anti-Sm titers (both P < 0.001). There was no difference in frequency of other autoantibodies or C3, C4, and RF levels of SLE patients between the two groups. In NAIDs patients, lone anti-Sm indicates less incidence of kidney injury than true anti-Sm (P = 0.05). Lone anti-Sm has great diagnostic value in AIDs, especially SLE. Lone anti-Sm has relationship with mild kidney impairment. Positive anti-Sm patients with no clinical findings or SLE diagnosis should be submitted to new testing to identify changes in anti-Sm, because turning of lone anti-Sm to true anti-Sm indicates evolving kidney injury.
Collapse
Affiliation(s)
- Yanming Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Danjun Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Qin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018; 3:98178. [PMID: 29415887 DOI: 10.1172/jci.insight.98178] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Neutrophils dominate the early immune response in pathogen-induced acute lung injury, but efforts to harness their responses have not led to therapeutic advancements. Neutrophil extracellular traps (NETs) have been proposed as an innate defense mechanism responsible for pathogen clearance, but there are concerns that NETs may induce collateral damage to host tissues. Here, we detected NETs in abundance in mouse models of severe bacterial pneumonia/acute lung injury and in human subjects with acute respiratory distress syndrome (ARDS) from pneumonia or sepsis. Decreasing NETs reduced lung injury and improved survival after DNase I treatment or with partial protein arginine deiminase 4 deficiency (PAD4+/-). Complete PAD4 deficiency (PAD4-/-) reduced NETs and lung injury but was counterbalanced by increased bacterial load and inflammation. Importantly, we discovered that the lipoxin pathway could be a potent modulator of NET formation, and that mice deficient in the lipoxin receptor (Fpr2-/-) produced excess NETs leading to increased lung injury and mortality. Lastly, we observed in humans that increased plasma NETs were associated with ARDS severity and mortality, and lower plasma DNase I levels were associated with the development of sepsis-induced ARDS. We conclude that a critical balance of NETs is necessary to prevent lung injury and to maintain microbial control, which has important therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - Mark R Looney
- Department of Medicine and.,Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
17
|
Thiyagarajan D, Pedersen HL, Seredkina N, Horvei KD, Arranz L, Sonneveld R, Nijenhuis T, van der Vlag J, Rekvig OP. IL-1β Promotes a New Function of DNase I as a Transcription Factor for the Fas Receptor Gene. Front Cell Dev Biol 2018; 6:7. [PMID: 29468159 PMCID: PMC5807897 DOI: 10.3389/fcell.2018.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
Recently we described that endonuclease inactive DNase I translocated into the nucleus in response to increased endogenous IL-1β expression. Here, we demonstrate impact and function of translocated DNase I in tubular cells. Effect of cytokines on expression level and nuclear localisation of DNase I and corresponding levels of Fas receptor (FasR) and IL-1β were determined by confocal microscopy, qPCR and western blot analyses, in presence or absence of siRNA against IL-1β and DNase I mRNA. Nuclear DNase I bound to the FAS promotor region as determined by chromatin immuno-precipitation analysis. Data demonstrate that; (i) translocation of DNase I depended on endogenous de novo-expressed IL-1β, (ii) nuclear DNase I bound FAS DNA, (iii) FasR expression increased after translocation of DNase I, (iv) interaction of exogenous Fas ligand (FasL) with upregulated FasR induced apoptosis in human tubular cells stimulated with TNFα. Thus, translocated DNase I most probably binds the promoter region of the FAS gene and function as a transcription factor for FasR. In conclusion, DNase I not only executes chromatin degradation during apoptosis and necrosis, but also primes the cells for apoptosis by enhancing FasR expression.
Collapse
Affiliation(s)
- Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Hege L. Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Kjersti D. Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ramon Sonneveld
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ole P. Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
18
|
Affiliation(s)
- Thaiz Rivera Vargas
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
| | - Lionel Apetoh
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
- Centre Georges François Leclerc; Dijon France
| |
Collapse
|
19
|
Abstract
DNA degradation is critical to healthy organism development and survival. Two nuclease families that play key roles in development and in disease are the Dnase1 and Dnase2 families. While these two families were initially characterized by biochemical function, it is now clear that multiple enzymes in each family perform similar, non-redundant roles in many different tissues. Most Dnase1 and Dnase2 family members are poorly characterized, yet their elimination can lead to a wide range of diseases, including lethal anemia, parakeratosis, cataracts and systemic lupus erythematosus. Therefore, understanding these enzyme families represents a critical field of emerging research. This review explores what is currently known about Dnase1 and Dnase2 family members, highlighting important questions about the structure and function of family members, and how their absence translates to disease.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
20
|
Gatselis NK, Vakrakou AG, Zachou K, Androutsakos T, Azariadis K, Hatzis G, Manoussakis MN, Dalekos GN. Decreased serum DNase1-activity in patients with autoimmune liver diseases. Autoimmunity 2017; 50:125-132. [DOI: 10.1080/08916934.2017.1279610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikolaos K. Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece,
| | - Aigli G. Vakrakou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
- Department of Molecular Medicine, Hellenic Pasteur Institute, Athens, Greece, and
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece,
| | - Theodoros Androutsakos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Kalliopi Azariadis
- Department of Medicine and Research Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece,
| | - Gregorios Hatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Menelaos N. Manoussakis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
- Department of Molecular Medicine, Hellenic Pasteur Institute, Athens, Greece, and
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece,
| |
Collapse
|
21
|
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2017; 35:347-76. [PMID: 27392603 PMCID: PMC5035665 DOI: 10.1007/s10555-016-9629-x] [Citation(s) in RCA: 544] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While various clinical applications especially in oncology are now in progress such as diagnosis, prognosis, therapy monitoring, or patient follow-up, the determination of structural characteristics of cell-free circulating DNA (cirDNA) are still being researched. Nevertheless, some specific structures have been identified and cirDNA has been shown to be composed of many “kinds.” This structural description goes hand-in-hand with the mechanisms of its origins such as apoptosis, necrosis, active release, phagocytosis, and exocytose. There are multiple structural forms of cirDNA depending upon the mechanism of release: particulate structures (exosomes, microparticles, apoptotic bodies) or macromolecular structures (nucleosomes, virtosomes/proteolipidonucleic acid complexes, DNA traps, links with serum proteins or to the cell-free membrane parts). In addition, cirDNA concerns both nuclear and/or mitochondrial DNA with both species exhibiting different structural characteristics that potentially reveal different forms of biological stability or diagnostic significance. This review focuses on the origins, structures and functional aspects that are paradoxically less well described in the literature while numerous reviews are directed to the clinical application of cirDNA. Differentiation of the various structures and better knowledge of the fate of cirDNA would considerably expand the diagnostic power of cirDNA analysis especially with regard to the patient follow-up enlarging the scope of personalized medicine. A better understanding of the subsequent fate of cirDNA would also help in deciphering its functional aspects such as their capacity for either genometastasis or their pro-inflammatory and immunological effects.
Collapse
Affiliation(s)
- A R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France.
| | - S El Messaoudi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P B Gahan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P Anker
- , 135 route des fruitières, 74160, Beaumont, France
| | - M Stroun
- , 6 Pedro-meylan, 1208, Geneva, Switzerland
| |
Collapse
|
22
|
Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 2016; 7:e2518. [PMID: 27929534 PMCID: PMC5261016 DOI: 10.1038/cddis.2016.410] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.
Collapse
|
23
|
He Y, Cheng F, Pang DW, Tang HW. Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Skiljevic D, Bonaci-Nikolic B, Brasanac D, Nikolic M. Apoptosis of keratinocytes and serum DNase I activity in patients with cutaneous lupus erythematosus: relationship with clinical and immunoserological parameters. J Eur Acad Dermatol Venereol 2016; 31:523-529. [DOI: 10.1111/jdv.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- D. Skiljevic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - B. Bonaci-Nikolic
- Department of Allergy and Clinical Immunology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - D. Brasanac
- Department of Pathology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - M. Nikolic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
25
|
Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol 2016; 7:302. [PMID: 27570525 PMCID: PMC4981595 DOI: 10.3389/fimmu.2016.00302] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/26/2016] [Indexed: 02/05/2023] Open
Abstract
Recent data suggest that NETosis plays a crucial role in the innate immune response and disturbs the homeostasis of the immune system. NETosis is a form of neutrophil-specific cell death characterized by the release of large web-like structures referred to as neutrophil extracellular traps (NETs). NETs are composed of DNA strands associated with histones and decorated with about 20 different proteins, including neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, high mobility group protein B1, and LL37. Reportedly, NETosis can be induced by several microbes, and particulate matter including sterile stimuli, via distinct cellular mechanisms. Meanwhile, suicidal NETosis and vital NETosis are controversial. As we enter the second decade of research on NETosis, we have partly understood NETs as double-edged swords of innate immunity. In this review, we will discuss the mechanisms of NETosis, its antimicrobial action, and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA.
Collapse
Affiliation(s)
- Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Mona Helena Biermann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Jan Markus Brauner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
26
|
Fujihara J, Ueki M, Kimura-Kataoka K, Iida R, Takeshita H, Yasuda T. Functional Single Nucleotide Polymorphisms (SNPs) in the Genes Encoding the Human Deoxyribonuclease (DNase) Family Potentially Relevant to Autoimmunity. Immunol Invest 2016; 45:406-19. [PMID: 27116004 DOI: 10.3109/08820139.2016.1157813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To continue our previous investigations, we have extensively investigated the function of the 61, 41, and 35 non-synonymous single nucleotide polymorphisms (SNPs) in the human genes encoding DNASE1, DNASE1L3, and DNASE2, respectively, potentially relevant to autoimmune diseases. METHODS The site-directed mutagenesis was employed to amino acid-substituted constructs corresponding to each SNP. The COS-7 cells were transfected with each vector and DNase activity was assayed by the single radial enzyme diffusion method. By using PolyPhen-2, changes in the DNase function of each non-synonymous SNP were predicted. Genotyping of all the non-synonymous SNPs was performed in 14 different populations including 3 ethnic groups using the polymerase chain reaction followed by the restriction fragment length polymorphism method. RESULTS Expression analysis demonstrated these SNPs to be classified into four categories with regard to the effect on DNase activity: SNPs not affecting the activity level, ones reducing it, ones abolishing it, and ones elevating it. In particular, 9, 5, and 4 SNPs producing a loss-of-function variant of the enzymes in DNASE1, DNASE1L3, and DNASE2, respectively, were confirmed. SNPs producing DNase loss of function can be estimated by PolyPhen-2 to be "probably damaging" with a high accuracy of prediction. Almost all of these functional SNPs producing a loss of function or substantially low activity-harboring forms exhibited a mono-allelic distribution in all of the populations. CONCLUSION A minor allele of functional SNPs, despite the remarkably low genetic heterogeneity of the SNPs, might be a genetic risk factor for autoimmune diseases.
Collapse
Affiliation(s)
- Junko Fujihara
- a Department of Legal Medicine , Shimane University School of Medicine , Shimane , Japan
| | - Misuzu Ueki
- b Division of Medical Genetics and Biochemistry , University of Fukui , Fukui , Japan
| | - Kaori Kimura-Kataoka
- a Department of Legal Medicine , Shimane University School of Medicine , Shimane , Japan
| | - Reiko Iida
- c Division of Life Sciences, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Haruo Takeshita
- a Department of Legal Medicine , Shimane University School of Medicine , Shimane , Japan
| | - Toshihiro Yasuda
- b Division of Medical Genetics and Biochemistry , University of Fukui , Fukui , Japan
| |
Collapse
|
27
|
Vancevska A, Nikolic A, Bonaci-Nikolic B, Skiljevic D, Radojkovic D. Assessment of Deoxyribonuclease Activity in Serum Samples of Patients With Systemic Lupus Erythematosus: Fluorescence-Based Method Versus ELISA. J Clin Lab Anal 2016; 30:797-803. [PMID: 27086765 DOI: 10.1002/jcla.21939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report the improvement of previously described method for determining deoxyribonuclease (DNase) activity in serum samples that uses a fluorescently labeled DNA fragment as a substrate METHODS: Activity of serum DNase was analyzed in 31 patients with systemic lupus erythematosus (SLE) and 13 healthy individuals by fluoresence-based method and ELISA test RESULTS: We found a mean decrease in DNase activity between cases and controls of 12.46% measured by the fluoresence-based method and of 12.21% measured by ELISA method. High level of positive correlation between two methods for DNase activity was observed: P < 0.001 and Pearson correlation coefficient 0.740. Decreased DNase activity was found in 25 of 31 SLE patients (81%) by fluoresence-based method and in 24 of 31 SLE patients (77%) by ELISA test. We also observed the significant positive correlation between titer of anti-dsDNA antibodies and DNase activity measured by both methods (P < 0.05). CONCLUSIONS The key improvement is the use of internal control in the fluorescence-based method, which diminishes the influence of technical errors on the obtained results and increases reliability of the assay. This improved fluorescence-based method, with additional validation, may provide an alternative to more expensive and time-consuming conventional methods, such as ELISA.
Collapse
Affiliation(s)
- Aleksandra Vancevska
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Branka Bonaci-Nikolic
- Clinic of Allergy and Clinical Immunology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Skiljevic
- Clinic of Dermatovenereology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Zhu B, Zhang L, Zhang YY, Wang L, Li XG, Liu T, Fu YK, Zheng YF, Li P, Zhao ZG. DNase I aggravates islet β-cell apoptosis in type 2 diabetes. Mol Med Rep 2016; 13:4577-84. [PMID: 27082840 PMCID: PMC4878546 DOI: 10.3892/mmr.2016.5102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/07/2016] [Indexed: 12/24/2022] Open
Abstract
Deoxyribonuclease I (DNase I) is an endonuclease responsible for the destruction of chromatin during apoptosis. However, its role in diabetes remains unclear. The aim of the current study was to investigate the role of DNase I combined with high glucose levels in β-cell apoptosis. Human samples were collected and the DNase I activity was examined. High glucose-cultured INS-1 cells were transfected with DNase I small interfering RNA (siRNA) and the cell apoptosis was examined by western blotting and flow cytometry. Cell viability was analyzed by the Cell Counting Kit-8 assay. Cell apoptosis resulting from 50 mU/μl DNase I was also observed by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick-end labeling stain and western blotting. Compared with healthy controls, the serum DNase I activity of patients with diabetes was significantly increased (P<0.05). In addition, DNase I expression was observed to be significantly increased in human pancreatic tissues. The addition of high glucose upregulated the cell apoptotic rate, whereas DNase I knockdown significantly reduced apoptosis in cells treated with high glucose. In addition, the western blotting results indicated that caspase-3 was increased subsequent to treatment of cells with 30 mM high glucose, however, this increase can be reversed by transfection with DNase I siRNA (P<0.05). Compared with cells cultured in normal conditions and high glucose, 50 mU/μl DNase I was able to significantly increase the cell apoptotic rate and level of caspase-3. DNase I activity was observed to be increased in type 2 diabetes, and high glucose combined with increased DNase I is suggested to aggravate β-cell apoptosis.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yue-Ying Zhang
- Department of Chinese Medicine, Beijing Hepingli Hospital, Beijing 100013, P.R. China
| | - Lei Wang
- Department of Chinese Medicine, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100050, P.R. China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Teng Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yu-Ke Fu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yan-Fei Zheng
- Department of Chinese Medicine, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100050, P.R. China
| | - Ping Li
- Department of Nephrology, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhi-Gang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
29
|
Trofimenko AS, Gontar IP, Zborovsky AB, Paramonova OV. Anti-DNase I antibodies in systemic lupus erythematosus: diagnostic value and share in the enzyme inhibition. Rheumatol Int 2016; 36:521-9. [PMID: 26879320 DOI: 10.1007/s00296-016-3437-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
Abstract
Diagnostic accuracy of anti-DNase I antibodies measurement in a differentiation between SLE and other autoimmune rheumatic diseases was evaluated. The share of anti-DNase I and actin in the DNase I activity decrease in SLE was established. Serum samples were obtained from 54 patients with verified SLE, 52 control patients with other autoimmune rheumatic diseases, and 44 healthy persons. Anti-DNase I concentrations were measured by ELISA. Free and actin inhibited DNase I activities were evaluated in the fresh serum samples. The appraisal of antibodies and actin effects on DNase I activity was made using multiple regression. Anti-DNase I antibodies were positive in 35 SLE and 8 control patients, without significant difference between the mean antibody concentrations. Sensitivity of this test was 64.81 %, and specificity-84.62 %. Mean free DNase I activity in SLE was somewhat lower than in the control group as a result of augmented frequency of extremely low enzyme activities. On the contrary, after the exclusion of the latter cases we have revealed elevated mean free DNase I activity in the other SLE patients comparing to the similar control subgroup. Unlike the controls, low serum DNase I activity in SLE arose not only from actin and antibody action, but also, in half of the cases, from unidentified factor, related to active SLE. The accuracy of the anti-DNase I antibodies measurement is approximate to the present reference standard of SLE diagnostics. We first demonstrated that neither antibodies nor actin caused DNase I activity decrease in SLE.
Collapse
Affiliation(s)
- A S Trofimenko
- FSBSI Research Institute of Clinical and Experimental Rheumatology, 76, Zemlyachki Str., Volgograd, Russia, 400138. .,Hospital Therapy Department, Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131.
| | - I P Gontar
- FSBSI Research Institute of Clinical and Experimental Rheumatology, 76, Zemlyachki Str., Volgograd, Russia, 400138.,Hospital Therapy Department, Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
| | - A B Zborovsky
- FSBSI Research Institute of Clinical and Experimental Rheumatology, 76, Zemlyachki Str., Volgograd, Russia, 400138.,Hospital Therapy Department, Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
| | - O V Paramonova
- Hospital Therapy Department, Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
| |
Collapse
|
30
|
Wang L, Law HKW. The Role of Autophagy in Lupus Nephritis. Int J Mol Sci 2015; 16:25154-67. [PMID: 26506346 PMCID: PMC4632796 DOI: 10.3390/ijms161025154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| |
Collapse
|
31
|
Gajic-Veljic M, Bonaci-Nikolic B, Lekic B, Skiljevic D, Ciric J, Zoric S, Stojimirovic B, Nikolic M. Importance of low serum DNase I activity and polyspecific anti-neutrophil cytoplasmic antibodies in propylthiouracil-induced lupus-like syndrome. Rheumatology (Oxford) 2015; 54:2061-70. [DOI: 10.1093/rheumatology/kev243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 12/30/2022] Open
|
32
|
Impaired degradation and aberrant phagocytosis of necrotic cell debris in the peripheral blood of patients with primary Sjögren's syndrome. J Autoimmun 2015; 56:12-22. [DOI: 10.1016/j.jaut.2014.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 02/02/2023]
|
33
|
Bryzgunova O, Laktionov P. Generation of blood circulating DNA: the sources, peculiarities of circulation and structure. ACTA ACUST UNITED AC 2015; 61:409-26. [DOI: 10.18097/pbmc20156104409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Extracellular nucleic acids (exNA) were described in blood of both healthy and illness people as early as in 1948, but staied overlooked until middle 60-th. Starting from the beginning of new millennium and mainly in the last 5 years exNA are intensively studied. Main attention is directed to investigation of exNA as the source of diagnostic material whereas the mechanisms of their generation, as well as mechanisms to providing long-term circulation of exNA in the bloodstream are not established unambiguously. According to some authors, the main source of circulating nucleic acids in blood are the processes of apoptosis and necrosis, while others refer to the possible nucleic acid secretion by healthy and tumor cells. Circulating DNA were found to be stable in the blood for a long time, escaping from the action of DNA hydrolyzing enzymes and are apparently packed in different supramolecular complexes. This review presents the opinions of various authors and evidence in favor of all the theories describingappearance of extracellular DNA, the features of the circulation and structure of the extracellular DNA and factors affecting the time of DNA circulation in blood
Collapse
Affiliation(s)
- O.E. Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - P.P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
34
|
Bryzgunova OE, Laktionov PP. Generation of blood circulating DNAs: Sources, features of struction and circulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814030020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Tug S, Helmig S, Menke J, Zahn D, Kubiak T, Schwarting A, Simon P. Correlation between cell free DNA levels and medical evaluation of disease progression in systemic lupus erythematosus patients. Cell Immunol 2014; 292:32-9. [PMID: 25243646 DOI: 10.1016/j.cellimm.2014.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
High levels of cell free DNA (cfDNA) in human blood plasma have been described in patients with autoimmune diseases. The aim of this study was to determine the levels of cfDNA in systemic lupus erythematosus (SLE) patients and to assess fluctuations of cfDNA concentrations compared to the course of disease progression under standard treatment. Therefore, nuclear cfDNA concentrations in plasma were measured in 59 SLE patients and 59 healthy controls. Follow-up blood plasma was collected from 27 of the 59 SLE patients. Patients were characterised by clinical parameters (antinuclear antibodies (ANA), anti-dsDNA-antibodies, C3, C4, and CRP), SLE disease activity index (SLEDAI) and medical therapy. Our results showed that cfDNA concentrations were significantly higher in SLE patients compared to healthy individuals. Levels of cfDNA assessed in serial samples correlated significantly with the medical evaluation of disease activity in SLE patients. Our results could implicate cfDNA as a global marker for disease activity.
Collapse
Affiliation(s)
- Suzan Tug
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Menke
- Department of Rheumatology and Clinical Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Zahn
- Institute of Psychology, Health Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Kubiak
- Institute of Psychology, Health Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schwarting
- Department of Rheumatology and Clinical Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
36
|
Kimura-Kataoka K, Ueki M, Takeshita H, Fujihara J, Iida R, Kawai Y, Yasuda T. Identification of the functional alleles of the nonsynonymous single-nucleotide polymorphisms potentially implicated in systemic lupus erythematosus in the human deoxyribonuclease I gene. DNA Cell Biol 2014; 33:492-502. [PMID: 24819173 DOI: 10.1089/dna.2014.2368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, we have extensively continued our previous investigations of the nonsynonymous single-nucleotide polymorphisms (SNPs) in the human DNase I (DNASE1) gene potentially relevant to systemic lupus erythematosus (SLE); therefore, all of the 58 nonsynonymous SNPs registered in the NCBI dbSNP database could be evaluated and it could be checked as to whether these SNPs might serve as a functional SNP. From a compiled expression analysis of the amino-acid-substituted DNase I corresponding to each of the SNPs, it was possible to sort them into 23 SNPs while not affecting the activity: 12 abolishing it, 14 reducing it, and 9 increasing it. Among a total of 58 nonsynonymous SNPs, only 4 SNPs exhibited genetic polymorphisms in some of the populations examined; a minor allele producing a loss-of-function variant of each SNP was not distributed in 14 different populations derived from three ethnic groups. It could be assumed that a minor allele of these functional SNPs, despite their remarkably low genetic heterogeneity, could directly serve as a genetic risk factor for SLE. Furthermore, among the human DNase family genes, it seems that DNASE1 is able to tolerate the generation of nonsynonymous SNPs, and that the amino-acid substitutions resulting from the SNPs in DNASE1 easily alter the activity.
Collapse
Affiliation(s)
- Kaori Kimura-Kataoka
- 1 Department of Legal Medicine, Shimane University School of Medicine , Shimane, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Skiljevic D, Jeremic I, Nikolic M, Andrejevic S, Sefik-Bukilica M, Stojimirovic B, Bonaci-Nikolic B. Serum DNase I activity in systemic lupus erythematosus: correlation with immunoserological markers, the disease activity and organ involvement. Clin Chem Lab Med 2014. [PMID: 23183758 DOI: 10.1515/cclm-2012-0521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Decreased activity of serum desoxyribonuclease I (DNase I) in systemic lupus erythematosus (SLE) has been reported, but its role as a biomarker in SLE is still unelucidated. METHODS Seventy-seven SLE patients (aged 39.6 ± 13.1 years) were studied for serum DNase I activity, levels of antinuclear (ANA), anti-dsDNA [high-avidity ELISA, conventional ELISA and indirect immunofluorescence (IIF)], anti-nucleosome, anti-histone antibodies, complement components C3 and C4. SLE disease activity was evaluated by disease activity index (SLEDAI-2K). Thirty-five patients were serologically and clinically followed for 3-12 months (mean 5.6 ± 2.8). Thirty-seven healthy blood donors were the control group. RESULTS DNase I activity in SLE patients was lower than in healthy controls (p<0.01). DNase I activity was in positive correlation with SLEDAI-2K (p<0.01), levels of ANA, anti-dsDNA, anti-nucleosome and anti-histone antibodies (p<0.01) and in negative correlation with C3 concentration (p<0.05). The highest correlation was found between DNase I activity and anti-dsDNA concentrations determined by high-avidity ELISA (r=0.624), followed by IIF (r=0.541) and conventional ELISA (r=0.405). In the follow-up study, DNase I activity also correlated with SLEDAI-2K (p<0.01). SLE patients with low DNase I activity more frequently had SLE-specific cutaneous lesions (p<0.05). CONCLUSIONS Monitoring of DNase I activity simultaneously with SLEDAI-2K might be a useful tool in the follow-up of SLE. An increase of DNase I activity characterized relapse in most SLE patients, although it did not reach the levels of healthy individuals. A decrease of DNase I activity in SLE flare-ups might be a functional biomarker of a subset of patients with specific dysfunction of apoptotic chromatin degradation.
Collapse
Affiliation(s)
- Dusan Skiljevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhu B, Gong Y, Chen P, Zhang H, Zhao T, Li P. Increased DNase I activity in diabetes might be associated with injury of pancreas. Mol Cell Biochem 2014; 393:23-32. [PMID: 24676545 DOI: 10.1007/s11010-014-2043-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 02/04/2023]
Abstract
DNase I is an endonuclease responsible to destruction of chromatin during apoptosis. However, its role in diabetes is still unclear. With blood samples from our previous study related to type 2 diabetes, we examined the DNase I activity in the serum of these patients and the role of DNase I in the injury of pancreas was further investigated in rats and INS-1 cells. Serum and pancreatic tissues from human and rats were used for the study. Insulin resistance and diabetes were induced by high fat diet and STZ injection, respectively. DNase I activity was determined by radial enzyme-diffusion method. Expressions of DNase I and caspase-3 in pancreas were determined in rat pancreatic tissues and INS-1 cells. Apoptosis of INS-1 cells was determined by both TUNEL assay and Flow Cytometry. There was a significant elevation of DNase I activity in serum of patients with type 2 diabetes and rats with STZ injection. Moreover, increase in DNase I expression was observed in the pancreas of diabetic person and rats. Furthermore, high glucose induced both DNase I and caspase-3 expression and at the same time increased apoptosis rate of INS-1 cells. In conclusion, elevated DNase I in diabetes may be related to pancreatic injury and could be one of the causes that induce diabetes.
Collapse
Affiliation(s)
- Bin Zhu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
AlFadhli S, Ghanem AAM. Influence ofHumDN1VNTR polymorphism onDNASE1expression in systemic lupus erythematosus and rheumatoid arthritis. Immunol Invest 2014; 43:411-23. [DOI: 10.3109/08820139.2013.864666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Ueki M, Kimura-Kataoka K, Takeshita H, Fujihara J, Iida R, Sano R, Nakajima T, Kominato Y, Kawai Y, Yasuda T. Evaluation of all non-synonymous single nucleotide polymorphisms (SNPs) in the genes encoding human deoxyribonuclease I and I-like 3 as a functional SNP potentially implicated in autoimmunity. FEBS J 2013; 281:376-90. [DOI: 10.1111/febs.12608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/26/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Misuzu Ueki
- Division of Medical Genetics and Biochemistry; Faculty of Medical Sciences; University of Fukui; Japan
| | | | - Haruo Takeshita
- Department of Legal Medicine; Shimane University School of Medicine; Japan
| | - Junko Fujihara
- Department of Legal Medicine; Shimane University School of Medicine; Japan
| | - Reiko Iida
- Division of Life Sciences; Faculty of Medical Sciences; University of Fukui; Japan
| | - Rie Sano
- Department of Legal Medicine; Gunma University School of Medicine; Japan
| | - Tamiko Nakajima
- Department of Legal Medicine; Gunma University School of Medicine; Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine; Gunma University School of Medicine; Japan
| | - Yasuyuki Kawai
- Department of Cardiology; Kanazawa Medical University; Ishikawa Japan
| | - Toshihiro Yasuda
- Department of Legal Medicine; Shimane University School of Medicine; Japan
| |
Collapse
|
41
|
Sillesen M, Jin G, Oklu R, Albadawi H, Imam AM, Jepsen CH, Hwabejire JO, Ostrowski SR, Johansson PI, Rasmussen LS, Alam HB. Fresh-frozen plasma resuscitation after traumatic brain injury and shock attenuates extracellular nucleosome levels and deoxyribonuclease 1 depletion. Surgery 2013; 154:197-205. [PMID: 23889948 DOI: 10.1016/j.surg.2013.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Traumatic brain injury and shock are among the leading causes of trauma-related mortality. We have previously shown that fresh-frozen plasma (FFP) resuscitation reduces the size of brain lesion and associated swelling compared with crystalloids. We hypothesized that this effect would be associated with an attenuation of circulating nucleosome levels, a biomarker of injury with cytotoxic potential, through reconstitution of circulating deoxyribonuclease-1 (DNAse1), an enzyme identified as critical in nucleosome clearance from the circulation. METHODS Twelve swine underwent a protocol of traumatic brain injury followed by 40% volume-controlled hemorrhage. Animals were left in shock (mean arterial pressure of 35 mmHg) for 2 hours before they were resuscitated with normal saline (NS) or FFP. Circulating levels of nucleosomes and DNAse1 were measured whereas extracellular nucleosomes were quantified on brain histology. Lesion size and brain swelling were also quantified. RESULTS Nucleosome levels were significantly greater in the NS group 6 hours after resuscitation (0.32 mU vs 0.15 mU, P = .030) whereas DNAse1 levels were substantially greater in the FFP group (9.82 ng/mL vs 4.54 ng/mL, P = .010). Circulating nucleosomes levels correlated with lesion size (rho = 0.79, P = .002) as well as brain swelling (rho = 0.89, P < .001) whereas DNAse1 levels correlated with brain swelling (rho = -0.61, P = .036) but not lesion size (rho = -0.47, P = .124). Brain staining revealed nucleosome extracellularization in both groups, but this appeared more frequent in the NS-resuscitated animals. CONCLUSION Our results show that resuscitation with FFP attenuates circulating nucleosome levels and prevents DNAse1 depletion. These factors may play a role in the neuroprotective effects observed during early resuscitation with FFP.
Collapse
Affiliation(s)
- Martin Sillesen
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Knight JS, Kaplan MJ. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr Opin Rheumatol 2013; 24:441-50. [PMID: 22617827 DOI: 10.1097/bor.0b013e3283546703] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Historically, researchers have focused on the role of adaptive immunity in lupus pathogenesis; recently, however, there has been renewed interest in the contributions of a prototypical innate immune cell - the neutrophil. RECENT FINDINGS Neutrophil extracellular traps (NETs) are released via a novel form of cell death called NETosis. NETs, consisting of a chromatin meshwork decorated with antimicrobial peptides, play an important role in the innate response to microbial infections. Some lupus patients do not clear NETs normally, a phenotype that correlates with disease activity. Further, lupus neutrophils - and, in particular, an aberrant subset called low-density granulocytes - have an increased propensity to undergo NETosis. Both interferon alpha (IFNα) and immune complexes are potential triggers of enhanced NETosis in lupus patients. SUMMARY NETs are a potent stimulus for IFNα release by plasmacytoid dendritic cells, and, as such, may play an important role in propagation of the lupus phenotype. NETs can also directly damage tissues - including the endothelium - with implications for lupus nephritis and accelerated atherosclerosis. Whether aberrant NETosis is sufficient to trigger systemic lupus erythematosus, and whether inhibition of NETosis can ameliorate clinical manifestations of lupus, are open questions, and will be exciting topics of future research.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
43
|
Abstract
Autoreactive B and T cells are present in healthy, autoimmunity-free individuals, but they are kept in check by various regulatory mechanisms. In systemic lupus erythematosus (SLE) patients, however, autoreactive cells are expanded, activated, and produce large quantities of autoantibodies, directed especially against nuclear antigens. These antibodies form immune complexes with self-nucleic acids present in SLE serum. Since self-DNA and self-RNA in the form of protein complexes can act as TLR9 and TLR7 ligands, respectively, TLR stimulation is suggested as an additional signal contributing to activation and/or modulation of the aberrant adaptive immune response. Data from mouse models suggest a pathogenic role for TLR7 and a protective role for TLR9 in the pathogenesis of SLE. Future investigations are needed to elucidate the underlying modulatory mechanisms and the role of TLR7 and TLR9 in the complex pathogenesis of human SLE.
Collapse
Affiliation(s)
- T Celhar
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Singapore
| | | | | |
Collapse
|
44
|
Morgan AR, Lam WJ, Han DY, Fraser AG, Ferguson LR. DNase1: No Association with Crohn's Disease in a New Zealand Population. ISRN GASTROENTEROLOGY 2012; 2012:826323. [PMID: 22701800 PMCID: PMC3373076 DOI: 10.5402/2012/826323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
DNase1 has been implicated in a number of immune disorders and is an excellent candidate gene for Crohn's disease (CD). We investigated whether DNase1 SNPs rs1053874 and rs8176938 were associated with CD in a well-characterized New Zealand dataset consisting of 447 cases and 716 controls. Furthermore, we measured serum DNase1 activity levels in a number of CD patients and controls. We did not find any evidence of association for either DNase1 genetic variation or DNase1 activity levels with CD. The lack of association indicates that DNase1 does not play a significant role in predisposing to CD in the New Zealand population.
Collapse
Affiliation(s)
- Angharad R Morgan
- Discipline of Nutrition, Faculty of Medical and Health Sciences (FMHS), The University of Auckland, 85 Park Road, Grafton, 1142 Auckland, New Zealand
| | | | | | | | | |
Collapse
|
45
|
Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. THE JOURNAL OF IMMUNOLOGY 2012; 188:3522-31. [PMID: 22345666 DOI: 10.4049/jimmunol.1102404] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ongoing inflammation including activation of the complement system is a hallmark of systemic lupus erythematosus (SLE). Antimicrobial neutrophil extracellular traps (NETs) are composed of secreted chromatin that may act as a source of autoantigens typical for SLE. In this study, we investigated how complement interacts with NETs and how NET degradation is affected by complement in SLE patients. We found that sera from a subset of patients with active SLE had a reduced ability to degrade in vitro-generated NETs, which was mostly restored when these patients were in remission. Patients that failed to degrade NETs had a more active disease and they also displayed lower levels of complement proteins C4 and C3 in blood. We discovered that NETs activated complement in vitro and that deposited C1q inhibited NET degradation including a direct inhibition of DNase-I by C1q. Complement deposition on NETs may facilitate autoantibody production, and indeed, Abs against NETs and NET epitopes were more pronounced in patients with impaired ability to degrade NETs. NET-bound autoantibodies inhibited degradation but also further increased C1q deposition, potentially exacerbating the disease. Thus, NETs are a potent complement activator, and this interaction may play an important role in SLE. Targeting complement with inhibitors or by removing complement activators such as NETs could be beneficial for patients with SLE.
Collapse
Affiliation(s)
- Jonatan Leffler
- Section of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Seredkina N, Rekvig OP. Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1120-8. [PMID: 21723244 DOI: 10.1016/j.ajpath.2011.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
An acquired loss of renal DNaseI promotes transformation of mild mesangial lupus nephritis into membranoproliferative end-stage organ disease. In this study, we analyzed expression profiles of DNaseI in other organs of lupus-prone (NZB×NZW)F1 mice during disease progression to determine whether silencing of the renal DNaseI gene is an organ-specific feature or whether loss of DNaseI reflects a systemic error in mice with sever lupus nephritis. The present results demonstrate normal or elevated levels of DNaseI mRNA and enzyme activity in liver, spleen, and serum samples from (NZB×NZW)F1 mice throughout all the stages of lupus nephritis. DNaseI activity was dramatically reduced only in kidneys of mice with sever nephritis and was the only nuclease that was down-regulated, whereas six other nucleases (DNaseII1 to 3, caspase-activated DNase, Dnase2a, and endonuclease G) were approximately normally expressed in kidneys, liver, and spleen. Loss of renal DNaseI was not accompanied by changes in serum DNaseI activity, suggesting independent mechanisms of DNaseI regulation in circulation and in kidneys and an absence of compensatory up-regulation of serum DNaseI activity in the case of renal DNaseI deficiency. Thus, silencing of renal DNaseI is a unique renal feature in membranoproliferative lupus nephritis. Determining the mechanism(s) responsible for DNaseI down-regulation might lead to the generation of new therapeutic targets to treat and prevent progressive lupus nephritis.
Collapse
Affiliation(s)
- Natalya Seredkina
- Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
47
|
Malíčková K, Ďuricová D, Bortlík M, Hrušková Z, Svobodová B, Machková N, Komárek V, Fučíková T, Janatková I, Zima T, Lukáš M. Impaired deoxyribonuclease I activity in patients with inflammatory bowel diseases. Autoimmune Dis 2011; 2011:945861. [PMID: 21687600 PMCID: PMC3112520 DOI: 10.4061/2011/945861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/05/2011] [Indexed: 11/20/2022] Open
Abstract
Background and Aims. Deoxyribonuclease I (DNaseI) is an endonuclease that facilitates chromatin breakdown and promotes susceptibility to autoimmune disorders. The aim of current study was to investigate serum DNase I activity in patients with inflammatory bowel diseases (IBD). Patients and Methods. A cohort of 110 IBD patients was evaluated, aged 35 ± 12 years, 77 with Crohn's disease (CD) and 33 with ulcerative colitis (UC). 50 SLE patients and 50 healthy blood donors were examined as control groups. Results. DNase I activity in IBD patients was significantly lower than in healthy individuals, but higher than in SLE patients (P < .0001). Patients with UC showed higher DNase I activity than CD patients, P = .21. DNase I activity in female patients with IBD was significantly lower than in males, P = .024; however, no differences in DNase I activity were found in relation to gender in healthy individuals. DNase I activity has shown a strong negative correlation with the serum concentration of anti-nucleosomal antibodies in the autoimmune (SLE + IBD) cohort, as well as in the separate IBD cohort. Conclusions. Reduced serum DNase I activity probably has pathogenetic consequences in IBD. Induction of autoantibodies towards nucleosomes could be a reflection of impaired DNase I activity.
Collapse
Affiliation(s)
- Karin Malíčková
- Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Karlovo nam. 32, 121 11 Prague 2, Czech Republic
| | - Dana Ďuricová
- Clinical and Research Center for Inflammatory Bowel Disease, ISCARE a.s. and Charles University in Prague, Czech Republic
| | - Martin Bortlík
- Clinical and Research Center for Inflammatory Bowel Disease, ISCARE a.s. and Charles University in Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zdenka Hrušková
- Department of Nephrology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Barbora Svobodová
- Department of Nephrology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Naděžda Machková
- Clinical and Research Center for Inflammatory Bowel Disease, ISCARE a.s. and Charles University in Prague, Czech Republic
| | - Viktor Komárek
- Clinical and Research Center for Inflammatory Bowel Disease, ISCARE a.s. and Charles University in Prague, Czech Republic
| | - Terezie Fučíková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Ivana Janatková
- Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Karlovo nam. 32, 121 11 Prague 2, Czech Republic
| | - Tomáš Zima
- Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Karlovo nam. 32, 121 11 Prague 2, Czech Republic
| | - Milan Lukáš
- Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Karlovo nam. 32, 121 11 Prague 2, Czech Republic
- Clinical and Research Center for Inflammatory Bowel Disease, ISCARE a.s. and Charles University in Prague, Czech Republic
| |
Collapse
|
48
|
Hedberg A, Mortensen ES, Rekvig OP. Chromatin as a target antigen in human and murine lupus nephritis. Arthritis Res Ther 2011; 13:214. [PMID: 21542875 PMCID: PMC3132027 DOI: 10.1186/ar3281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present review focuses on pathogenic molecular and transcriptional events in patients with lupus nephritis. These factors are renal DNaseI, exposed chromatin fragments and the corresponding chromatin-reactive autoantibodies. Lupus nephritis is the most serious complication in human systemic lupus erythematosus, and is characterised by deposition of chromatin fragment-IgG complexes in the mesangial matrix and glomerular basement membranes. The latter deposition defines end-stage disease. This event is stringently linked to a renal-restricted shutdown of expression of the DNaseI gene, as determined by loss of DNaseI mRNA level and DNaseI enzyme activity. The major aim of the present review is to generate new therapeutic strategies based on new insight into the disease pathogenesis.
Collapse
Affiliation(s)
- Annica Hedberg
- Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
49
|
Fujihara J, Ueki M, Yasuda T, Iida R, Soejima M, Koda Y, Kimura-Kataoka K, Kato H, Panduro A, Tongu M, Takeshita H. Functional and Genetic Survey of All Known Single-Nucleotide Polymorphisms Within the Human Deoxyribonuclease I Gene in Wide-Ranging Ethnic Groups. DNA Cell Biol 2011; 30:205-17. [PMID: 21235399 DOI: 10.1089/dna.2010.1120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Misuzu Ueki
- Division of Medical Genetics and Biochemistry, University of Fukui, Fukui, Japan
| | - Toshihiro Yasuda
- Division of Medical Genetics and Biochemistry, University of Fukui, Fukui, Japan
| | - Reiko Iida
- Division of Life Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mikiko Soejima
- Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiro Koda
- Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Hideaki Kato
- Department of Forensic Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Arturo Panduro
- Department of Molecular Biology in Medicine, Old Civil Hospital of Guadalajara and Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - Miki Tongu
- Department of Experimental Animals, Center for Integrated Research in Science, Shimane University School of Medicine, Izumo, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
50
|
Yoshida H, Nishikawa M, Kiyota T, Uno S, Toyota H, Takahashi R, Narita M, Takakura Y. 5'-Phosphate oligodeoxynucleotides enhance the phosphodiester-CpG DNA-induced inflammatory response in macrophages. Eur J Immunol 2010; 41:425-36. [PMID: 21268012 DOI: 10.1002/eji.201040396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/23/2010] [Accepted: 11/12/2010] [Indexed: 02/03/2023]
Abstract
Dying cells release genomic DNA into the surroundings where the DNA is first degraded to oligodeoxynucleotides, then to nucleotides, nucleosides and so on. Given that the unmethylated CpG dinucleotide (CpG motif), which is characteristic of bacterial DNA, is also contained in mammalian DNA and has been reported to be involved in the exacerbation of DNA-associated autoimmune diseases, we investigated whether nucleotides and nucleosides affect immune responses to phosphodiester (PO)-CpG DNA. Addition of non-CpG DNA to RAW264.7, murine macrophage-like cells, induced no significant TNF-α production irrespective of treatment with DNase I; however, DNase I-treated, but not untreated, non-CpG DNA increased the PO-CpG DNA-mediated TNF-α production. This increase was not observed with phosphorothioate-CpG DNA or ligands for TLR3, TLR4 or TLR7. Deoxynucleotides with a 5'-phosphate showed similar effects to those of DNase I-treated non-CpG DNA, but DNase II-treated DNA or deoxynucleosides did not. Subcutaneous injection of PO-CpG DNA into the mouse footpad induced little swelling of the paw; however, significant swelling was observed when DNase I-treated DNA was co-injected with PO-CpG DNA. These results imply that PO-CpG DNA-dependent inflammatory responses are increased by DNA molecules with a 5'-phosphate; such molecules could therefore be considered as exacerbating factors for CpG motif-related inflammation.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|