1
|
Afifi AEMA, Shaat RM, Gharbia OM, Elhanafy M, Hasan ASG. Role of serum leptin levels and leptin receptor gene polymorphisms in systemic lupus erythematosus. Clin Rheumatol 2020; 39:3465-3472. [PMID: 32377995 DOI: 10.1007/s10067-020-05120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Serum leptin and leptin receptor gene polymorphisms may play a role in the etiopathogenesis of SLE. OBJECTIVE This study was undertaken to explore the relationship between serum leptin levels and leptin receptor (LEPR) gene polymorphisms with susceptibility to SLE in Egyptian population and to study their relationships with clinical, laboratory, radiographic findings, and disease activity of SLE (SLEDAI). MATERIALS AND METHODS A total of 50 unrelated female patients, who met the SLICC classification criteria for SLE and fifty healthy blood donors, matched for age, sex, and BMI with SLE patients, serving as a control group, were included in this study. All participants had completed preliminary questionnaires and clinical, laboratory, and radiographic examinations. Serum leptin levels were measured by ELISA assays. LEPR genotyping was done by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. We compared serum leptin levels and LEPR gene polymorphisms in SLE patients and controls, and we tested their relationships with clinical, laboratory, and radiographic findings and SLEDAI in SLE patients. RESULTS The present study showed significant differences of serum leptin levels between SLE patients and controls (p < 0.001). Moreover, higher frequencies of variant genotype (AA) and (A) allele were found in SLE patients compared to controls (p = 0.008 and 0.001, respectively). No associations were observed between the serum leptin, various LEPR genotypes, and gene alleles and the development of clinical, laboratory, and radiological manifestations. Furthermore, no associations were observed between the various LEPR genotypes or gene alleles and leptin levels (p = 0.633 and 0.337 respectively) in SLE patients. Additionally, no correlations were observed between leptin levels, various genotypes, and alleles with SLEDAI (p = 0.244, 0.741, and 0.838 respectively) in SLE patients. CONCLUSION Serum leptin and LEPR gene polymorphism increase risk of SLE in Egyptian population; however, they are not associated with the development of clinical, lab, and radiological findings. Disease activity is neither correlated with serum leptin level nor associated with LEPR gene polymorphism. Serum levels of leptin are not associated with LEPR gene polymorphism. Key Points • Serum leptin and LEPR gene polymorphism increase risk of SLE in Egyptian patients. • Serum leptin is not associated with SLE disease activity.
Collapse
Affiliation(s)
- Abd El-Moaty Ali Afifi
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - Reham M Shaat
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt.
| | - Ola Mohamed Gharbia
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - M Elhanafy
- Faculty of Medicine, Department of Clinical Pathology, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - Al Shimaa Goda Hasan
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| |
Collapse
|
2
|
Yasuda S. Emerging targets for the treatment of lupus erythematosus: There is no royal road to treating lupus. Mod Rheumatol 2019; 29:60-69. [PMID: 29947283 DOI: 10.1080/14397595.2018.1493909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that preferentially affects women of child-bearing age. Most current treatments for SLE with the exception of belimumab are not target-specific. Nontargeted therapy such as corticosteroids, cyclophosphamide, and other immunosuppressive drugs results in unwanted adverse effects. Although progress in treatment, including supportive therapy, has dramatically improved the prognosis of patients with SLE, better treatment drugs and protocols with fewer adverse effects and higher efficacy for the most severe form of SLE are needed. Advancements in genomics, immunology, and pathophysiology in the field of systemic autoimmunity have provided physicians with increasing knowledge, but the most appropriate treatment for each patient with SLE remains to be established. Therefore, the search for novel treatment targets in patients with SLE is ongoing. This review focuses on recent findings in the genetics of lupus and the abnormalities in cellular interactions, cytokine profiles, and intracellular signaling in patients with SLE. Novel molecular targets for lupus, mostly introduced through clinical trials, are then discussed based on these findings.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
3
|
Abstract
Systemic lupus erythematosus (SLE) is a rare, severe, multisystem autoimmune disorder. Childhood-onset SLE (cSLE) follows a more aggressive course with greater associated morbidity and mortality than adult-onset SLE. Its aetiology is yet to be fully elucidated. It is recognised to be the archetypal systemic autoimmune disease, arising from a complex interaction between the innate and adaptive immune systems. Its complexity is reflected by the fact that there has been only one new drug licensed for use in SLE in the last 50 years. However, biologic agents that specifically target aspects of the immune system are emerging. Immunosuppression remains the cornerstone of medical management, with glucocorticoids still playing a leading role. Treatment choices are led by disease severity. Immunosuppressants, including azathioprine and methotrexate, are used in mild to moderate manifestations. Mycophenolate mofetil is widely used for lupus nephritis. Cyclophosphamide remains the first-line treatment for patients with severe organ disease. No biologic therapies have yet been approved for cSLE, although they are being used increasingly as part of routine care of patients with severe lupus nephritis or with neurological and/or haematological involvement. Drugs influencing B cell survival, including belimumab and rituximab, are currently undergoing clinical trials in cSLE. Hydroxychloroquine is indicated for disease manifestations of all severities and can be used as monotherapy in mild disease. However, the management of cSLE is hampered by the lack of a robust evidence base. To date, it has been principally guided by best-practice guidelines, retrospective case series and adapted adult protocols. In this pharmacological review, we provide an overview of current practice for the management of cSLE, together with recent advances in new therapies, including biologic agents.
Collapse
|
4
|
Demirci FY, Wang X, Kelly JA, Morris DL, Barmada MM, Feingold E, Kao AH, Sivils KL, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Vyse TJ, Gaffney PM, Manzi S, Kamboh MI. Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol 2016; 68:174-83. [PMID: 26316170 PMCID: PMC4747422 DOI: 10.1002/art.39403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) in individuals of European ancestry identified a number of systemic lupus erythematosus (SLE) susceptibility loci using earlier versions of high-density genotyping platforms. Followup studies on suggestive GWAS regions using larger samples and more markers identified additional SLE loci in subjects of European descent. This multistage study was undertaken to identify novel SLE loci. METHODS In stage 1, we conducted a new GWAS of SLE in a North American case-control sample of subjects of European ancestry (n = 1,166) genotyped on Affymetrix Genome-Wide Human SNP Array 6.0. In stage 2, we further investigated top new suggestive GWAS hits by in silico evaluation and meta-analysis using an additional data set of subjects of European descent (>2,500 individuals), followed by replication of top meta-analysis findings in another data set of subjects of European descent (>10,000 individuals) in stage 3. RESULTS As expected, our GWAS revealed the most significant associations at the major histocompatibility complex locus (6p21), which easily surpassed the genome-wide significance threshold (P < 5 × 10(-8)). Several other SLE signals/loci previously implicated in Caucasians and/or Asians were also confirmed in the stage 1 discovery sample, and the strongest signals were observed at 2q32/STAT4 (P = 3.6 × 10(-7)) and at 8p23/BLK (P = 8.1 × 10(-6)). Stage 2 meta-analyses identified a new genome-wide significant SLE locus at 12q12 (meta P = 3.1 × 10(-8)), which was replicated in stage 3. CONCLUSION Our multistage study identified and replicated a new SLE locus that warrants further followup in additional studies. Publicly available databases suggest that this newly identified SLE signal falls within a functionally relevant genomic region and near biologically important genes.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Casein Kinase II/genetics
- Cell Cycle Proteins/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Computer Simulation
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Genotype
- HLA-DQ alpha-Chains/genetics
- HLA-DQ beta-Chains/genetics
- Humans
- Lupus Erythematosus, Systemic/genetics
- Major Histocompatibility Complex/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- STAT4 Transcription Factor/genetics
- Tenascin/genetics
- Transcriptome
- White People/genetics
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jennifer A. Kelly
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David L. Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy H. Kao
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - Kathy L. Sivils
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Patrick M. Gaffney
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Susan Manzi
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
AlFadhli S, Ghanem AAM, Nizam R. Genome-wide peripheral blood transcriptome analysis of Arab female lupus and lupus nephritis. Gene 2015; 570:230-8. [PMID: 26072163 DOI: 10.1016/j.gene.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 06/07/2015] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (lupus) is a genetically heterogeneous autoimmune disorder with an obscure etiology. With 92-94% of human genes exhibiting alternative splicing, gaining insights to such events may lead to better diagnostics. Herein, we explored the genome-wide peripheral blood transcriptome of lupus and its severe form lupus-nephritis (LN) compared to healthy controls (HC). Age/gender/ethnically-matched Arab females were tested using high-density arrays and statistical analysis was carried out using appropriate software. Analysis revealed 15 splice variants that are differentially expressed between lupus/HC and 99 variants between LN/HC (p ≤ 0.05, SI> or ≤ 0.5, Benjamin Hochberg-False discovery rate correction). Comparison between LN/lupus revealed 7 variants that significantly differed in expression. Pathway analysis of differentially spliced-genes postulated 11 significant pathways in lupus and 12 in LN (p<0.05). Analysis of peripheral blood transcriptome possibly revealed signature causative genes that are alternatively spliced, signifying their clinical relevance. Present study is the first to reveal the significance of alternative variants in lupus and LN.
Collapse
Affiliation(s)
- Suad AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | | | - Rasheeba Nizam
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| |
Collapse
|
6
|
Baek J, Kang S, Byeon H, Woo Hwang K, Min H. Contribution of CD24 polymorphisms to autoimmune disease: A meta-analysis. Comput Biol Med 2015; 64:268-75. [DOI: 10.1016/j.compbiomed.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023]
|
7
|
Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and Brain Morphology. Neuropsychol Rev 2015; 25:63-96. [DOI: 10.1007/s11065-015-9281-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 12/17/2022]
|
8
|
Kawasaki A, Furukawa H, Nishida N, Warabi E, Kondo Y, Ito S, Matsumoto I, Kusaoi M, Amano H, Suda A, Nagaoka S, Setoguchi K, Nagai T, Hirohata S, Shimada K, Sugii S, Okamoto A, Chiba N, Suematsu E, Ohno S, Katayama M, Okamoto A, Kono H, Tokunaga K, Takasaki Y, Hashimoto H, Sumida T, Tohma S, Tsuchiya N. Association of functional polymorphisms in interferon regulatory factor 2 (IRF2) with susceptibility to systemic lupus erythematosus: a case-control association study. PLoS One 2014; 9:e109764. [PMID: 25285625 PMCID: PMC4186848 DOI: 10.1371/journal.pone.0109764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/08/2014] [Indexed: 02/02/2023] Open
Abstract
Interferon regulatory factor 2 (IRF2) negatively regulates type I interferon (IFN) responses, while it plays a role in induction of Th1 differentiation. Previous linkage and association studies in European-American populations suggested genetic role of IRF2 in systemic lupus erythematosus (SLE); however, this observation has not yet been confirmed. No studies have been reported in the Asian populations. Here we investigated whether IRF2 polymorphisms contribute to susceptibility to SLE in a Japanese population. Association study of 46 IRF2 tag single nucleotide polymorphisms (SNPs) detected association of an intronic SNP, rs13146124, with SLE. When the association was analyzed in 834 Japanese patients with SLE and 817 healthy controls, rs13146124 T was significantly increased in SLE compared with healthy controls (dominant model, P = 5.4×10−4, Bonferroni-corrected P [Pc] = 0.026, odds ratio [OR] 1.48, 95% confidence interval [CI] 1.18–1.85). To find causal SNPs, resequencing was performed by next-generation sequencing. Twelve polymorphisms in linkage disequilibrium with rs13146124 (r2: 0.30–1.00) were identified, among which significant association was observed for rs66801661 (allele model, P = 7.7×10−4, Pc = 0.037, OR 1.53, 95%CI 1.19–1.96) and rs62339994 (dominant model, P = 9.0×10−4, Pc = 0.043, OR 1.46, 95%CI 1.17–1.82). The haplotype carrying both of the risk alleles (rs66801661A–rs62339994A) was significantly increased in SLE (P = 9.9×10−4), while the haplotype constituted by both of the non-risk alleles (rs66801661G–rs62339994G) was decreased (P = 0.0020). A reporter assay was carried out to examine the effect of the IRF2 haplotypes on the transcriptional activity, and association of the IRF2 risk haplotype with higher transcriptional activity was detected in Jurkat T cells under IFNγ stimulation (Tukey's test, P = 1.2×10−4). In conclusion, our observations supported the association of IRF2 with susceptibility to SLE, and the risk haplotype was suggested to be associated with transcriptional activation of IRF2.
Collapse
Affiliation(s)
- Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Nao Nishida
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Eiji Warabi
- Environmental Molecular Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Niigata, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akiko Suda
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Shouhei Nagaoka
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Keigo Setoguchi
- Allergy and Immunological Diseases, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuo Nagai
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shunsei Hirohata
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Shimada
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Shoji Sugii
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Akira Okamoto
- Department of Rheumatology, Himeji Medical Center, National Hospital Organization, Himeji, Hyogo, Japan
| | - Noriyuki Chiba
- Department of Rheumatology, Morioka Hospital, National Hospital Organization, Morioka, Iwate, Japan
| | - Eiichi Suematsu
- Department of Internal Medicine and Rheumatology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Japan
| | - Shigeru Ohno
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Masao Katayama
- Department of Internal Medicine, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, Japan
| | - Akiko Okamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
9
|
James JA. Clinical perspectives on lupus genetics: advances and opportunities. Rheum Dis Clin North Am 2014; 40:413-32, vii. [PMID: 25034154 DOI: 10.1016/j.rdc.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years, genome-wide association studies have led to an expansion in the identification of regions containing confirmed genetic risk variants within complex human diseases, such as systemic lupus erythematosus (SLE). Many of the strongest SLE genetic associations can be divided into groups based on their potential roles in different processes implicated in lupus pathogenesis, including ubiquitination, DNA degradation, innate immunity, cellular immunity, lymphocyte development, and antigen presentation. Recent advances have also shown several genetic associations with SLE subphenotypes and subcriteria. Many areas for further exploration remain to move lupus genetic studies toward clinically informative end points.
Collapse
Affiliation(s)
- Judith A James
- Oklahoma Clinical & Translational Science Institute, University of Oklahoma Health Sciences Center, 920 Stanton L Young Boulevard, Oklahoma City, OK 73104, USA; Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, 920 Stanton L Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Zhou YF, Zhang J, Li ZX, Miao JL, Yin QX, Li JJ, Zhang XY, Li YY, Luo HL. Association of liver X receptor α (LXRα) gene polymorphism and coronary heart disease, serum lipids and glucose levels. Lipids Health Dis 2014; 13:34. [PMID: 24533572 PMCID: PMC3975963 DOI: 10.1186/1476-511x-13-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
Background To explore the relationship between the liver X receptor α gene (LXRα) rsl2221497 polymorphism and the susceptibility of coronary heart disease (CHD) and serum lipids and glucose levels. Methods The single fluorescently labeled probes technique was used to detect the genotype of rsl2221497 in LXRα gene in 240 CHD patients and 250 healthy control subjects. The difference of genotype distribution between the two groups was analyzed using of Chi-square test. The serum lipids and glucose levels between the different genotypes were also compared. Results The risk of CHD in carriers with (AA + GA) genotype was 1.76 times as that in the GG genotype carriers (OR = 1.76, 95% CI: 1.18-2.87, P <0.05), and the risk of CHD in carriers with A allele increased 0.88 times compared to that in G allele carriers (OR = 1.88, 95% CI:1.21-3.43, P <0.01). Logistic regression analysis showed that after adjusting for other confounding factors, A allele was an independent risk for CHD. However, there were no differences in serum lipids and glucose levels between each genotype. Conclusions The rsl2221497 polymorphism in LXRα gene was associated with susceptibility of CHD in Han population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui-Lan Luo
- The cadre ward of General Hospital of the Air Force PLA, No, 30, Fucheng Road, Haidian District, Beijing 100142, China.
| |
Collapse
|