1
|
Winthrop KL, Mease P, Kerschbaumer A, Voll RE, Breedveld FC, Smolen JS, Gottenberg JE, Baraliakos X, Kiener HP, Aletaha D, Isaacs JD, Buch MH, Crow MK, Kay J, Crofford L, van Vollenhoven RF, Ospelt C, Siebert S, Kloppenburg M, McInnes IB, Huizinga TW, Gravallese EM. Unmet need in rheumatology: reports from the Advances in Targeted Therapies meeting, 2023. Ann Rheum Dis 2024; 83:409-416. [PMID: 38123338 DOI: 10.1136/ard-2023-224916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
The Advances in Targeted Therapies meets annually, convening experts in the field of rheumatology to both provide scientific updates and identify existing scientific gaps within the field. To review the major unmet scientific needs in rheumatology. The 23rd annual Advances in Targeted Therapies meeting convened with more than 100 international basic scientists and clinical researchers in rheumatology, immunology, infectious diseases, epidemiology, molecular biology and other specialties relating to all aspects of immune-mediated inflammatory diseases. We held breakout sessions in five rheumatological disease-specific groups including: rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial spondyloarthritis (axSpa), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and vasculitis, and osteoarthritis (OA). In each group, experts were asked to identify and prioritise current unmet needs in clinical and translational research. An overarching theme across all disease states is the continued need for clinical trial design innovation with regard to therapeutics, endpoint and disease endotypes. Within RA, unmet needs comprise molecular classification of disease pathogenesis and activity, pre-/early RA strategies, more refined pain profiling and innovative trials designs to deliver on precision medicine. Continued scientific questions within PsA include evaluating the genetic, immunophenotypic, clinical signatures that predict development of PsA in patients with psoriasis, and the evaluation of combination therapies for difficult-to-treat disease. For axSpA, there continues to be the need to understand the role of interleukin-23 (IL-23) in pathogenesis and the genetic relationship of the IL-23-receptor polymorphism with other related systemic inflammatory diseases (eg, inflammatory bowel disease). A major unmet need in the OA field remains the need to develop the ability to reliably phenotype and stratify patients for inclusion in clinical trials. SLE experts identified a number of unmet needs within clinical trial design including the need for allowing endpoints that reflect pharmacodynamic/functional outcomes (eg, inhibition of type I interferon pathway activation; changes in urine biomarkers). Lastly, within SSc and vasculitis, there is a lack of biomarkers that predict response or disease progression, and that allow patients to be stratified for therapies. There remains a strong need to innovate clinical trial design, to identify systemic and tissue-level biomarkers that predict progression or response to therapy, endotype disease, and to continue developing therapies and therapeutic strategies for those with treatment-refractory disease. This document, based on expert consensus, should provide a roadmap for prioritising scientific endeavour in the field of rheumatology.
Collapse
Affiliation(s)
- Kevin L Winthrop
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Philip Mease
- Department of Rheumatology, University of Washington, Seattle, Washington, USA
- Department of Rheumatology, Medical University of Vienna, Wien, Austria
| | | | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Josef S Smolen
- Department of Rheumatology, Medical University of Vienna, Wien, Austria
| | | | | | - Hans P Kiener
- Department of Rheumatology, Medical University of Vienna, Wien, Austria
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Wien, Austria
| | - John D Isaacs
- Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Cellular Medicine, Newcastle upon Tyne, UK
| | - Maya H Buch
- Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Department of Rheumatology, University of Manchester, Manchester, UK
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, New York, USA
| | - Jonathan Kay
- Medicine, UMass Memorial Medical Center, Worcester, Massachusetts, USA
- Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Leslie Crofford
- Department of Rheumatology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ronald F van Vollenhoven
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, Zurich, Switzerland
| | - Stefan Siebert
- Institute of Infection, Immunity & Inflammation, Glasgow University, Glasgow, UK
| | | | - Iain B McInnes
- MVLS College Office, University of Glasgow, Glasgow, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tom Wj Huizinga
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen M Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Renaudineau Y, Brooks W, Belliere J. Lupus Nephritis Risk Factors and Biomarkers: An Update. Int J Mol Sci 2023; 24:14526. [PMID: 37833974 PMCID: PMC10572905 DOI: 10.3390/ijms241914526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Lupus nephritis (LN) represents the most severe organ manifestation of systemic lupus erythematosus (SLE) in terms of morbidity and mortality. To reduce these risks, tremendous efforts have been made in the last decade to characterize the different steps of the disease and to develop biomarkers in order to better (i) unravel the pre-SLE stage (e.g., anti-nuclear antibodies and interferon signature); (ii) more timely initiation of therapy by improving early and accurate LN diagnosis (e.g., pathologic classification was revised); (iii) monitor disease activity and therapeutic response (e.g., recommendation to re-biopsy, new urinary biomarkers); (iv) prevent disease flares (e.g., serologic and urinary biomarkers); (v) mitigate the deterioration in the renal function; and (vi) reduce side effects with new therapeutic guidelines and novel therapies. However, progress is poor in terms of improvement with early death attributed to active SLE or infections, while later deaths are related to the chronicity of the disease and the use of toxic therapies. Consequently, an individualized treat-to-target strategy is mandatory, and for that, there is an unmet need to develop a set of accurate biomarkers to be used as the standard of care and adapted to each stage of the disease.
Collapse
Affiliation(s)
- Yves Renaudineau
- Department of Immunology, Referral Medical Biology Laboratory, University Hospital of Toulouse, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1291, Centre National de la Recherche Scientifique (CNRS) U5051, 31400 Toulouse, France
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Julie Belliere
- Department of Nephrology and Organ Transplantation, Referral Centre for Rare Kidney Diseases, University Hospital of Toulouse, INSERM U1297, 31400 Toulouse, France;
| |
Collapse
|
3
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Didriksen H, Molberg Ø, Mehta A, Jordan S, Palchevskiy V, Fretheim H, Gude E, Ueland T, Brunborg C, Garen T, Midtvedt Ø, Andreassen AK, Lund-Johansen F, Distler O, Belperio J, Hoffmann-Vold AM. Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension. Front Immunol 2022; 13:991743. [PMID: 36211384 PMCID: PMC9541617 DOI: 10.3389/fimmu.2022.991743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Systemic sclerosis (SSc) is a heterogenous disorder that appears to result from interplay between vascular pathologies, tissue fibrosis and immune processes, with evidence for deregulation of chemokines, which normally control immune trafficking. We recently identified altered levels of chemokine CCL21 in SSc associated pulmonary arterial hypertension (PAH). Here, we aimed to define target organ expression and biomarker characteristics of CCL21. Materials and methods To investigate target organ expression of CCL21, we performed immunohistochemistry (IHC) on explanted lung tissues from SSc-PAH patients. We assessed serum levels of CCL21 by ELISA and Luminex in two well-characterized SSc cohorts from Oslo (OUH, n=552) and Zurich (n=93) University hospitals and in 168 healthy controls. For detection of anti-CCl21 antibodies, we performed protein array analysis applying serum samples from SSc patients (n=300) and healthy controls. To characterize circulating CCL21 in SSc, we applied immunoprecipitation (IP) with antibodies detecting both full length and tailless and a custom-made antibody detecting only the C-terminal of CCL21. IP products were analyzed by SDS-PAGE/western blot and Mass spectrometry (MS). Results By IHC, we found that CCL21 was mainly expressed in the airway epithelial cells of SSc patients with PAH. In the analysis of serum levels of CCL21 we found weak correlation between Luminex and ELISA (r=0.515, p<0.001). Serum levels of anti-CCL21 antibodies were higher in SSc patients than in healthy controls (p<0.001), but only 5% of the SSc population were positive for anti-CCL21 antibodies in SSc, and we found no correlation between anti-CCl21 and serum levels of CCL21. By MS, we only identified peptides located within amino acid (aa) 23-102 of CCL21, indicating that CCL21 in SSc circulate as a truncated protein without the C-terminal tail. Conclusion This study demonstrates expression of CCL21 in epithelial lung tissue from SSc patients with PAH, and indicate that CCL21 in SSc circulates as a truncated protein. We extend previous observations indicating biomarker potential of CCL21, but find that Luminex is not suitable as platform for biomarker analyses. Finally, in vivo generated anti-CCL21 antibodies exist in SSc, but do not appear to modify serum CCL21 levels in patients with SSc-PAH.
Collapse
Affiliation(s)
- Henriette Didriksen
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Adi Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vyacheslav Palchevskiy
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Håvard Fretheim
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Einar Gude
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Torhild Garen
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øyvind Midtvedt
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arne K. Andreassen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- *Correspondence: Anna-Maria Hoffmann-Vold,
| |
Collapse
|
5
|
Darmarajan T, Paudel KR, Candasamy M, Chellian J, Madheswaran T, Sakthivel LP, Goh BH, Gupta PK, Jha NK, Devkota HP, Gupta G, Gulati M, Singh SK, Hansbro PM, Oliver BGG, Dua K, Chellappan DK. Autoantibodies and autoimmune disorders in SARS-CoV-2 infection: pathogenicity and immune regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54072-54087. [PMID: 35657545 PMCID: PMC9163295 DOI: 10.1007/s11356-022-20984-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 04/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.
Collapse
Affiliation(s)
- Thiviya Darmarajan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Subang Jaya, Bandar Sunway, Selangor, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lakshmana Prabu Sakthivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, 620024, India
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
7
|
Madany E, Okwan-Duodu D, Balbuena-Merle R, Hendrickson JE, Gibb DR. Potential Implications of a Type 1 Interferon Gene Signature on COVID-19 Severity and Chronic Inflammation in Sickle Cell Disease. Front Med (Lausanne) 2021; 8:679030. [PMID: 34368185 PMCID: PMC8339405 DOI: 10.3389/fmed.2021.679030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
At the onset of the corona virus disease 19 (COVID-19) pandemic, there were concerns that patients with sickle cell disease (SCD) might be especially vulnerable to severe sequelae of SARS-CoV-2 infection. While two reports support this conclusion, multiple studies have reported unexpectedly favorable outcomes in patients with SCD. However, mechanisms explaining these disparate conclusions are lacking. Here, we review recent studies indicating that the majority of patients with SCD express elevated levels of anti-viral type 1 interferons (IFNα/β) and interferon stimulated genes, independent of COVID-19, during their baseline state of health. We also present our data from the pre-COVID-19 era, illustrating elevated expression of a well-characterized interferon stimulated gene in a cohort of patients with SCD, compared to race-matched controls. These type 1 interferons and interferon stimulated genes have the potential to contribute to the variable progression of COVID-19 and other viral infections in patients with SCD. While the majority of evidence supports a protective role, the role of IFNα/β in COVID-19 severity in the general population remains an area of current investigation. We conclude that type 1 interferon responses in patients with SCD may contribute to the variable COVID-19 responses reported in prior studies. Additional studies investigating the mechanisms underlying IFNα/β production and other clinical consequences of IFNα/β-mediated inflammation in SCD disease are warranted.
Collapse
Affiliation(s)
- Emaan Madany
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Derick Okwan-Duodu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Raisa Balbuena-Merle
- Department of Laboratory Medicine, Yale New Haven Hospital, New Haven, CT, United States
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale New Haven Hospital, New Haven, CT, United States
| | - David R. Gibb
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Follicular Regulatory T Cells in Systemic Lupus Erythematosus. J Immunol Res 2021; 2021:9943743. [PMID: 34337086 PMCID: PMC8294974 DOI: 10.1155/2021/9943743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022] Open
Abstract
Follicular regulatory T (Tfr) cells are the regulatory T cell subset mainly localized in the germinal center (GC), acting as modulators of GC responses. They can disrupt Tfh cell- and B cell-linked recognition, induce Tfh apoptosis, and suppress B cell function. Evidences show that dysregulated Tfr cells are associated with the disease activity index and serum autoantibody levels, influencing the development of systemic lupus erythematosus (SLE). This review focuses on the interaction among Tfr, Tfh, and B cells, summarizes the characterization and function of Tfr cells, concludes the imbalance of CD4+T subsets in SLE, and presents potential therapies for SLE. In general, we discuss the roles of Tfr cells in the progress of SLE and provide potential treatments.
Collapse
|
9
|
Immune-Related Urine Biomarkers for the Diagnosis of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22137143. [PMID: 34281193 PMCID: PMC8267641 DOI: 10.3390/ijms22137143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
The kidney is one of the main organs affected by the autoimmune disease systemic lupus erythematosus. Lupus nephritis (LN) concerns 30-60% of adult SLE patients and it is significantly associated with an increase in the morbidity and mortality. The definitive diagnosis of LN can only be achieved by histological analysis of renal biopsies, but the invasiveness of this technique is an obstacle for early diagnosis of renal involvement and a proper follow-up of LN patients under treatment. The use of urine for the discovery of non-invasive biomarkers for renal disease in SLE patients is an attractive alternative to repeated renal biopsies, as several studies have described surrogate urinary cells or analytes reflecting the inflammatory state of the kidney, and/or the severity of the disease. Herein, we review the main findings in the field of urine immune-related biomarkers for LN patients, and discuss their prognostic and diagnostic value. This manuscript is focused on the complement system, antibodies and autoantibodies, chemokines, cytokines, and leukocytes, as they are the main effectors of LN pathogenesis.
Collapse
|
10
|
Fernandez-Ruiz R, Paredes JL, Niewold TB. COVID-19 in patients with systemic lupus erythematosus: lessons learned from the inflammatory disease. Transl Res 2021; 232:13-36. [PMID: 33352298 PMCID: PMC7749645 DOI: 10.1016/j.trsl.2020.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
As the world navigates the coronavirus disease 2019 (COVID-19) pandemic, there is a growing need to assess its impact in patients with autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE). Patients with SLE are a unique population when considering the risk of contracting COVID-19 and infection outcomes. The use of systemic glucocorticoids and immunosuppressants, and underlying organ damage from SLE are potential susceptibility factors. Most patients with SLE have evidence of high type I interferon activity, which may theoretically act as an antiviral line of defense or contribute to the development of a deleterious hyperinflammatory response in COVID-19. Other immunopathogenic mechanisms of SLE may overlap with those described in COVID-19, thus, studies in SLE could provide some insight into immune responses occurring in severe cases of the viral infection. We reviewed the literature to date on COVID-19 in patients with SLE and provide an in-depth review of current research in the area, including immune pathway activation, epidemiology, clinical features, outcomes, and the psychosocial impact of the pandemic in those with autoimmune disease.
Collapse
Key Words
- act-1, adaptor protein nf-κ activator
- ace2, angiotensin-converting enzyme 2
- aza, azathioprine
- c5ar1, c5a receptor
- covid-19, coronavirus disease 2019
- c-19-gra, covid-19 global rheumatology alliance
- cyc, cyclophosphamide
- ebv, epstein-barr virus
- hcq, hydroxychloroquine
- icu, intensive care unit
- ifn, interferon
- irf, interferon regulatory factor
- isg, interferon-stimulated gene
- ifnar, interferon-α/β receptor
- il, interleukin
- jak, janus kinase
- lof, loss-of-function
- masp-2, manna-binding lectin associated serine protease-2
- mtor, mechanistic (mammalian) target of rapamycin
- mmf, mycophenolate mofetil
- myd88, myeloid differentiation primary response 88
- nac, n-acetylcisteine
- net, neutrophil extracellular trap
- nyc, new york city
- pdc, plasmacytoid dendritic cell
- pi3k, phosphatidylinositol 3-kinase
- treg, regulatory t cell
- rt-pcr, reverse transcription polymerase chain reaction
- ps6, ribosomal protein 6
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- stat, signal transducer and activator of transcription
- sdh, social determinants of health
- sgc, systemic glucocorticoids
- sle, systemic lupus erythematosus
- th17, t helper 17
- tbk1, tank-binding kinase 1
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- traf, tumor necrosis factor receptor-associated factor
- trif, tirdomain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York; Colton Center for Autoimmunity, New York University School of Medicine, New York, New York.
| | - Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine, New York, New York
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, New York
| |
Collapse
|