Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES, Wakeland EK, Mohan C. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells.
J Clin Invest 2005;
115:1869-78. [PMID:
15951839 PMCID:
PMC1143586 DOI:
10.1172/jci23049]
[Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 05/09/2005] [Indexed: 11/17/2022] Open
Abstract
Sle3 is an NZM2410-derived lupus susceptibility locus on murine chromosome 7. Congenic recombination has resulted in a novel mouse strain, B6.Sle3, associated with serum antinuclear autoantibodies (ANAs), T cell hyperactivity, and elevated CD4/CD8 ratios. An OVA-specific TCR transgene was used as a tool to demonstrate that Sle3 facilitated heightened T cell expansion in vitro, and in vivo, following antigen challenge. Indeed, continued T cell expansion was noted even in response to a tolerogenic signal. However, these phenotypes did not appear to be T cell intrinsic but were dictated by hyperstimulatory B6.Sle3 APCs. Importantly, B6.Sle3-derived DCs and macrophages appeared to be significantly more mature/activated, less apoptotic, and more proinflammatory and were better at costimulating T cells in vitro, compared with the B6 counterparts. Finally, the adoptive transfer of B6.Sle3-derived DCs into healthy B6 recipients elicited increased CD4/CD8 ratios and serum ANAs, 2 cardinal Sle3-associated phenotypes. We posit that their heightened expression of various costimulatory molecules, including CD80, CD106, I-A, and CD40, and their elevated production of various cytokines, including IL-12 and IL-1beta, may explain why Sle3-bearing DCs may be superior at breaching self tolerance. These studies provide mechanistic evidence indicating that intrinsic abnormalities in DCs and possibly other myeloid cells may dictate several of the phenotypes associated with systemic lupus, including ANA formation and T cell hyperactivity.
Collapse