1
|
Graham ML, Ramachandran S, Singh A, Moore MEG, Flanagan EB, Azimzadeh A, Burlak C, Mueller KR, Martins K, Anazawa T, Balamurugan AN, Bansal-Pakala P, Murtaugh MP, O’Brien TD, Papas KK, Spizzo T, Schuurman HJ, Hancock WW, Hering BJ. Clinically available immunosuppression averts rejection but not systemic inflammation after porcine islet xenotransplant in cynomolgus macaques. Am J Transplant 2022; 22:745-760. [PMID: 34704345 PMCID: PMC9832996 DOI: 10.1111/ajt.16876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.
Collapse
Affiliation(s)
- Melanie L. Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Meghan E. G. Moore
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - E. Brian Flanagan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Agnes Azimzadeh
- Department of Surgery, University of Maryland, Baltimore, MD
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kate R. Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kyra Martins
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Takayuki Anazawa
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Pratima Bansal-Pakala
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Timothy D. O’Brien
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Henk-J. Schuurman
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN,Spring Point Project, Minneapolis, MN
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bernhard. J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C, Rong Y, Samojlik MM, Bayer AL, Stabler CL. In vitro platform establishes antigen-specific CD8 + T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 2020; 256:120182. [PMID: 32599358 PMCID: PMC7480933 DOI: 10.1016/j.biomaterials.2020.120182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
The curative potential of non-autologous cellular therapy is hindered by the requirement of anti-rejection therapy. Cellular encapsulation within nondegradable biomaterials has the potential to inhibit immune rejection, but the efficacy of this approach in robust preclinical and clinical models remains poor. While the responses of innate immune cells to the encapsulating material have been characterized, little attention has been paid to the contributions of adaptive immunity in encapsulated graft destabilization. Avoiding the limitations of animal models, we established an efficient, antigen-specific in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluated their consequential impacts. Using ovalbumin (OVA) as a model antigen, we determined that alginate microencapsulation abrogates direct CD8+ T cell activation by interrupting donor-host interaction; however, indirect T cell activation, mediated by host antigen presenting cells (APCs) primed with shed donor antigens, still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, comprehensively addressing a long-standing hypothesis of the field. Furthermore, it provides an efficient benchtop screening tool for the investigation of new encapsulation methods and/or synergistic immunomodulatory agents.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ethan Y Yang
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA
| | - Irayme Labrada-Miravet
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Allison L Bayer
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Safley SA, Barber GF, Holdcraft RW, Gazda LS, Duncanson S, Poznansky MC, Sambanis A, Weber CJ. Multiple clinically relevant immunotherapies prolong the function of microencapsulated porcine islet xenografts in diabetic NOD mice without the use of anti‐CD154 mAb. Xenotransplantation 2020; 27:e12577. [DOI: 10.1111/xen.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Susan A. Safley
- Department of Surgery Emory University School of Medicine Atlanta GA
| | - Graham F. Barber
- Department of Surgery Emory University School of Medicine Atlanta GA
- Parker H. Petit Institute of Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA
| | | | | | - Stephanie Duncanson
- School of Chemical & Biomolecular Engineering Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA
- Oncorus Cambridge MA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center Massachusetts General Hospital (East) Charlestown MA
| | - Athanassios Sambanis
- School of Chemical & Biomolecular Engineering Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA
- W. M. Keck Foundation Los Angeles CA
| | - Collin J. Weber
- Department of Surgery Emory University School of Medicine Atlanta GA
| |
Collapse
|
4
|
Cellular Immune Responses to Xenografts. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 2009; 88:160-9. [PMID: 19623010 DOI: 10.1097/tp.0b013e3181abbfc1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The long-term metabolic function of microencapsulated xenogeneic adult porcine islets (API) was assessed in a murine model of type 1 diabetes mellitus. METHODS API were encapsulated in barium-gelled alginate and transplanted intraperitoneally in diabetic nonobese diabetic (NOD) mice given no immunosuppression or given costimulatory blockade (CoB; CTLA4-Ig+anti-CD154 mAb). Control mice received nonencapsulated API under the kidney capsule. Graft function was monitored by measurement of random blood glucose levels, serum glycosylated hemoglobin (HbA1c), serum porcine C peptide, in vivo glucose tolerance tests, and histologic analyses of host pancreas and graft biopsies. Host immune responses to the islet xenografts were characterized by phenotyping peritoneal cellular infiltrates and by measuring serum antiporcine antibody levels. RESULTS Without immunosuppression, nonencapsulated API functioned for less than 1 week, and microencapsulated API functioned for 35+/-14 days before rejection, associated with both a cellular and a humoral immune response. With continuous CoB, nonencapsulated API functioned for 27+/-4 days, whereas microencapsulated API functioned for >450 days with measurable levels of serum porcine C peptide, near normal in vivo glucose tolerance tests and HbA1c levels, and intact microcapsules containing viable, insulin-positive porcine islets. CONCLUSIONS Microencapsulated API restored normoglycemia for more than 1 year in spontaneously diabetic NODs given dual CoB. To our knowledge, this is the first study to document long-term normalized HbA1c, porcine C peptide, and near normal glucose tolerance in immunosuppressed diabetic NOD mice transplanted intraperitoneally with microencapsulated API. Our study suggests that transplantation of microencapsulated porcine islet xenografts may be a future treatment for patients with type 1 diabetes mellitus.
Collapse
|
6
|
Safley SA, Cui H, Cauffiel S, Tucker-Burden C, Weber CJ. Biocompatibility and immune acceptance of adult porcine islets transplanted intraperitoneally in diabetic NOD mice in calcium alginate poly-L-lysine microcapsules versus barium alginate microcapsules without poly-L-lysine. J Diabetes Sci Technol 2008; 2:760-7. [PMID: 19885258 PMCID: PMC2769788 DOI: 10.1177/193229680800200503] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND If alginate microcapsules are to be used clinically for therapeutic cell transplants, capsule formulations must be designed to enhance optimal biocompatibility and immune acceptance. METHODS Microcapsules were generated using highly purified, endotoxin-free, ultra-low viscosity, high mannuronic acid alginate. The capsules differed with respect to gelling cation (50 mM barium or 100 mM calcium), alginate concentration (2.0% or 3.3%), alginate density (homogeneous or inhomogeneous), and the presence or absence poly-L-lysine (PLL) coating. Four types of empty capsules were implanted intraperitoneally (i.p.) in normal NOD mice, and their biocompatibility was evaluated after various time periods in vivo. Encapsulated adult porcine islets (APIs) were transplanted i.p. in diabetic NOD mice, and immune acceptance was evaluated by graft survival times, host cell adherence to capsule surfaces, and flow cytometric analysis of peritoneal host cells. RESULTS All empty alginate capsules were biocompatible in vivo, but barium-gelled alginate capsules without PLL were clearly the most biocompatible, since 99% of these empty capsules had no host cell adherence up to 9 months in vivo. In diabetic NOD mice, APIs functioned significantly longer in barium-alginate capsules without PLL than in calcium-alginate capsules with PLL and had strikingly less host cell adherence, although large numbers of host cells (predominantly macrophages and eosinophils) infiltrated the peritoneal cavities of recipients with APIs in both types of capsules. Addition of PLL coatings to barium-alginate capsules dramatically decreased graft survival. CONCLUSIONS Inhomogeneous barium-gelled alginate capsules without PLL are the optimal candidates for clinical trials, based on their enhanced biocompatibility and immune acceptance in vivo.
Collapse
Affiliation(s)
- Susan A Safley
- Department of Surgery, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
7
|
Toso C, Mathe Z, Morel P, Oberholzer J, Bosco D, Sainz-Vidal D, Hunkeler D, Buhler LH, Wandrey C, Berney T. Effect of microcapsule composition and short-term immunosuppression on intraportal biocompatibility. Cell Transplant 2005; 14:159-67. [PMID: 15881425 DOI: 10.3727/000000005783983223] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With higher nutrient and oxygen supply and close contact to blood, the portal vein is a possible alternative to the peritoneal cavity for transplantation of encapsulated cells. Data regarding intraportal biocompatibility of microcapsules are lacking. Microcapsules were built from five alginate types differing in their molar mass and mannuronic/guluronic acid ratios by complex formation with divalent cations (barium or calcium) or mixtures of divalent cations and polycations. They were injected in the portal vein of rats, and cellular and fibrotic pericapsular infiltration thickness was measured 3 and 7 days after implantation. Overgrowth was characterized using various stainings or immunohistochemistry (hematoxylin and eosin, Giemsa, ED-1 for monocyte/macrophage, alpha-actin for myofibroblasts, CD31 for endothelial cells). The impact of short-term immunosuppression (gadolinium-chloride IV 20 mg/kg/day on days--1 and 4 as well as 10 days of rapamycin PO 1 mg/kg/day, tacrolimus PO 3 mg/kg/day, or combinations of rapamycin/tacrolimus or gadolinium/tacrolimus) was further assessed 3, 7, and 42 days after implantation. Overall, overgrowth increased from day 3 to day 7 (p < 0.05). Three and 7 days after implantation, polycation-containing microcapsules induced more reaction than microbeads (p < 0.0001 and p < 0.01). Considering polycation-free beads, barium-alginate induced the weakest reaction. Biocompatibility of microbeads was independent of mannuronic/guluronic acid ratio and molar mass of the alginate. Infiltration was mainly a monocyte/macrophage-rich foreign body reaction, but an eosinophil-containing immunoallergic reaction was also observed. Short-term immunosuppression significantly reduced infiltration in all conditions and up to 42 days after implantation. Biocompatibility after intraportal infusion was best for barium-alginate microbeads and poorest for polycation-containing microcapsules. Short- and long-term overgrowth could be significantly reduced by short-term immunosuppression.
Collapse
Affiliation(s)
- Christian Toso
- Centre d'isolement et de transplantation cellulaire, Service de chirurgie viscérale, Hôpital Universitaire, 4, rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Safley SA, Kapp LM, Tucker-Burden C, Hering B, Kapp JA, Weber CJ. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation 2005; 79:409-18. [PMID: 15729166 DOI: 10.1097/01.tp.0000150021.06027.dc] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Transplantation of human islets has been successful clinically. Since human islets are scarce, we are studying microencapsulated porcine islet xenografts in nonobese diabetic (NOD) mice. We have evaluated the cellular immune response in NOD mice with and without dual costimulatory blockade. METHODS Alginate-poly-L-lysine-encapsulated adult porcine islets were transplanted i.p. in untreated diabetic NODs and NODs treated with CTLA4-Ig to block CD28/B7 and with anti-CD154 mAb to inhibit CD40/CD40-ligand interactions. Groups of mice were sacrificed on subsequent days; microcapsules were evaluated by histology; peritoneal cells were analyzed by FACS; and peritoneal cytokines were quantified by ELISA. Controls included immunoincompetent NOD-Scids and diabetic NODs given sham surgery or empty microcapsules. RESULTS Within 20 days, encapsulated porcine islets induced accumulation of large numbers of macrophages, eosinophils, and significant numbers of CD4 and CD8 T cells at the graft site, and all grafts were rejected. During rejection, IFNgamma, IL-12 and IL-5 were significantly elevated over sham-operated controls, whereas IL-2, TNFalpha, IL-4, IL-6, IL-10, IL-1beta and TGFbeta were unchanged. Treatment with CTLA4-Ig and anti-CD154 prevented graft destruction in all animals during the 26 days of the experiment, dramatically inhibited recruitment of host inflammatory cells, and inhibited peritoneal IFNgamma and IL-5 concentrations while delaying IL-12 production. CONCLUSIONS When two different pathways of T cell costimulation were blocked, T cell-dependent inflammatory responses were inhibited, and survival of encapsulated islet xenografts was significantly prolonged. These findings suggest synergy between encapsulation of donor islets and simultaneous blockade of two host costimulatory pathways in prolonging xenoislet transplant survival.
Collapse
Affiliation(s)
- Susan A Safley
- Gottlich Laboratory for Diabetes and Islet Transplant Research, Department of Surgery, Emory University School of Medicine, 5105 Woodruff Memorial Building, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Wennberg L, Goto M, Maeda A, Song Z, Benjamin C, Groth CG, Korsgren O. The efficacy of CD40 ligand blockade in discordant pig-to-rat islet xenotransplantation is correlated with an immunosuppressive effect of immunoglobulin. Transplantation 2005; 79:157-64. [PMID: 15665763 DOI: 10.1097/01.tp.0000147317.96481.db] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The authors' aim was to evaluate the efficacy of immunosuppression with monoclonal anti-CD40 ligand antibodies (aCD40L) or nonspecific polyclonal intravenous immunoglobulin (IVIG) in the pig-to-rat islet xenotransplantation model. METHODS Fetal porcine islet-like cell clusters were transplanted under the kidney capsule of nondiabetic rats. All antibodies were administered alone or in combination with cyclosporine A (CsA). In addition, some animals were administered antibodies plus tacrolimus (TAC) or sirolimus (SIR). Twelve days after transplantation, islet xenograft survival and rejection were evaluated using immunohistochemistry. RESULTS aCD40L plus CsA had a pronounced inhibitory effect on islet xenograft rejection for up to 12 days after transplantation. Unexpectedly, treatment with a monoclonal control antibody (anti-keyhole limpet hemocyanin [aKLH]) plus CsA had a similar inhibitory effect. Furthermore, a similar inhibition of islet xenograft rejection was observed also in animals administered IVIG plus CsA. Monotherapy with aCD40L, aKLH, IVIG, or CsA had no effect on the rejection process. Also, when aCD40L or aKLH was administered together with TAC, islet xenograft rejection was inhibited. There was no marked difference compared with rats treated with aCD40L or aKLH and CsA. Immunosuppression with aCD40L or aKLH in combination with SIR also inhibited pig-to-rat islet xenograft rejection, but the protective effect was not as pronounced. CONCLUSIONS Immunosuppression with high doses of antibodies, monoclonal or polyclonal, in combination with CsA or TAC inhibits pig-to-rat islet xenograft rejection. No specific effect of co-stimulatory blockade with aCD40L could be observed. Instead, the results indicate a nonspecific immunosuppressive effect of high doses of antibodies in this model.
Collapse
Affiliation(s)
- Lars Wennberg
- Karolinska Institute, Department of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Benda B, Ljunggren HG, Peach R, Sandberg JO, Korsgren O. Co-stimulatory molecules in islet xenotransplantation: CTLA4Ig treatment in CD40 ligand-deficient mice. Cell Transplant 2003; 11:715-20. [PMID: 12518898 DOI: 10.3727/000000002783985440] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous work has demonstrated that short-term systemic administration of cytotoxic T lymphocyte antigen-4 (CTLA-4) Ig blocks human pancreatic islet xenograft rejection in mice and induces long-term, donor-specific tolerance, whereas studies on pig pancreatic islet rejection in mice have failed to demonstrate a role for CTLA4Ig in preventing rejection. Treatment with anti-CD40 ligand (L) monoclonal antibodies alone is somewhat effective in prolonging the survival of islet xenografts, but ineffective when applied to skin xenografts. However, simultaneous blockade of the CD28 and CD40 co-stimulatory pathways prolongs the survival of pig skin on recipient mice. To evaluate the role of CD28 and CD40 co-stimulatory pathways in pig islet-like cell cluster (ICC) xenograft rejection in mice, CD40L-deficient mice transplanted with fetal porcine ICCs were given posttransplant treatment with human (h) CTLA4Ig or a human IgG1 chimeric mAb (hL6). Xenografts were evaluated 6 or 12 days after transplantation. Fetal porcine ICC xenografts were protected from rejection in hCTLA4Ig-treated CD40L-deficient mice, whereas xenograft rejection persisted in untreated CD40L-deficient mice. Simultaneous blockade of the CD28 and CD40 co-stimulatory pathways is mandatory to inhibit ICC xenograft rejection in the pig-to-mouse model, because the CD28 and CD40 co-stimulatory pathways seem capable of efficiently substituting for one another.
Collapse
Affiliation(s)
- Birgitta Benda
- Section of Clinical Immunology, Department of Oncology, Radiology, and Clinical Immunology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
11
|
Safley SA, Kapp JA, Weber CJ. Proliferative and cytokine responses in CTLA4-Ig-treated diabetic NOD mice transplanted with microencapsulated neonatal porcine ICCs. Cell Transplant 2003; 11:695-705. [PMID: 12518896 DOI: 10.3727/000000002783985413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our goal is to develop effective islet xenografts for treating human diabetes. We have studied microencapsulated neonatal porcine islet cell clusters (ICCs) transplanted intraperitoneally in spontaneously diabetic NOD mice, where they function to maintain normoglycemia in the autoimmune host. Nonencapsulated neonatal porcine ICCs functioned for 4.5 +/- 0.5 days before being rejected; encapsulation prolonged graft function to 17 +/- 2 days. CTLA4-Ig treatment did not enhance the survival of nonencapsulated ICCs. However, CTLA4-Ig treatment significantly extended the function of encapsulated ICCs to 73 +/- 5 days. Histological analyses demonstrated a profuse pericapsular cellular reaction associated with rejection of encapsulated islet xenografts in untreated mice, while this reaction was significantly reduced in CTLA4-Ig-treated mice. To study mechanisms of xenograft rejection in this model, we analyzed proliferative responses to neonatal porcine ICCs and cytokines present in the peritoneal cavities of transplanted mice. Spleen cells from both CTLA4-Ig-treated and untreated rejecting NODs exhibited vigorous proliferation in the absence of antigenic stimulation, suggesting prior activation in vivo, while splenocytes from CTLA4-Ig-treated NODs with functioning grafts had low proliferative levels, equal to controls. Islet-specific proliferation was not detected in islet-rejecting mice, perhaps due to their high background levels. With the exception of elevated IL-6 levels, empty capsules did not provoke a significant peritoneal cytokine response compared with sham surgery or untransplanted control mice. However, IL-5, IL-12, TGF-beta, and IL-1beta were significantly elevated in NODs receiving encapsulated neonatal porcine ICCs compared with untransplanted controls. There were no significant differences between peritoneal cytokine concentrations in CTLA4-Ig-treated mice with long-term functioning grafts compared to mice that rejected grafts at earlier time points. We conclude that the combination of donor islet microencapsulation and brief treatment of the recipient with co-stimulatory blockade delays sensitization of the host, possibly by altering mechanism(s) for recruitment and/or activation of host effector cells.
Collapse
Affiliation(s)
- Susan A Safley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
12
|
Kobayashi T, Aomatsu Y, Iwata H, Kin T, Kanehiro H, Hisanaga M, Ko S, Nagao M, Nakajima Y. Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 2003; 75:619-25. [PMID: 12640299 DOI: 10.1097/01.tp.0000053749.36365.7e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The recurrence of autoimmunity and allograft rejection act as major barriers to the widespread use of islet transplantation as a cure for type 1 diabetes. The aim of this study was to evaluate the feasibility of immunoisolation by use of an agarose microcapsule to prevent autoimmune recurrence after islet transplantation. METHODS Highly purified islets were isolated from 6- to 8-week-old prediabetic male nonobese diabetic (NOD) mice and microencapsulated in 5% agarose hydrogel as a semipermeable membrane. Islet function was evaluated by a syngeneic islet transplantation model, in which islets were transplanted into spontaneously diabetic NOD mice. RESULTS The nonencapsulated islet grafts were destroyed and diabetes recurred within 2 weeks after transplantation in all 12 mice. In contrast, 13 of the 16 mice that underwent transplantation with microencapsulated islets maintained normoglycemia for more than 100 days after islet transplantation. Histologic examination of the nonencapsulated islet grafts showed massive mononuclear cellular infiltration with beta-cell destruction. In contrast, the microencapsulated islets showed well-granulated beta cells with no mononuclear cellular infiltration around the microcapsules or in the accompanying blood capillaries between the microcapsules. CONCLUSIONS Agarose microcapsules were able to completely protect NOD islet isografts from autoimmune destruction in the syngeneic islet transplantation model.
Collapse
Affiliation(s)
- Tsunehiro Kobayashi
- First Department of Surgery, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giannoukakis N, Robbins PD. Gene and cell therapies for diabetes mellitus: strategies and clinical potential. BioDrugs 2003; 16:149-73. [PMID: 12102644 DOI: 10.2165/00063030-200216030-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last 5 years have witnessed an explosion in the use of genes and cells as biomedicines. While primarily aimed at cancer, gene engineering and cell therapy strategies have additionally been used for Mendelian, neurodegenerative and metabolic disorders. The main focus of gene and cell therapy strategies in metabolism has been diabetes mellitus. This disease is a disorder of glucose homeostasis, either due to the immune-mediated eradication of pancreatic beta cells in the islets of Langerhans (type 1 diabetes) or resulting from insulin resistance and obesity syndromes where the insulin-producing capability of the beta cell is ultimately exhausted in the face of insensitivity to the effects of insulin in the peripheral glucose-utilising tissues (type 2 diabetes). A significant number of animal studies have demonstrated the potential in restoring normoglycaemia by islet transplantation in the context of immunoregulation achieved by gene transfer of immunoregulatory genes to allo- and xenogeneic islets ex vivo. Additionally, gene and cell therapy has also been used to induce tolerance to auto- and alloantigens and to generate the tolerant state in autoimmune rodent animal models of type 1 diabetes or rodent recipients of allogeneic/xenogeneic islet transplants. The achievements of gene and cell therapy in type 2 diabetes are less evident, but seminal studies promise that this modality can be relevant to treat and perhaps prevent the underlying causes of the disease. Here we present an overview of the current status of gene and cell therapy for type 1 and 2 diabetes and we propose potential therapeutic options that could be clinically useful. For type 1 diabetes, transplantation of islets engineered to evade or suppress the recipient immune response is the most readily-available technology today. A number of gene delivery vectors encoding proteins that impair a variety of immune cells have already been examined and proven versatile. More challenging but, nonetheless, just over the horizon are attempts to promote tolerance to islet allografts. Type 2 diabetes will likely require a better understanding of the processes that determine insulin sensitivity in the periphery. Targeting tissues such as muscle and fat with vectors encoding genes whose products promote insulin sensitivity and glucose uptake is an approach that does not carry with it the side-effects often associated with pharmacologic agents currently in use. In the end, progress in vector design, elucidation of antigen-specific immunity and insulin sensitivity will provide the framework for gene drug use in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
14
|
Abstract
The need for permanent, nonspecific, and potentially harmful immunosuppression remains a major obstacle for islet transplantation. The response of a type 1 diabetic recipient to an islet graft includes a specific allogenic immune response and the recurrence of autoimmunity. Free or encapsulated in an immunoisolation device, islet cells are exposed to immune aggression, initiated by donor antigen-presenting cells or by indirect, host antigen-presenting cell-mediated antigen presentation. CTLA4-Ig is a genetically engineered fusion protein of human CTLA4 and the IgG 1 Fc region. It prevents T-cell activation by binding to human B7, which costimulates T cells through CD28. Interesting data were reported in experimental islet transplantation, suggesting that CTLA4-Ig may be slightly but significantly beneficial to islet allograft survival, although studies in autoimmune diabetes are scarce. The main limitations include transient and low levels of expression when CTLA4-Ig is delivered locally, a predominant effect on the direct recognition pathway, and the lack of effect on memory cells. Clinical trials in islet transplantation could be discussed in nonuremic patients, with steroid-free and anticalcineurin-free regimens, in combination with another costimulation blocker, rapamycin, and an anti-interleukin 2 receptor antibody, and with a strategy directed against the recurrence of autoimmunity.
Collapse
|
15
|
Constantinidis I, Long R, Weber C, Safley S, Sambanis A. Non-Invasive monitoring of a bioartificial pancreas in vitro and in vivo. Ann N Y Acad Sci 2001; 944:83-95. [PMID: 11797698 DOI: 10.1111/j.1749-6632.2001.tb03825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Monitoring biochemical processes relevant to the function, survival, and longevity of tissue-engineered pancreatic constructs is important for the development of an optimum construct design as well as patient care management after implantation. In this report we demonstrate the ability of nuclear magnetic resonance (NMR) techniques to monitor aspects of intracellular metabolism, overall morphology, and distribution of a microencapsulation based bioartificial pancreas in vitro and in vivo.
Collapse
Affiliation(s)
- I Constantinidis
- Department of Radiology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
16
|
Duvivier-Kali VF, Omer A, Parent RJ, O'Neil JJ, Weir GC. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50:1698-705. [PMID: 11473027 DOI: 10.2337/diabetes.50.8.1698] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We describe a new technique for microencapsulation with high-mannuronic acid (high-M) alginate crosslinked with BaCl(2) without a traditional permselective component, which allows the production of biocompatible capsules that allow prolonged survival of syngeneic and allogeneic transplanted islets in diabetic BALB/c and NOD mice for >350 days. The normalization of the glycemia in the transplanted mice was associated with normal glucose profiles in response to intravenous glucose tolerance tests. After explantation of the capsules, all mice became hyperglycemic, demonstrating the efficacy of the encapsulated islets. The retrieved capsules were free of cellular overgrowth and islets responded to glucose stimulation with a 5- to 10-fold increase of insulin secretion. Transfer of splenocytes isolated from transplanted NOD mice to NOD/SCID mice adoptively transferred diabetes, indicating that NOD recipients maintained islet-specific autoimmunity. In conclusion, we have developed a simple technique for microencapsulation that prolongs islet survival without immunosuppression, providing complete protection against allorejection and the recurrence of autoimmune diabetes.
Collapse
MESH Headings
- Alginates
- Animals
- Autoimmunity
- Biocompatible Materials
- Blood Glucose/metabolism
- C-Peptide/blood
- Capsules
- Coculture Techniques
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/surgery
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/surgery
- Glucose Tolerance Test
- Glucuronic Acid
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Graft Survival/immunology
- Hexuronic Acids
- Islets of Langerhans/cytology
- Islets of Langerhans/immunology
- Islets of Langerhans Transplantation/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Inbred Strains
- Spleen/immunology
- Subrenal Capsule Assay
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Time Factors
- Transplantation, Homologous
- Transplantation, Isogeneic/immunology
Collapse
Affiliation(s)
- V F Duvivier-Kali
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
17
|
Tatarkiewicz K, Garcia M, Lopez-Avalos M, Bonner-Weir S, Weir GC. Porcine neonatal pancreatic cell clusters in tissue culture: benefits of serum and immobilization in alginate hydrogel. Transplantation 2001; 71:1518-26. [PMID: 11435959 DOI: 10.1097/00007890-200106150-00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Porcine neonatal pancreatic cell clusters (NPCCs) may be a suitable source of insulin producing tissue for transplantation in diabetic patients. The possible beneficial effect of serum on maturation of NPCCs in vitro is difficult to achieve because of cell clumping, which can be avoided by immobilization in alginate hydrogel matrix. Collagenase treated pancreata, cultured for 4 days, formed NPCCs that were embedded in alginate cross-linked with CaCl2 and cultured in modified Ham's F10 medium with 10% fetal calf serum (FCS) for 10 days. NPCCs cultured as suspension in F10+ with 0.5% bovine serum albumin or with 10% FCS were used as control. To prevent the aggregation when cultured with serum, NPCCs were kept as a very diluted suspension. At the beginning and end of the culture, samples were taken for insulin and DNA content and immunostained for beta and non-beta cells. The culture of NPCCs immobilized in alginate resulted with 3-fold increase in insulin content and 9-fold increase in insulin/DNA ratio. Histology revealed evident increase of number of insulin- and other hormone-positive cells compared with the control. Even though 2 weeks in culture resulted in impaired glucose-induced insulin release, the amount of insulin secreted by clusters cultured in the presence of serum was 4-fold higher than in serum-free conditions. After transplantation, NPCCs retrieved from alginate reversed hyperglycemia similarly to NPCCs cultured in standard conditions. In conclusion, this study shows the feasibility of in vitro immobilization of NPCCs in alginate three-dimensional matrix, allowing cell clusters to be cultured at least two times higher density compared with culture in suspension.
Collapse
Affiliation(s)
- K Tatarkiewicz
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
18
|
Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, Bonner-Weir S, Weir GC. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation 2001; 71:203-11. [PMID: 11213060 DOI: 10.1097/00007890-200101270-00006] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Encapsulation of islets has been widely investigated as a treatment for diabetes. The characteristics and dynamics of insulin secretion by encapsulated islets in response to glucose and other secretagogues are not well understood. METHODS In our study, macroencapsulated syngeneic islets at 3-4 wk after transplantation were studied for insulin release in response to i.v. glucose (hyperglycemic clamps at 250 or 350 mg/dl plasma glucose), arginine (i.v. bolus, 100 mg/kg), glucagon-like peptide-1 (i.v. infusion for 20 min, 2.2 pmol/kg/min), and meal challenge. Syngeneic islets (6000 islets) were encapsulated in alginate macrobeads (2-3 mm diameter) with or without poly-L-lysine coating and transplanted into the peritoneal cavity of STZ-diabetic Lewis rats. Normal (nontransplanted) and diabetic Lewis rats transplanted with "naked" islets under the kidney capsule served as controls. RESULTS Animals transplanted with macrobeads displayed subnormal insulin responses to glucose, arginine, and glucagon-like peptide-1 despite achieving normoglycemia faster than animals with renal subcapsular islet transplants. Plasma insulin responses to meal challenges were blunted in animals with macrobeads resulting in increased plasma glucose excursions. CONCLUSIONS We conclude that, after transplantation into diabetic Lewis rats, macroencapsulated islets have significantly impaired insulin secretion despite achieving normal fed glycemic levels.
Collapse
Affiliation(s)
- N Trivedi
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rayat GR, Rajotte RV, Ao Z, Korbutt GS. Microencapsulation of neonatal porcine islets: protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. Transplantation 2000; 69:1084-90. [PMID: 10762211 DOI: 10.1097/00007890-200003270-00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, we have developed a simple and reliable method to efficiently isolate large numbers of neonatal porcine islets (NPI). We and others have shown that NPI are susceptible to cytolysis by the activation of human complement in vitro. Microencapsulation of islets may be one strategy to protect NPI from this form of rejection. We examined whether microencapsulation can prevent lysis of NPI induced by human antibody and complement in vitro and also assessed their ability to reverse hyperglycemia in diabetic nude mice. METHODS NPI were microencapsulated with purified alginate, cultured for 2 days, then tested for sensitivity to fresh human serum using an established in vitro cytotoxicity assay or transplanted into alloxan-induced diabetic nude mice. RESULTS Incubation of nonencapsulated NPI for 24 hr in the presence of fresh human serum resulted in a 53% loss of cellular insulin content, a 51% reduction in recoverable DNA content, and a marked reduction of insulin secretory responsiveness when compared with controls cultured in heat-inactivated human serum. In contrast, exposure of encapsulated islets to fresh human serum had no cytotoxic effect on the islets. Transplantation of 2000 encapsulated NPI i.p. into diabetic nude mice (n=16) corrected hyperglycemia in all mice within 8 weeks. Similar results were obtained when 2000 nonencapsulated NPI were implanted under the kidney capsule (n=10); however recipients of nonencapsulated NPI placed i.p. failed to obtain euglycemia and survived for only 3 weeks posttransplantation. CONCLUSION Microencapsulation protects NPI from the cytotoxic effects of human antibody and complement and allows for long-term reversal of diabetes in nude mice.
Collapse
Affiliation(s)
- G R Rayat
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- T Berney
- Diabetes Research Institute, University of Miami School of Medicine, FL 33136, USA
| | | |
Collapse
|
21
|
Yoon KH, Quickel RR, Tatarkiewicz K, Ulrich TR, Hollister-Lock J, Trivedi N, Bonner-Weir S, Weir GC. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice. Cell Transplant 1999; 8:673-89. [PMID: 10701496 DOI: 10.1177/096368979900800613] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neonatal porcine pancreas has considerable capacity for growth and differentiation, making it an attractive potential source of islet tissue for xenotransplantation. Pancreases from 1-3-day-old newborn pigs were digested with collagenase and cultured for 8 days. The resulting cellular aggregates are called porcine neonatal pancreatic cell clusters (NPCCs). The mean yield of NPCCs from a newborn pig was 28,200 +/- 1700 islet equivalents. Cytokeratin 7 (CK7) was used as a marker for the immunostaining of pancreatic duct cells. In neonatal pancreas, 18% of the insulin-positive cells co-stained for CK7, thus being protodifferentiated. NPCCs also contained protodifferentiated cells; insulin/PP and insulin/somatostatin co-stained cells were more common than insulin/glucagon cells. Between 1 and 8 days of culture, the DNA content of the NPCCs fell to 16% and the insulin content to 33% of the starting value, mainly due to the preferential loss of exocrine cells. Transplantation of 2000 or 4000 NPCCs into diabetic nude mice typically normalized glucose values in 10-20 weeks. Mice with successful grafts had lower fasting blood glucose levels than normal mice and accelerated glucose clearance after an i.p. glucose load. The starting NPCCs consisted of 17% insulin-staining cells, but the grafts of mice with reversed diabetes consisted of 94% beta cells, with some co-stained for CK7, indicating that the grafts still contained immature cells. The mass of insulin-producing cells rose from 0.22 +/- 0.08 mg 1 week after transplantation to 4.34 +/- 0.27 mg in mice sacrificed at 27-35 weeks. In summary, NPCCs contain mostly islet precursor cells, which when transplanted into nude mice undergo striking differentiation and beta cell expansion.
Collapse
Affiliation(s)
- K H Yoon
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- T Berney
- Diabetes Research Institute, University of Miami, FL 33136, USA
| | | |
Collapse
|