1
|
Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID-19 patients. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:76-87. [PMID: 35721225 PMCID: PMC9188110 DOI: 10.1016/j.omtn.2022.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2022] [Indexed: 01/08/2023]
Abstract
Despite the extraordinary advances achieved to beat COVID-19 disease, many questions remain unsolved, including the mechanisms of action of SARS-CoV-2 and which factors determine why individuals respond so differently to the viral infection. Herein, we performed an in silico analysis to identify host microRNA targeting ACE2, TMPRSS2, and/or RAB14, all genes known to participate in viral entry and replication. Next, the levels of six microRNA candidates previously linked to viral and respiratory-related pathologies were measured in the serum of COVID-19-negative controls (n = 16), IgG-positive COVID-19 asymptomatic individuals (n = 16), and critical COVID-19 patients (n = 17). Four of the peripheral microRNAs analyzed (hsa-miR-32-5p, hsa-miR-98-3p, hsa-miR-423-3p, and hsa-miR-1246) were upregulated in COVID-19 critical patients compared with COVID-19-negative controls. Moreover, hsa-miR-32-5p and hsa-miR-1246 levels were also altered in critical versus asymptomatic individuals. Furthermore, these microRNA target genes were related to viral infection, inflammatory response, and coagulation-related processes. In conclusion, SARS-CoV-2 promotes the alteration of microRNAs targeting the expression of key proteins for viral entry and replication, and these changes are associated with disease severity. The microRNAs identified could be taken as potential biomarkers of COVID-19 progression as well as candidates for future therapeutic approaches against this disease.
Collapse
|
2
|
A Review on the Role of miR-149-5p in the Carcinogenesis. Int J Mol Sci 2021; 23:ijms23010415. [PMID: 35008841 PMCID: PMC8745060 DOI: 10.3390/ijms23010415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
miR-149 is an miRNA with essential roles in carcinogenesis. This miRNA is encoded by the MIR149 gene on 2q37.3. The miR-149 hairpin produces miR-149-5p and miR-149-3p, which are the “guide” and the sister “passenger” strands, respectively. Deep sequencing experiments have shown higher prevalence of miR-149-5p compared with miR-149-3p. Notably, both oncogenic and tumor suppressive roles have been reported for miR-149-5p. In this review, we summarize the impact of miR-149-5p in the tumorigenesis and elaborate mechanisms of its involvement in this process in a variety of neoplastic conditions based on three lines of evidence, i.e., in vitro, in vivo and clinical settings.
Collapse
|
3
|
Jing C, Cao H, Wu J, Ma R, Zhang J, Liu S, Wang Z. Long noncoding
RNA ZMIZ1‐AS1
promotes gefitinib resistance via binding to
hnRNPA1. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Haixia Cao
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Jianzhong Wu
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Rong Ma
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Junying Zhang
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Siwen Liu
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Zhuo Wang
- Clinical Cancer Research Center Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
4
|
Li S, Zhang Q, Liu W, Zhao C. Silencing of FTX suppresses pancreatic cancer cell proliferation and invasion by upregulating miR-513b-5p. BMC Cancer 2021; 21:290. [PMID: 33736615 PMCID: PMC7977589 DOI: 10.1186/s12885-021-07975-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Abnormal expression of long non-coding RNA (lncRNA) FTX (five prime to Xist), which is involved in X chromosome inactivation, has been reported in various tumors. However, the effect of FTX on the development of pancreatic cancer (PC) has not been elucidated. The purpose of this study was to explore the possible molecular mechanism of FTX in PC. METHODS Quantitative real-time PCR (qRT-PCR) was used to measure the expression levels of FTX and miR-513b-5p in PC cell lines. Proliferation and apoptosis of PC cells were determined by CCK-8, Edu assay, and flow cytometry. Invasion and migration ability of PC cells were detected by Transwell assay and scratch test. Bioinformatics analysis, luciferase reporter gene assay, and RNA immunoprecipitation (RIP) assay were used to verify the direct binding between FTX and miR-513b-5p. The xenotransplantation mouse model was established to explore the effect of FTX and miR-513b-5p on the PC tumor growth in vivo. RESULTS The expression levels of FTX were increased in PC cell lines, and silencing of FTX remarkably suppressed the invasion ability and cell viability. Besides, FTX could bind to miR-513b-5p as a competitive endogenous RNA, thus promoting the invasion and proliferation ability of PC cells. Moreover, knockdown of FTX inhibited the tumor growth and increased the expression levels of miR-513b-5p and apoptosis-related proteins in vivo. CONCLUSIONS FTX could directly combine with miR-513b-5p as a competitive endogenous RNA, thus promoting the occurrence and development of PC in vitro and in vivo.
Collapse
Affiliation(s)
- Shan Li
- Department of Gastrointestinal Radiation Oncology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin City, Heilongjiang Province, 150081, P. R. China
| | - Qian Zhang
- Department of Gastrointestinal Radiation Oncology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin City, Heilongjiang Province, 150081, P. R. China
| | - Wen Liu
- Department of Gastrointestinal Radiation Oncology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin City, Heilongjiang Province, 150081, P. R. China
| | - Chunbo Zhao
- Department of Gastrointestinal Radiation Oncology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin City, Heilongjiang Province, 150081, P. R. China.
| |
Collapse
|
5
|
Tian W, Yang H, Zhou B. Integrative analysis of exosomal microRNA-149-5p in lung adenocarcinoma. Aging (Albany NY) 2021; 13:7382-7396. [PMID: 33658392 PMCID: PMC7993674 DOI: 10.18632/aging.202596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Exosomes play important roles in the regulation of various processes in the tumor microenvironment. In this study, we explored the mechanisms of exosomal miR-149-5p in the pathogenesis of lung adenocarcinoma. Raw data were downloaded and normalized using the R package. Significantly expressed exosomal miRNAs were subjected to co-expression network analysis. The proliferation and apoptotic abilities of tumor cells were assessed by the proliferation and apoptosis assays. Univariate and multivariate analyses were performed to identify the independent risk factors of exosomal miR-149-5p and AMOTL2. Results showed that exosomal miR-149-5p was enriched in peripheral serum and tumor cells. The upregulation of exosomal miR-149-5p promoted the growth of tumor cells and inhibited apoptosis of tumor cells. Notably, AMOTL2, the target gene of exosomal miR-149-5p, was significantly downregulated in lung adenocarcinoma and may be considered as an independent risk factor of poor survival. In lung adenocarcinoma cells, AMOTL2 downregulation reversed the promoting effect of miR-149-5p on A549 cells growth and the inhibition effect of miR-149-5p on A549 cells apoptosis. Collectively, these results provide specific insights for further mechanistic studies on lung adenocarcinoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - He Yang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Wang XY, Zhou YC, Wang Y, Liu YY, Wang YX, Chen DD, Fan Y. miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway. Biochem Biophys Res Commun 2020; 532:329-335. [PMID: 32977944 DOI: 10.1016/j.bbrc.2020.05.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Drug resistance remains the unresolved obstacle for gastric cancer (GC) treatment. Recently more and more studies have shown that microRNAs are involved in cancer resistance and could apply to drug resistance therapy in tumors. The relationship between miR-149 and 5-fluorouracil (5-FU) resistance in GC remains unclear. Here we detected miR-149 expression in 5-FU resistance tumor tissues and cell lines, and found that miR-149 expression is upregulated in AGS/5-FU cells compared with AGS cells. Further experiments indicated that overexpression of miR-149 can alleviate 5-FU-induced apoptosis and proliferation inhibition by targeting TREM2. It was also confirmed that TREM2 regulated 5-FU resistance through β-catenin pathway. Generally speaking, our results indicated that miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yi-Chan Zhou
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yun-Yun Liu
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu-Xin Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Dan-Dan Chen
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
| |
Collapse
|
7
|
Zhan Y, Abuduwaili K, Wang X, Shen Y, Nuerlan S, Liu C. Knockdown of Long Non-Coding RNA HOTAIR Suppresses Cisplatin Resistance, Cell Proliferation, Migration and Invasion of DDP-Resistant NSCLC Cells by Targeting miR-149-5p/Doublecortin-Like Kinase 1 Axis. Cancer Manag Res 2020; 12:7725-7737. [PMID: 32943921 PMCID: PMC7455504 DOI: 10.2147/cmar.s246299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) HOTAIR has been reported to be associated with cisplatin (DDP) resistance in different human cancers including non-small cell lung cancer (NSCLC). However, the mechanism of HOTAIR in cisplatin resistance of NSCLC remains largely undefined. Materials and Methods Expression of HOTAIR, miR-149-5p and doublecortin-like kinase 1 (DCLK1) was detected using real-time quantitative PCR (RT-qPCR) and Western blotting. Cisplatin resistance was determined with cell counting kit (CCK)-8 assay and transwell assays in vitro, and xenograft tumor models in vivo. The target binding between miR-149-5p and either HOTAIR or DCLK1 was predicted on Diana Tools website, and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. Results Expression of HOTAIR was upregulated in DDP-resistant NSCLC tumor tissues and cell lines (A549/DDP and H1299/DDP). Knockdown of HOTAIR decreased the acquired cisplatin resistance of A549/DDP and H1299/DDP cells, as evidenced by attenuated 50% inhibitory concentration (IC50) of DDP, cell proliferation, migration and invasion in vitro, as well as tumor growth inhibition in vivo. Mechanically, HOTAIR negatively regulated miR-149-5p expression via targeting, and DCLK1 was a downstream target for miR-149-5p. DCLK1 was indirectly regulated by HOTAIR in DDP-resistant NSCLC cells as well. Functionally, miR-149-5p deletion could counteract the inhibitory effect of HOTAIR knockdown on cisplatin resistance; contrarily, restoring miR-149-5p exhibited the similar inhibition on cisplatin resistance in DDP-resistant cells in vitro, which was then abated by DCLK1 upregulation. Conclusion Knockdown of HOTAIR enhances DDP-resistant NSCLC cells to overcome cisplatin resistance partially via regulating miR-149-5p/DCLK1 axis.
Collapse
Affiliation(s)
- Yiyi Zhan
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Kahaerjiang Abuduwaili
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xiuli Wang
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanli Shen
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Saiteer Nuerlan
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Chunling Liu
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
8
|
Wang F, Luo L, Gu Z, Yang N, Wang L, Gao C. Integrative Analysis of Long Noncoding RNAs in Patients with Graft-versus-Host Disease. Acta Haematol 2020; 143:533-551. [PMID: 32289782 DOI: 10.1159/000505255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major cause of late non-recurrence mortality despite remarkable improvements in the field of allogeneic hematopoietic stem cell transplantation. Although recent studies have found that B-cell receptor (BCR)-activated B cells contribute to pathogenesis in cGVHD, the specific molecular mechanisms of B cells in this process remain unclear. METHODS In our study, human long noncoding RNA (lncRNA) microarrays and bioinformatic analysis were performed to identify different expressions of lncRNAs in peripheral blood B cells from cGVHD patients compared with healthy ones. The differential expression of lncRNA was confirmed in additional samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The microarray analysis revealed that 106 of 198 differentially expressed lncRNAs were upregulated and 92 were downregulated in cGVHD patients compared with healthy controls. Intergenic lncRNAs accounted for the majority of differentially expressed lncRNAs. A KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the differentially expressed mRNAs, which were coexpressed with lncRNA, between the cGVHD group and the healthy group were significantly enriched in the BCR signaling pathway. Further analysis of the BCR signaling pathway and its coexpression network identified three lncRNAs with the strongest correlation with BCR signaling and cGVHD, as well as a series of protein-coding genes and transcription factors associated with them. The three candidate lncRNAs were further validated in another group of cGVHD patients by qRT-PCR. CONCLUSIONS This is the first study on the correlation between lncRNA and cGVHD using lncRNA microarray analysis. Our study provides novel enlightenment in exploring the molecular pathogenesis of cGVHD.
Collapse
Affiliation(s)
- Feiyan Wang
- Medical School, Nankai University, Tianjin, China
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Hematology and Oncology, Laoshan Branch, Chinese PLA 401 Hospital, Qingdao, China
| | - Chunji Gao
- Medical School, Nankai University, Tianjin, China,
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,
| |
Collapse
|
9
|
Xiang F, Fan Y, Ni Z, Liu Q, Zhu Z, Chen Z, Hao W, Yue H, Wu R, Kang X. Ursolic Acid Reverses the Chemoresistance of Breast Cancer Cells to Paclitaxel by Targeting MiRNA-149-5p/MyD88. Front Oncol 2019; 9:501. [PMID: 31259152 PMCID: PMC6587017 DOI: 10.3389/fonc.2019.00501] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel (PTX) is widely used as a front-line chemotherapy for breast cancer treatment. However, its clinical applications are limited by the development of chemoresistance. The objective of this study was to investigate the reversal effects of ursolic acid (UA) on PTX resistance and the possible mechanisms in breast cancer. The role of miRNA-149-5p/MyD88 in the regulation of PTX resistance was investigated by the transfection of breast cancer cells with MDA-MB-231 (231) and MDA-MB-231/PTX-resistance (231/PTX) with lentiviruses carrying the MyD88 gene, shRNA specific for MyD88, the miR-149-5p gene, and shRNA specific for miR-149-5p. The PTX sensitivity was assessed by a CCK-8 assay. qRT-PCR and Western blot analyses were used to detect changes in the mRNA and protein levels. Flow cytometry was used to measure the rate of cell apoptosis. A luciferase activity assay was used to detect the binding site of miR-149-5p on the 3'UTR of MyD88. 231/PTX cells were injected into the flanks of female athymic nude mice, and the mice were randomly divided into the five following groups: PBS, PTX (low), PTX (high), UA, and PTX+UA. Our data show that UA reversed the resistance of breast cancer 231/PTX cells to PTX in vitro and in vivo. UA treatment significantly increased the expression of miR-149-5p, which was lower in 231/PTX cells than in 231 cells. Furthermore, the overexpression of miR-149-5p increased the sensitivity of 231/PTX cells to PTX treatment, whereas the knockdown of the miR-149-5p gene attenuated the effects of UA on the regulation of PTX sensitivity. A luciferase assay demonstrated that miR-149-5p could directly regulate the transcriptional activity of MyD88, a known PTX-resistance gene, by targeting the 3'UTR of MyD88. Meanwhile, the downregulation of MyD88 through the overexpression of miR-149-5p or UA treatment inhibited the activation of the Akt signaling pathway in 231/PTX cells. Thus, our data indicate that UA can reverse PTX resistance by targeting the miRNA-149-5p/MyD88 axis in breast cancer cells.
Collapse
Affiliation(s)
- Fenfen Xiang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Fan
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaoli Liu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaowei Zhu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbin Hao
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghong Yue
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang J, Sheng Z, Cai Y. Effects of microRNA-513b on cell proliferation, apoptosis, invasion, and migration by targeting HMGB3 through regulation of mTOR signaling pathway in non-small-cell lung cancer. J Cell Physiol 2019; 234:10934-10941. [PMID: 30623409 DOI: 10.1002/jcp.27921] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/24/2018] [Indexed: 01/17/2023]
Abstract
This study aimed to explore the underlying mechanism of miR-513b and HMGB3 in regulating non-small-cell lung cancer (NSCLC). NSCLC tumor, adjacent tissues, and cell lines were extracted, and the expression of miR-513b and HMGB3 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis. Then, miR-513b was overexpressed in NSCLC cell, and the proliferation, migration, invasion, and apoptosis of cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), wound healing, transwell, and flow cytometry, respectively. Regulatory relationship between miR-513b and HMGB3 was determined using luciferase activity reporter assay. Lastly, HMGB3 and/or miR-513b were overexpressed in NSCLC cells, and the proliferation, migration, invasion, and apoptosis of cells were determined. Compared with the controls, the expression of miR-513b was significantly downregulated in the NSCLC tissues and cells lines by RT-qPCR ( p < 0.05). However, the expression of HMGB3 was significantly downregulated at both messenger RNA and protein levels ( p < 0.05). Overexpression of miR-513b could significantly inhibit the proliferation, invasion, migration, and promote apoptosis of NSCLC cells ( p < 0.05). HMGB3 was a target of miR-513b, and overexpression of HMGB3 could obviously reverse the effect of miR-513 on the proliferation, invasion, migration, and apoptosis of NSCLC cells ( p < 0.05). The present results could suggest miR-513b was downregulated in NSCLC and could regulate the proliferation, invasion, migration, and apoptosis of NSCLC cells via HMGB3.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
A Novel lncRNA, LINC00460, Affects Cell Proliferation and Apoptosis by Regulating KLF2 and CUL4A Expression in Colorectal Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:684-697. [PMID: 30092404 PMCID: PMC6083012 DOI: 10.1016/j.omtn.2018.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Abstract
Emerging evidence has proven that long noncoding RNAs (lncRNAs) play important roles in human colorectal cancer (CRC) biology, although few lncRNAs have been characterized in CRC. Therefore, the functional significance of lncRNAs in the malignant progression of CRC still needs to be further explored. In this study, through analyzing TCGA RNA sequencing data and other publicly available microarray data, we found a novel lncRNA, LINC00460, whose expression was significantly upregulated in CRC tissues compared to adjacent normal tissues. Consistently, real-time qPCR results also verified that LINC00460 was overexpressed in CRC tissues and cells. Furthermore, high LINC00460 expression levels in CRC specimens were correlated with larger tumor size, advanced tumor stage, lymph node metastasis and shorter overall survival. In vitro and in vivo assays of LINC00460 alterations revealed a complex integrated phenotype affecting cell growth and apoptosis. Mechanistically, LINC00460 repressed Krüppel-like factor 2 (KLF2) transcription by binding to enhancer of zeste homolog 2 (EZH2). LINC00460 also functioned as a molecular sponge for miR-149-5p, antagonizing its ability to repress cullin 4A (CUL4A) protein translation. Taken together, our findings support a model in which the LINC00460/EZH2/KLF2 and LINC00460/miR-149-5p/CUL4A crosstalk serve as critical effectors in CRC tumorigenesis and progression, suggesting new therapeutic directions in CRC.
Collapse
|
12
|
MiR-29a: a potential therapeutic target and promising biomarker in tumors. Biosci Rep 2018; 38:BSR20171265. [PMID: 29217524 PMCID: PMC5803495 DOI: 10.1042/bsr20171265] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3'-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy.
Collapse
|
13
|
He Y, Yu D, Zhu L, Zhong S, Zhao J, Tang J. miR-149 in Human Cancer: A Systemic Review. J Cancer 2018; 9:375-388. [PMID: 29344284 PMCID: PMC5771345 DOI: 10.7150/jca.21044] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate post-transcriptional gene expression via binding to the 3'-untranslated region (3'-UTR) of targeted mRNAs. They are reported to play important roles in tumorigenesis and progression of various cancers. Among them, miR-149 was confirmed to be aberrantly regulated in various tumors. In this review, we provide a complex overview of miR-149, particularly summarize the critical roles of it in cancers and expect to lay the foundation for future works on this important microRNA.
Collapse
Affiliation(s)
- Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dandan Yu
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Lingping Zhu
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Jinhai Tang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China.,Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|