1
|
Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J Clin Med 2024; 13:1153. [PMID: 38398467 PMCID: PMC10889924 DOI: 10.3390/jcm13041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
2
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
3
|
Shahid A, Chen M, Yeung S, Parsa C, Orlando R, Huang Y. The medicinal mushroom Ganoderma lucidum prevents lung tumorigenesis induced by tobacco smoke carcinogens. Front Pharmacol 2023; 14:1244150. [PMID: 37745066 PMCID: PMC10516555 DOI: 10.3389/fphar.2023.1244150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Ganoderma lucidum (GL), commonly known as "Lingzhi", is a well-known medicinal mushroom with antioxidant and anti-cancer activity. This study examined the effects of a commercial GL product (GLSF) containing the spore and fruiting body in a 30:8 ratio on tobacco smoke carcinogen-induced lung toxicity and carcinogenesis. The potential chemopreventive effect of GLSF was evaluated in vitro and in vivo. The non-tumorous human bronchial epithelial cells (BEAS-2B cells) were treated with GLSF extract (0.025 and 0.05 mg/mL), which significantly blocked malignant transformation induced by benzo[a]pyrene diol epoxide (BPDE) in a dose-dependent manner. To confirm its anti-carcinogenic activity in vivo, the mice were pre-treated with GLSF (2.0 g/kg of body weight) or curcumin (100 mg/kg of body weight) by oral gavage daily for 7 days and then exposed to a single dose of benzo[a]pyrene (B[a]P) (125 mg/kg of body weight). The GLSF-treated mice showed a significant reduction in B[a]P-induced lung toxicity, as indicated by decreased lactate dehydrogenase activity, malondialdehyde levels, inflammatory cell infiltration, and improved lung histopathology. We next determined the chemopreventive activity of GLSF in mice which were exposed to two weekly doses of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 100 mg/kg, on the 1st and 8th days) and fed with control or a modified diet containing GLSF (2.0 g/kg) or metformin (250 mg/kg) for 33 weeks. The GLSF and metformin treatments blocked NNK-induced lung tumor development by decreasing the lung weight, tumor area, and tumor burden compared to the mice exposed to NNK only. GLSF treatment also attenuated the expression of inflammatory, angiogenic, and apoptotic markers in lung tumors. Therefore, GLSF may be used for ameliorating tobacco smoke carcinogens-induced lung toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Mengbing Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Cyrus Parsa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- Department of Pathology, Beverly Hospital, Montebello, CA, United States
| | - Robert Orlando
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- Department of Pathology, Beverly Hospital, Montebello, CA, United States
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
4
|
Zhao P, Guan M, Tang W, Walayat N, Ding Y, Liu J. Structural diversity, fermentation production, bioactivities and applications of triterpenoids from several common medicinal fungi: Recent advances and future perspectives. Fitoterapia 2023; 166:105470. [PMID: 36914012 DOI: 10.1016/j.fitote.2023.105470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
Medicinal fungi are beneficial to human health and it reduces the risk of chronic diseases. Triterpenoids are polycyclic compounds derived from the straight-chain hydrocarbon squalene, which are widely distributed in medicinal fungi. Triterpenoids from medicinal fungal sources possess diverse bioactive activities such as anti-cancer, immunomodulatory, anti-inflammatory, anti-obesity. This review article describes the structure, fermentation production, biological activities, and application of triterpenoids from the medicinal fungi including Ganoderma lucidum, Poria cocos, Antrodia camphorata, Inonotus obliquus, Phellinus linteus, Pleurotus ostreatus, and Laetiporus sulphureus. Besides, the research perspectives of triterpenoids from medicinal fungi are also proposed. This paper provides useful guidance and reference for further research on medicinal fungi triterpenoids.
Collapse
Affiliation(s)
- Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meizhu Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Ahmad MF, Wahab S, Ahmad FA, Ashraf SA, Abullais SS, Saad HH. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Luo H, Tan D, Peng B, Zhang S, Vong CT, Yang Z, Wang Y, Lin Z. The Pharmacological Rationales and Molecular Mechanisms of Ganoderma lucidum Polysaccharides for the Therapeutic Applications of Multiple Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:53-90. [PMID: 34963429 DOI: 10.1142/s0192415x22500033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a versatile Chinese herb, Ganoderma lucidum (Leyss. ex Fr.) Karst (G. lucidum) has been applied to treat multiple diseases in clinics and improve the quality of life of patients. Among all of its extracts, the main bioactive components are G. lucidum polysaccharides (GLPs), which possess many therapeutic effects, such as antitumor, immunoregulatory, anti-oxidant, antidiabetic, antibacterial, and antifungal effects and neuroprotection activities. This review briefly summarized the recent studies of the pharmacological rationales of GLPs and their underlying molecular signaling transmission mechanisms in treating diseases. Until now, the clear mechanisms of GLPs for treating diseases have not been reported. In this review, we used the keywords of "Ganoderma lucidum polysaccharides" and "tumor" to search in PubMed (years of 1992-2020), then screened and obtained 160 targets of antitumor activities in the literatures. The network pharmacology and mechanism framework were employed in this study as powerful approaches to systematically analyze the complicated potential antitumor mechanisms and targets of GLPs in cancer. We then found that there are 69 targets and 21 network pathways in "Pathways in cancer". Besides, we summarized the effects of GLPs and the models and methods used in the research of GLPs. In conclusion, GLPs have been studied extensively, but more in-depth research is still needed to determine the exact mechanisms and pathways. Therefore, this review might provide new insights into the vital targets and pathways for researchers to study the pharmacological mechanisms of GLPs for the treatment of diseases.
Collapse
Affiliation(s)
- Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zizhao Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P. R. China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhibin Lin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
7
|
Qiu WL, Hsu WH, Tsao SM, Tseng AJ, Lin ZH, Hua WJ, Yeh H, Lin TE, Chen CC, Chen LS, Lin TY. WSG, a Glucose-Rich Polysaccharide from Ganoderma lucidum, Combined with Cisplatin Potentiates Inhibition of Lung Cancer In Vitro and In Vivo. Polymers (Basel) 2021; 13:polym13244353. [PMID: 34960904 PMCID: PMC8705874 DOI: 10.3390/polym13244353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
Lung cancer has the highest global mortality rate of any cancer. Although targeted therapeutic drugs are commercially available, the common drug resistance and insensitivity to cisplatin-based chemotherapy, a common clinical treatment for lung cancer, have prompted active research on alternative lung cancer therapies and methods for mitigating cisplatin-related complications. In this study, we investigated the effect of WSG, a glucose-rich, water soluble polysaccharide derived from Ganoderma lucidum, on cisplatin-based treatment for lung cancer. Murine Lewis lung carcinoma (LLC1) cells were injected into C57BL/6 mice subcutaneously and through the tail vein. The combined administration of WSG and cisplatin effectively inhibited tumor growth and the formation of metastatic nodules in the lung tissue of the mice. Moreover, WSG increased the survival rate of mice receiving cisplatin. Co-treatment with WSG and cisplatin induced a synergistic inhibitory effect on the growth of lung cancer cells, enhancing the apoptotic responses mediated by cisplatin. WSG also reduced the cytotoxic effect of cisplatin in both macrophages and normal lung fibroblasts. Our findings suggest that WSG can increase the therapeutic effectiveness of cisplatin. In clinical settings, WSG may be used as an adjuvant or supplementary agent.
Collapse
Affiliation(s)
- Wei-Lun Qiu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- LO-Sheng Hospital Ministry of Health and Welfare, New Taipei 242, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ming Tsao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Tzu-En Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Chien-Chang Chen
- The General Education Center, Ming Chi University of Technology, New Taipei 243, Taiwan;
| | - Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (L.-S.C.); or (T.-Y.L.)
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (L.-S.C.); or (T.-Y.L.)
| |
Collapse
|
8
|
Abulizi A, Hu L, Ma A, Shao FY, Zhu HZ, Lin SM, Shao GY, Xu Y, Ran JH, Li J, Zhou H, Lin DM, Wang LF, Li M, Yang BX. Ganoderic acid alleviates chemotherapy-induced fatigue in mice bearing colon tumor. Acta Pharmacol Sin 2021; 42:1703-1713. [PMID: 33927358 PMCID: PMC8463583 DOI: 10.1038/s41401-021-00669-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ling Hu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Fang-Yu Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui-Ze Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Mei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Li
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lian-Fu Wang
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
9
|
Hassan HM, Mahran YF, Ghanim AMH. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways. J Pharm Pharmacol 2021; 73:1250-1261. [PMID: 33847358 DOI: 10.1093/jpp/rgab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus and it is considered as a principal cause for end-stage renal failure. Ganoderma lucidum (GL) has been studied for its reno-protective effect against different kidney injury models. The aim of our study is to investigate the mechanisms by which GL can improve kidney injury and consequent renal inflammation and fibrosis. METHODS GL either in a low dose (250 mg/kg, i.p.) or high dose (500 mg/kg, i.p.) was administered to DN rat model, and nephropathy indices were investigated. KEY FINDINGS GL treatment significantly down-regulated kidney injury molecule-1 (KIM-1) gene expression and inhibited TLR-4 (Toll-like receptor-4)/NFκB (nuclear factor kappa B) signalling pathway. As well, GL treatment significantly decreased the pro-inflammatory mediator; IL-1β (interleukin-1 beta) level and fibrosis-associated growth factors; FGF-23 (fibroblast growth factor-23) and TGFβ-1 (transforming growth factor beta-1) levels. In addition, GL remarkably inhibited (Bax) the pro-apoptotic protein and induced (Bcl-2) the anti-apoptotic protein expression in kidneys. Moreover, GL treatment significantly alleviates kidney injury indicated by correcting the deteriorated kidney function and improving oxidative stress status in DN rats. CONCLUSIONS GL significantly improved renal function indices through dose-dependent kidney function restoration, oxidative stress reduction, down-regulation of gene expression of KIM-1 and TLR4/NFκB signalling pathway blockage with subsequent alleviation of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Egypt
| | - Yasmen F Mahran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
10
|
Lin TY, Hua WJ, Yeh H, Tseng AJ. Functional proteomic analysis reveals that fungal immunomodulatory protein reduced expressions of heat shock proteins correlates to apoptosis in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153384. [PMID: 33113507 DOI: 10.1016/j.phymed.2020.153384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ling Zhi-8 (LZ-8) and GMI are two fungal immunomodulatory proteins (FIPs) with a similar structure and amino acid sequence and are respectively obtained from the medicinal mushroom Ganoderma lucidum and Ganoderma microsporum. They present the anti-cancer progression and metastasis. We previously demonstrated that LZ-8 reduces the tumor progression in lung cancer LLC1 cell-bearing mouse. However, it is unclear whether these FIPs induce changes in the protein expression profile in cancer cells and the mechanism for such a process is not defined. PURPOSE This study determines the changes in the proteomic profile for tumor lesions of LLC1 cell-bearing mouse received with LZ-8 and the potential mechanism for FIPs in anti-lung cancer cells. METHODS The proteomic profile of tumor lesions was determined using two-dimensional electrophoresis and a LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). The biological processes and the signaling pathway enrichment analysis were performed using Ingenuity Pathway Analysis (IPA). The differentially expressed proteins were verified by Western blot. Cell viability was determined by MTT assay. Cell morphology was characterized using electron microscopy. Migration was detected using the Transwell assay. The apoptotic response was determined using Western blot and flow cytometry. RESULTS Obtained results showed that 21 proteins in the tumor lesions exhibited differential (2-fold change, p < 0.05) expression between PBS and LZ-8 treatment groups. LZ-8-induced changes in the proteomic profile that may relate to protein degradation pathways. Specifically, three heat shock proteins (HSPs), HSP60, 70 and 90, were significantly downregulated in tumor lesions of LLC1-bearing mouse received with LZ-8. Both LZ-8 and GMI reduced the protein levels for these HSPs in lung cancer cells. Functional studies showed that they inhibited cell migration but effectively induced apoptotic response in LLC1 cells in vitro. In addition, the inhibitors of HSP60 and HSP70 effectively inhibited cell migration and decreased cell viability of LLC1 cells. CONCLUSIONS LZ-8 induced changes in the proteomic profile of tumor lesions which may regulate the HSPs-related cell viability. Moreover, inhibition of HSPs may be related to the anti-lung cancer activity.
Collapse
Affiliation(s)
- Tung-Yi Lin
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Ahmad MF. Ganoderma lucidum: A rational pharmacological approach to surmount cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113047. [PMID: 32504783 DOI: 10.1016/j.jep.2020.113047] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) has been broadly used for health endorsement as well as longevity for over 2000 years in Asian countries. It is an example of an ancient remedy and known as immortality mushroom. It has been employed as a health promoting agent owing to its broad pharmacological and therapeutical approaches. It has been confirmed that G. lucidum exhibits significant potency to prevent and treat different types of cancers such as breast, prostate, colon, lung and cervical. AIM OF THE STUDY To explore anticancer effects of various pharmacologically active compounds obtained from G. lucidum and their possible mechanism of action. MATERIALS AND METHODS A literature search was conducted using PubMed, Goggle Scholar, Saudi Digital Library and Cochrane Library until October 11, 2019. Search was made by using keywords such as anticancer evidence, mechanism of action, pharmacology, antioxidant, toxicity, chemotherapy, triterpenoids and polysaccharides of G. lucidum. RESULTS Various chemical compounds from G. lucidum exhibit anticancer properties mainly through diverse mechanism such as cytotoxic properties, host immunomodulators, metabolizing enzymes induction, prohibit the expression of urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) in cancer cells. Among the various compounds of G. lucidum triterpenoids and polysaccharides are under the major consideration of studies due to their several evidence of preclinical and clinical studies against cancer. CONCLUSION Natural alternatives associated with mild side effects are the basic human need of present therapy to eradicate the new emerging disorders. This review is an attempt to compile pharmacologically active compounds of G. lucidum those exhibit anti cancer effects either alone or along with chemotherapy and anticancer mechanisms against various cancer cells, clinical trials, chemotherapy induced toxicity challenges with limitations. It acts as a possible substitute to combat cancer growth with advance and conventional combination therapies as natural alternatives.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
12
|
Hassan HM, Al-Wahaibi LH, Elmorsy MA, Mahran YF. Suppression of Cisplatin-Induced Hepatic Injury in Rats Through Alarmin High-Mobility Group Box-1 Pathway by Ganoderma lucidum: Theoretical and Experimental Study. Drug Des Devel Ther 2020; 14:2335-2353. [PMID: 32606602 PMCID: PMC7296982 DOI: 10.2147/dddt.s249093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Drug-induced liver injury (DILI) is the most common cause of acute liver failure. The aim of this study was to investigate the molecular mechanisms by which Ganoderma lucidum mushroom (GLM) may ameliorate cisplatin (CP)-induced hepatotoxicity theoretically and experimentally. MATERIALS AND METHODS Thirty-six male Sprague-Dawley (SD) rats were divided into six groups, two of them are normal and Ganoderma lucidum control groups. Liver injury was induced by a single dose of CP (12 mg/kg i.p) in four groups, one of them is CP control group. Besides cisplatin injection in day 1, rats in groups (4-6) were subjected to GLM (500 mg/kg/day) either every other day or daily oral dose or via i.p injection for 10 consecutive days. RESULTS In this study, GLM supplementation caused significant reduction of elevated high-mobility group box-1 (HMGB-1) with a concurrent decline in TNF-α and upregulation of IL-10 compared to the CP group (P<0.05). The histopathological and fibrosis evaluation significantly confirmed the improvement upon simultaneous treatment with GLM. Moreover, immunohistochemical examination also confirmed the recovery following GLM treatment indicated by downregulation of NF-κB, p53 and caspase-3 along with upsurge of B-cell lymphoma 2 (Bcl-2) expression (P<0.05). GLM treatment significantly decreased serum levels of hepatic injury markers; ALT, AST, T. bilirubin as well as oxidative stress markers; MDA and H2O2 with a concomitant increase in hepatic GSH and SOD. Also, the performed docking simulation of ganoderic acid exhibited good fitting and binding with HMGB-1 through hydrogen bond formation with conservative amino acids which gives a strong evidence for its hepatoprotective effect and may interpret the effect of Ganoderma lucidum. CONCLUSION GLM attenuated hepatic injury through downregulation of HMGB-1/NF-kB and caspase-3 resulted in modulation of the induced oxidative stress and the subsequent cross-talk between the inflammatory and apoptotic cascade indicating its promising role in DILI.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Dakhliya, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, KSA, 11671, Saudi Arabia
| | - Mohammed A Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
13
|
Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY, Li M, Zhou H, Lin SQ, Ran JH, Yang BX. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 2020; 41:670-677. [PMID: 31804606 PMCID: PMC7468553 DOI: 10.1038/s41401-019-0324-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg-1 ·d-1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg-1 ·d-1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-β/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-β/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-β/Smad and MAPK signaling pathways were confirmed in TGF-β1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Qiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ying-Li Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Qian Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, 350002, China
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Hua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
14
|
Tang C, Zhao R, Ni H, Zhao K, He Y, Fang S, Chen Q. Molecule mechanisms of Ganoderma lucidum treated hepatocellular carcinoma based on the transcriptional profiles and miRNA-target network. Biomed Pharmacother 2020; 125:110028. [PMID: 32106374 DOI: 10.1016/j.biopha.2020.110028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Ganoderma lucidum has salutary effects on tumor treatment, including pancreatic cancer and hepatocellular carcinoma. However, the molecular mechanisms underlying Ganoderma lucidum therapy is obscure. In this study, the Hepa1-6-bearing C57 BL/6 mouse model was utilized to explore the therapeutic efficacy of Ganoderma lucidum extract (GLE), documenting that it could effectively inhibit tumor growth. The microRNA (miRNA) profiles of GLE-treated and untreated mice were detected, and 25 differentially expressed (DE) miRNAs were determined, including 24 up-expressed and one down-expressed miRNAs. Using the ClusterOne algorithm, 8 hub miRNAs were isolated from the established miRNA-target network. The qRT-PCR assay demonstrated that these 8 miRNAs were up-expressed in the GLE treated tumor mice. Furthermore, the mRNA profiles showed that there are 76 DE mRNAs between GLE treated and model groups. The protein-protein interaction (PPI) network shows that Cntn1, Irs1, Nfkbia, Rybp and Ywhaz playing important roles, and qRT-PCR further revealed they were down-expressed in GLE treated Hepa1-6-bearing C57 BL/6 mice. The rebuilt miRNA-target network was shown that these 5 mRNAs were regulated by mmu-mir-23a-5p, -3102-3p, -337-3p, and -467a-3p, respectively. This study suggested that these 4 interesting miRNAs were potential biomarkers for evaluation of GLE efficacy, which may down-regulate the expression of Cntn1, Irs1, Nfkbia, Rybp and Ywhaz, and mediate many signaling pathways occurring in tumor treatment.
Collapse
Affiliation(s)
- Chenchen Tang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruolin Zhao
- Department of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Hongmei Ni
- School of Basic Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kunpeng Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - YuMin He
- School of Basic Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengquan Fang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Wen H, Ge M, Yao D, Liu L. A simple method to identify undiagnosed drug-induced liver injury (DILI) and its application in oncology pharmacy practice. J Oncol Pharm Pract 2019; 26:1060-1069. [PMID: 31684820 DOI: 10.1177/1078155219880604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS To establish a simple method to identify chemotherapy-induced liver injury among oncological patients. To evaluate current clinical approach to elevated laboratory liver test results. METHODS A total of 289 patients admitted to oncology department who had systemic chemotherapy episodes for cancer treatment from 1 January 2017 to 31 December 2017 were identified. With aid of healthcare information system, Hy's law was applied to laboratory liver test results to identify potential hepatocellular drug-induced liver injury cases. Medical record review was carried out among identified patients to exclude liver dysfunction of alternative causes. Current clinical approach to elevated laboratory liver tests was evaluated through medical record review. RESULTS Of 289 patients who were treated by systemic chemotherapies, there were 123 patients with elevated laboratory liver tests, among which 8 patients were suspected as potential Hy's law cases. After medical record review, there were two patients determined with chemotherapy-associated liver injury, caused by 5-fluorouracil, leucovorin, irinotecan, and S-1 plus paclitaxel separately. Of eight potential Hy's law cases, seven (87.5%) patients were prescribed with ≥2 kinds of liver protectants and remained treated with traditional Chinese medicine for decoction. CONCLUSIONS A reliable and simple method to identify undiagnosed drug-induced liver injury was successfully established. An annual incidence of 0.69% of chemotherapy-associated liver injury in oncology department of the setting was found.
Collapse
Affiliation(s)
- Haini Wen
- Department of Clinical Pharmacy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maojun Ge
- Information Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Yao
- Information Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Department of Pharmacy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Zhang Y, Jiang Y, Zhang M, Zhang L. Ganoderma sinense polysaccharide: An adjunctive drug used for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:165-177. [PMID: 31030747 DOI: 10.1016/bs.pmbts.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ganoderma sinense is one of well-known herb medicine and has been used for 2000 years in China. G. lucidum and G. sinense are two family members of Ganoderma, a genus of polypore fungi. In Chinese, "Lingzhi" is designated as G. lucidum or red "Lingzhi" whereas "Zizhi" as G. sinense or purple "Lingzhi." The polysaccharides or glycans extracted from both G. lucidum and G. sinense have been developed into clinical drugs and recorded in Chinese Pharmacopeia. G. lucidum polysaccharide (GLPS) is one of a few non-hormonal drugs used for treating neurosis, polymyositis, dermatomyositis, atrophic myotonia and muscular dystrophy in China during the past 40 years. In contrast, G. sinense polysaccharide (GSP) tablet is approved as an adjunctive therapeutic drug in China for treating leukopenia and hematopoietic injury caused by concurrent chemo/radiation therapy during cancer treatment by the State Food and Drug Administration (SFDA) in 2010. β-glucan, an established immunostimulanting polysaccharide, is one of the components in GSP. In this study, we will review the biological activities and preclinical studies of GSP in China based on literatures searches from CNKI (China National Knowledge Infrastructure), VIP (Chongqing VIP Chinese Scientific Journals Database), Wanfang database, and PubMed database. Both basic and preclinical studies showed that GSP has antitumor, antioxidant, anticytopenia, and unique mushroom-poison detoxification properties that are different from that of GLPS. Our goal is to provide a molecular picture that would allow in-depth evaluation of GSP as one of few glycan-based drugs that has been used as an immunomodulatory adjunctive drug during cancer therapy.
Collapse
Affiliation(s)
- Yiran Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yifei Jiang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
Zhang QH, Hu QX, Xie D, Chang B, Miao HG, Wang YG, Liu DZ, Li XD. Ganoderma lucidum Exerts an Anticancer Effect on Human Osteosarcoma Cells via Suppressing the Wnt/β-Catenin Signaling Pathway. Integr Cancer Ther 2019; 18:1534735419890917. [PMID: 31855073 PMCID: PMC6923688 DOI: 10.1177/1534735419890917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Current treatment of osteosarcoma is limited in part by side effects and low tolerability, problems generally avoided with traditional Chinese medicine. Ganoderma lucidum, a traditional Chinese medicine with antitumor effects, offers a potential alternative, but little is known about its molecular mechanisms in osteosarcoma cells. Objective: To investigate the effect of G lucidum on osteosarcoma cells and its mechanism. Methods: Osteosarcoma MG63 and U2-OS cells were treated with G lucidum, followed by assays for cell proliferation (Cell Counting Kit-8), colony formation, and apoptosis (Alexa Fluor 647-Annexin V/propidium iodide, flow cytometry). Migration and invasion of cells were assessed by wound healing and Transwell invasion assays, and the effect of G lucidum on Wnt/β-catenin signal transduction was studied by real-time quantitative polymerase chain reaction, western blot, and dual-luciferase assay. Results:G lucidum inhibited the proliferation, migration, and invasion, and induced apoptosis of human osteosarcoma MG63 and U2-OS cells. Dual-luciferase assay showed that G lucidum suppressed the transcriptional activity of T-cell factor/lymphocyte enhancer factor in the Wnt/β-catenin signaling pathway. Moreover, G lucidum blocked Wnt/β-catenin signaling by inhibiting the Wnt co-receptor LRP5 and Wnt-related target genes, such as β-catenin, cyclin D1, C-Myc, MMP-2, and MMP-9. At the same time, when Wnt/β-catenin was inhibited, the expression of E-cadherin was upregulated. Conclusions: Our results suggest that G lucidum broadly suppresses osteosarcoma cell growth by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qi-Hao Zhang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qin-Xiao Hu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Da Xie
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Bo Chang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Hou-Guang Miao
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Yun-Guo Wang
- The Second Hospital of Tianjin Medical
University, Tianjin, People’s Republic of China
| | - De-Zhong Liu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| | - Xue-Dong Li
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| |
Collapse
|
18
|
Gill BS, Kumar S. Antioxidant potential of ganoderic acid in Notch-1 protein in neuroblastoma. Mol Cell Biochem 2018; 456:1-14. [PMID: 30511344 DOI: 10.1007/s11010-018-3485-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is a childhood tumor arising from developing a sympathetic nervous system and causes around 10% of pediatric tumors. Despite advancement in the use of sophisticated techniques in molecular biology, neuroblastoma patient's survivability rate is very less. Notch pathway is significant in upholding cell maintenance and developmental process of organs. Notch-1 proteins are a ligand-activated transmembrane receptor which decides the fate of the cell. Notch signaling leads to transcription of genes which indulged in numerous diseases including tumor progression. Ganoderic acid, a lanosterol triterpene, isolated from fungus Ganoderma lucidum with a wide range of medicinal values. In the present study, various isoforms of the ganoderic acid and natural inhibitors were docked by molecular docking using Maestro 9 in the Notch-1 signaling pathway. The receptor-based molecular docking exposed the best binding interaction of Notch-1 with ganoderic acid A with GScore (- 8.088), kcal/mol, Lipophilic EvdW (- 1.74), Electro (- 1.18), Glide emodel (- 89.944) with the active participation of Arg 189, Arg 199, Glu 232 residues. On the other hand natural inhibitor, curcumin has GScore (- 7.644), kcal/mol, Lipophilic EvdW (- 2.19), Electro (- 0.73), Glide emodel (- 70.957) with Arg 75 residues involved in docking. The ligand binding affinity of ganoderic acid A in Notch-1 is calculated using MM-GBSA (- 76.782), whereas curcumin has (- 72.815) kcal/mol. The QikProp analyzed the various drug-likeness parameters such as absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and isoforms of ganoderic acid require some modification to fall under Lipinski rule. The ganoderic acid A and curcumin were the best-docked among different compounds and exhibits downregulation in Notch-1 mRNA expression and inhibits proliferation, viability, and ROS activity in IMR-32 cells.
Collapse
Affiliation(s)
- Balraj Singh Gill
- Centre for Biosciences, Central University of Punjab, Bathinda, 151001, India.
- Department of Higher Education, Shimla, Himachal Pradesh, India.
| | - Sanjeev Kumar
- Centre for Plant Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
19
|
Lee MT, Lin WC, Lee TT. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:309-319. [PMID: 30381743 PMCID: PMC6409470 DOI: 10.5713/ajas.18.0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B (NF-κB) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated NF-κB inhibition.
Collapse
Affiliation(s)
- M T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
20
|
Gill BS, Mehra R, Navgeet, Kumar S. Vitex negundo and its medicinal value. Mol Biol Rep 2018; 45:2925-2934. [PMID: 30311123 DOI: 10.1007/s11033-018-4421-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
Natural products are rich in several potent bioactive compounds, targeting complex network of proteins involved in various diseases. Vitex negundo (VN), commonly known as "chaste tree", is an ethnobotanically important plant with enormous medicinal properties. Different species of Vitex vary in chemical composition, thus producing different phytochemicals. Several bioactive compounds have been extracted from leaves, seeds, roots in form of volatile oils, flavonoids, lignans, iridoids, terpenes, and steroids. These bioactive compounds exhibit anti-inflammatory, antioxidant, antidiabetic, anticancer, antimicrobial. VN is typically known for its role in the modulation of cellular events like apoptosis, cell cycle, motility of sperms, polycystic ovary disease, and menstrual cycle. VN, reportedly, perturbs many cancer-signaling pathways involving p-p38, p-ERK1/2, and p-JNK in LPS-elicited cells, N-terminal kinase (JNK), COX-1 pathways, MAPK, NF-κB, tumor necrosis factor α (TNF-α), Akt, mTOR, vascular endothelial growth factor, hypoxia-inducible factor (HIF-1α). Several bioactive compounds obtained from VN have been commercialized and others are under investigation. This is the first review presenting up-to-date information about the VN, its bioactive constituents and their mode of action.
Collapse
Affiliation(s)
- Balraj Singh Gill
- Department of Biosciences, Central University of Punjab, Bathinda, India.,Department of Higher Education Himachal Pradesh, Shimla, Himachal Pradesh, India
| | - Richa Mehra
- Department of Biosciences, Central University of Punjab, Bathinda, India
| | - Navgeet
- Department of Biotechnology, KMV College, Jalandhar, Punjab, India.
| | - Sanjeev Kumar
- Department of Plant Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
21
|
Wu K, Na K, Chen D, Wang Y, Pan H, Wang X. Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells. Int J Oncol 2018; 53:2356-2368. [PMID: 30272272 PMCID: PMC6203158 DOI: 10.3892/ijo.2018.4578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Ganoderma lucidum polysaccharides (GLP) has been demonstrated to elicit antitumorigenic and proapoptotic activities in cancer; however, the molecular mechanisms underlying the anticancer effects of GLP have yet to be elucidated. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) has been reported to exert proapoptotic effects and therefore, may serve an important role in cancer prevention. The present study aimed to elucidate the molecular mechanism by which GLP stimulates anticancer activity in human prostate cancer (PCa) PC-3 cells. In addition, the role of NAG-1 in GLP-induced cancer inhibition was examined. The results of the present study demonstrated that GLP significantly inhibited cell viability in a time- and dose-dependent manner in PC-3 cells. Flow cytometry indicated that GLP induced late apoptosis, which was accompanied by poly (ADP-ribose) polymerase 1 (PARP) cleavage, and inhibition of pro-caspase-3, -6 and -9 protein expression. Furthermore, it was observed that the expression levels of NAG-1, and its transcriptional factor early growth response-1, were upregulated in a time- and dose-dependent manner upon GLP treatment. The results of a luciferase assay demonstrated that GLP induced the promoter activity of NAG-1, thus indicating that NAG-1 may be transcriptionally regulated by GLP. The secretion of NAG-1 proteins into the cell culture medium was also upregulated upon GLP treatment. Furthermore, inhibition of NAG-1 expression by small interfering RNA significantly, but not completely, prevented GLP-induced apoptosis, and reversed the effects of GLP on PARP and pro-caspase expression. It was further demonstrated that GLP inhibited the phosphorylation of protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in PC-3 cells. The present study is the first, to the best of our knowledge, to report that GLP may induce apoptosis of PCa cells, which is partially mediated through NAG-1 induction. The present findings may be helpful in elucidating the anticancer mechanisms of GLP through NAG-1 induction for its chemopreventive potential in PCa.
Collapse
Affiliation(s)
- Kaikai Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Kun Na
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Dian Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yujie Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Haitao Pan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xingya Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
22
|
Yuen JWM, Mak DSY, Chan ES, Gohel MDI, Ng CF. Tumor inhibitory effects of intravesical Ganoderma lucidum instillation in the syngeneic orthotopic MB49/C57 bladder cancer mice model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:113-121. [PMID: 29783018 DOI: 10.1016/j.jep.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (GL) has been traditionally used in oriental medicine as superior health tonic, and there are numerous scientific evidences of its antitumorigenic activities. AIM OF THE STUDY To evaluate the intravesical chemopreventive effects of ethanol extract of GL (GLe) on bladder cancer. MATERIALS AND METHODS Intravesical therapy is defined as the direct instillation of a liquid drug into bladder through a catheter. Bacille Calmette-Guerin(BCG) solution is applied intravesically as a conventional immunotherapy for preventing recurrence of bladder cancer. By adopting the MB49/C57 bladder cancer mice model, an overall 60 MB49-implanted mice were randomized into 3 groups and treated according to 3 treatment arms, including GLe, BCG and PBS. Additionally, wild-type mice without MB49 cell inoculation and treated with PBS were used as the negative control group. Testing agents were instilled intravesically for 2 h and repeated after one week for evaluating the effects on preventing the tumor formation and growth. The treated-mice were closely monitored for major adverse effects. RESULTS GLe demonstrated more potent cytotoxic effects than BCG on MB49 cells, although both in dose-dependent manner. In the MB49-implanted mice, 80 µg/ml GLe was shown to delay the tumor formation by one week, whereas the averaged tumor volume measured at endpoint was 3.6-fold and 4.6-fold smaller than that of the BCG or PBS, respectively. However, no significant effects were observed on body weight and hematuria. CONCLUSION Current findings in mice suggested intravesical GLe therapy as an effective and safe chemopreventive strategy for inhibiting bladder tumor formation.
Collapse
Affiliation(s)
- J W M Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - D S Y Mak
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - E S Chan
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China.
| | - M D I Gohel
- School of Medical and Health Science, Tung Wah College, Homantin, Kowloon, Hong Kong, China.
| | - C F Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China.
| |
Collapse
|
23
|
Zheng L, Wong YS, Shao M, Huang S, Wang F, Chen J. Apoptosis induced by 9,11‑dehydroergosterol peroxide from Ganoderma Lucidum mycelium in human malignant melanoma cells is Mcl‑1 dependent. Mol Med Rep 2018; 18:938-944. [PMID: 29845223 PMCID: PMC6059726 DOI: 10.3892/mmr.2018.9035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
9,11-Dehydroergosterol peroxide [9(11)-DHEP] is an important steroid from medicinal mushroom, which has been reported to exert antitumor activity in several tumor types. However, the role of 9(11)-DHEP toward the malignant melanoma cells has not been investigated. In the present study, the steroid from Ganoderma lucidum was purified on a submerged culture, and its antitumor mechanisms on A375 human malignant melanoma cells was investigated by MTT, flow cytometry and western blotting. The studies demonstrated that apoptotic mechanisms of the steroid were caspase-dependent and mediated via the mitochondrial pathway. The steroid did not cause significant changes in the expression levels of B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2-like protein 11, p53 upregulated modulator of apoptosis, Bcl-2-associated X protein, BH3 interacting-domain death agonist, Bcl-2-associated death promoter and Bcl-2, but it significantly downregulated induced myeloid leukemia cell differentiation protein Mcl-1 (Mcl-1) in melanoma cells, suggesting the key role of Mcl-1 in regulating apoptosis of melanoma cells induced by the steroid. These properties of 9(11)-DHEP advocate its usage as supplements in human malignant melanoma chemoprevention. The present study also suggests that mycelium of G. lucidum has a potential for producing bioactive substances and extracts with applications in medicine.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yum-Shing Wong
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
24
|
Gill BS, Navgeet, Mehra R, Kumar V, Kumar S. Ganoderic acid, lanostanoid triterpene: a key player in apoptosis. Invest New Drugs 2017; 36:136-143. [DOI: 10.1007/s10637-017-0526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
|
25
|
Zhao X, Zhou D, Liu Y, Li C, Zhao X, Li Y, Li W. Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Mol Med Rep 2017; 17:147-157. [PMID: 29115463 PMCID: PMC5780085 DOI: 10.3892/mmr.2017.7904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the most common types of malignant tumor of men worldwide and the incidence and mortality rate is gradually increasing. At present, the molecular mechanisms of growth and migration in human prostate cancer have not been completely elucidated. Studies have demonstrated that Ganoderma lucidum polysaccharides (GLP) can inhibit cancer. Therefore the present study investigated the effect and molecular mechanism of GLP on cell growth and migration of LNCaP human prostate cancer cells. LNCaP cells were transfected with either a protein arginine methyltransferase 6 (PRMT6) overexpression plasmid or PRMT6 small interfering (si)RNA. The cell growth and migration, and the expression of PRMT6 signaling-associated proteins, were investigated following treatment with 5 and 20 µg/ml GLP. The results demonstrated that GLP inhibited cell growth, induced cell cycle arrest, decreased PRMT6, cyclin-dependent kinase 2 (CDK2), focal adhesion kinase (FAK) and steroid receptor coactivator, (SRC) expression, and increased p21 expression in LNCaP cells, as determined by using a Coulter counter, flow cytometry, and reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Furthermore, GLP significantly inhibited cell migration, as determined by Transwell migration and scratch assays, and altered CDK2, FAK, SRC and p21 expression in LNCaP cells transfected with the PRMT6 overexpression plasmid. By contrast, PRMT6 knockdown by siRNA reduced the effect of GLP on cell migration. These results indicate that GLP was effective in inhibiting cell growth, the cell cycle and cell migration, and the suppressive effect of GLP on cell migration may occur via the PRMT6 signaling pathway. Therefore, it is suggested that GLP may act as a tumor suppressor with applications in the treatment of prostate cancer. The results of the present study provide both the preliminary theoretical and experimental basis for the investigation of GLP as a therapeutic agent.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dayu Zhou
- Virology Laboratory, Microbiology Department, The Center of Jinzhou Disease Control and Prevention, Jinzhou, Liaoning 121000, P.R. China
| | - Yunen Liu
- Laboratory of Rescue Center of Severe Wound and Trauma PLA, Emergency Medicine Department, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, P.R. China
| | - Chun Li
- College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiaoguang Zhao
- Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ying Li
- Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wei Li
- Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|