1
|
Ullah MA, Moin AT, Nipa JF, Islam NN, Johora FT, Chowdhury RH, Islam S. Exploring risk factors and molecular targets in leukemia patients with COVID-19: a bioinformatics analysis of differential gene expression. J Leukoc Biol 2024; 115:723-737. [PMID: 38323674 DOI: 10.1093/jleuko/qiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Fatema Tuz Johora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chittagong Cantonment, Chattogram-4220, Bangladesh
| |
Collapse
|
2
|
Li Q, Zhao M, Hu DD, Qin JJ, He W. Evaluation of hsa_circ_0000018/let-7f-5p/ FAM96A axis in lung adenocarcinoma progression. Cancer Biomark 2024; 39:187-195. [PMID: 38043005 PMCID: PMC11191447 DOI: 10.3233/cbm-230111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are critical regulators of lung adenocarcinoma (LA) progression. Although a molecular marker targeting hsa_circ_0000018 has been developed and used for diagnosing colon cancer, the role of this circRNA in LA progression has not been explored till now. OBJECTIVES This study aimed to elucidate the role and regulatory mechanisms of hsa_circ_0000018 in LA progression. METHODS LA tissues and corresponding adjacent non-tumor tissues were collected from 36 patients to confirm the levels of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). We also cultured two LA cell lines (A549, PC-9), and the human normal lung epithelial cell line BEAS-2B. Cell function experiments were conducted to assess malignancy in LA cells, including proliferation, migration, and invasion, following forced hsa_circ_0000018 expression. The correlation between hsa_circ_0000018, let-7f-5p, and family with sequence similarity 96 member A (FAM96A) was confirmed by using starBase (miRNA-circRNA interaction database), luciferase assay, and western blotting. RESULTS Expression of hsa_circ_0000018 and FAM96A was reduced, whereas that of let-7f-5p was upregulated in LA. Cell function assays revealed that upregulation of hsa_circ_0000018 had a suppressive effect on the proliferation, migration, and invasion of LA cells. Additionally, hsa_circ_0000018 sponge binds let-7f-5p, resulting in upregulation of FAM96A expression. CONCLUSION Our data reveal hsa_circ_0000018 as a tumor suppressor in LA that targets the let-7f-5p/FAM96A axis. Our findings enrich the known regulatory network of circRNAs in LA.
Collapse
Affiliation(s)
- Qi Li
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhao
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Dan-Dan Hu
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Jiao Qin
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei He
- Department of Oncology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S, Ye Q. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov 2023; 9:114. [PMID: 37019900 PMCID: PMC10076263 DOI: 10.1038/s41420-023-01412-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators, including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its 3'-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yanni Lin
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Xinxin Ren
- The second hospital of Shanxi Medical University, Taiyuan, 030001, China
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Tian Xie
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Lin
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Shumeng Wu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China.
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
4
|
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord 2023; 24:267-282. [PMID: 36418657 PMCID: PMC9685014 DOI: 10.1007/s11154-022-09771-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
5
|
Bozgeyik I, Oguzkan Balci S. MicroRNAs regulating MTUS1 tumor suppressor gene. HUMAN GENE 2022; 33:201055. [DOI: 10.1016/j.humgen.2022.201055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Li G, Kong J, Dong S, Niu H, Wu S, Sun W. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation. Chin Med J (Engl) 2022; Publish Ahead of Print:00029330-990000000-00112. [PMID: 35941728 DOI: 10.1097/cm9.00000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous non-coding RNAs, some of which have pathological roles. The current study aimed to explore the role of circRNA BTG3-associated nuclear protein (circ-BANP) binding with let-7f-5p and its regulation of the toll-like receptor 4 (TLR4)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in residual hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). METHODS Circ-BANP, let-7f-5p, and TLR4 expressions in HCC samples were assessed using reverse transcription- quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Bioinformatics prediction, RNA pull-down assay, and dual luciferase reporter gene assay were used to analyze the relationships among circ-BANP, let-7f-5p, and TLR4. Huh7 cells were used to generate an in vitro model of residual HCC, defined as Huh7-H cells, which were transfected with either a plasmid or the sequence of circ-BANP, let-7f-5p, or TLR4. Expression of circ-BANP, let-7f-5p, and TLR4 mRNA was determined by RT-qPCR. TLR4, STAT3, p-STAT3, vascular endothelial growth factor A, vascular endothelial growth factor receptor-2, and epithelial-mesenchymal transformation (EMT)-related factors proteins were determined by Western blotting. Cell proliferation was determined by cell counting kit-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell migration and invasion by Transwell assay. Animal studies were performed by inducing xenograft tumors in nude mice. RESULTS Circ-BANP and TLR4 mRNAs were upregulated in HCC tissues (the fold change for circ-BANP was 1.958 and that for TLR4 was 1.736 relative to para-tumors) and expression further increased following insufficient RFA (fold change for circ- BANP was 2.407 and that of TLR4 was 2.224 relative to para-tumors). Expression of let-7f-5p showed an opposite tendency (fold change for let-7f-5p in HCC tissues was 0.491 and that in tumors after insufficient RFA was 0.300 relative to para-tumors). Competitive binding of circ-BANP to let-7f-5p was demonstrated and TLR4 was identified as a target of let-7f-5p (P < 0.01). Knockdown of circ-BANP or elevation of let-7f-5p expression inhibited the TLR4/STAT3 signaling pathway, proliferation, invasion, migration, angiogenesis, and EMT in Huh7 and Huh7-H cells (P < 0.01). The effects induced by circ-BANP knockdown were reversed by let-7f-5p inhibition. Overexpression of TLR4 reversed the impact of let-7f-5p upregulation on the cells (P < 0.01). Silencing of circ-BANP inhibited the in vivo growth of residual HCC cells after insufficient RFA (P < 0.01). CONCLUSIONS Knockdown of circ-BANP upregulated let-7f-5p to inhibit proliferation, migration, and EMT formation in residual HCC remaining after insufficient RFA. Effects occur via regulation of the TLR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoming Li
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
- The Second Department of General Surgery, Chaoyang Central Hospital, Chaoyang, Liaoning 122000, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Haigang Niu
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
7
|
Zafari V, Asadi M, Bakhtiyari N, Sadeghzadeh M, Khalili M, Zarredar H, Bornehdeli S, Seyedrezazadeh E. Regulatory Effect of let-7f Transfection in Non-Small Cell Lung Cancer on its Candidate Target Genes. IRANIAN BIOMEDICAL JOURNAL 2022; 26:209-218. [PMID: 35488374 PMCID: PMC9440686 DOI: 10.52547/ibj.26.3.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/02/2021] [Indexed: 07/29/2023]
Abstract
BACKGROUND Let-7f has essential impacts on biological processes; however, its biological and molecular functions in lung cancer pathogenesis have yet been remained unclear. We aimed to investigate the expression level of let-7f and its candidate target genes both in lung cancer tissues and A549 cell line. METHODS Bioinformatics databases were first used to select candidate target genes of let-7f. Then the relative gene and protein expressions of let-7f and its target genes, including HMGA2, ARID3B, SMARCAD1, and FZD3, were measured in lung tissues of NSCLC patients and A549 cell line using qRT-PCR and Western blotting. The electroporation method was used to transfect A549 cells with let-7f mimic and microRNA inhibitor. The impact of let-7f transfection on the viability of A549 cells was assessed using MTT assay. The expression data of studied genes were analyzed statistically. RESULTS Results indicated significant downregulated expression level of let-7f-5p (p = 0.0013) and upregulated level of the HMGA2 and FZD3 in NSCLC cases (p < 0.05). In A549 cells, after transfection with let-7f mimic, the expression of both mRNA and protein levels of HMGA2, ARID3B, SMARCAD1, and FZD3 decreased. Also, the overexpression of let-7f significantly inhibited the A549 cell proliferation and viability (p = 0.017). CONCLUSION Our findings exhibited the high value of let-7f and HMGA2 as biomarkers for NSCLC. The let-7f, as a major tumor suppressor regulatory factor via direct targeting genes (e.g. HMGA2), inhibits lung cancer cell viability and proliferation and could serve as a marker for the early diagnostic of NSCLC.
Collapse
Affiliation(s)
- Venus Zafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Nasim Bakhtiyari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Sadeghzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Bornehdeli
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Chen Q, Fu Q, Pu L, Liu X, Liu Y. Effects of HMGA2 gene silencing on cell cycle and apoptosis in the metastatic renal carcinoma cell line ACHN. J Int Med Res 2022; 50:3000605221075511. [PMID: 35118889 PMCID: PMC8819771 DOI: 10.1177/03000605221075511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the role of high mobility group AT-hook 2 (HMGA2) in the
regulation of the cell cycle and apoptosis. Methods The renal carcinoma cell line ACHN was transiently transfected with small
interfering RNA to knock down the expression of the HMGA2
gene. Cell cycle analysis was undertaken using flow cytometry. The mRNA and
protein levels of HMGA2, E2F transcription factor 1 (E2F1), cyclin D1,
cyclin dependent kinase 6 (CDK6), B-cell lymphoma-2 (Bcl-2), caspase-3 and
caspase-9 were analysed using reverse transcription quantitative real-time
polymerase chain reaction and Western blot analysis. Results The mRNA and protein levels of HMGA2 were significantly higher in renal
carcinoma cell lines compared with the human renal proximal tubular
epithelial cell line HKC. After HMGA2 gene-specific
silencing, more cells entered the G0/G1 phase, while
fewer cells entered the G2/M phase; and the cells exhibited early
and late apoptosis. HMGA2 gene-specific silencing
significantly reduced the mRNA and protein levels of E2F1, cyclin D1, CDK6
and Bcl-2; and increased the mRNA and protein levels of caspase-3 and
caspase-9. Conclusion The HMGA2 gene may be involved in the tumorigenesis and
development of renal cancer, thus inhibiting HMGA2 gene
expression might provide a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Ying Liu, Department of Urology Surgery,
The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street,
Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
9
|
Li G, Kong J, Dong S, Niu H, Wu S, Sun W. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation. Chin Med J (Engl) 2022; 135:00029330-900000000-98220. [PMID: 34985013 PMCID: PMC9532039 DOI: 10.1097/cm9.0000000000001822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous non-coding RNAs, some of which have pathological roles. The current study aimed to explore the role of circRNA BTG3-associated nuclear protein (circ-BANP) binding with let-7f-5p and its regulation of the toll-like receptor 4 (TLR4)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in residual hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). METHODS Circ-BANP, let-7f-5p, and TLR4 expressions in HCC samples were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Bioinformatics prediction, RNA pull-down assay, and dual luciferase reporter gene assay were used to analyze the relationships among circ-BANP, let-7f-5p, and TLR4. Huh7 cells were used to generate an in vitro model of residual HCC, defined as Huh7-H cells, which were transfected with either a plasmid or the sequence of circ-BANP, let-7f-5p, or TLR4. Expression of circ-BANP, let-7f-5p, and TLR4 mRNA was determined by RT-qPCR. TLR4, STAT3, p-STAT3, vascular endothelial growth factor A, vascular endothelial growth factor receptor-2, and epithelial-mesenchymal transformation (EMT)-related factors proteins were determined by Western blotting. Cell proliferation was determined by cell counting kit-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell migration and invasion by Transwell assay. Animal studies were performed by inducing xenograft tumors in nude mice. RESULTS Circ-BANP and TLR4 mRNAs were upregulated in HCC tissues (the fold change for circ-BANP was 1.958 and that for TLR4 was 1.736 relative to para-tumors) and expression further increased following insufficient RFA (fold change for circ-BANP was 2.407 and that of TLR4 was 2.224 relative to para-tumors). Expression of let-7f-5p showed an opposite tendency (fold change for let-7f-5p in HCC tissues was 0.491 and that in tumors after insufficient RFA was 0.300 relative to para-tumors). Competitive binding of circ-BANP to let-7f-5p was demonstrated and TLR4 was identified as a target of let-7f-5p (P < 0.01). Knockdown of circ-BANP or elevation of let-7f-5p expression inhibited the TLR4/STAT3 signaling pathway, proliferation, invasion, migration, angiogenesis, and EMT in Huh7 and Huh7-H cells (P < 0.01). The effects induced by circ-BANP knockdown were reversed by let-7f-5p inhibition. Overexpression of TLR4 reversed the impact of let-7f-5p upregulation on the cells (P < 0.01). Silencing of circ-BANP inhibited the in vivo growth of residual HCC cells after insufficient RFA (P < 0.01). CONCLUSIONS Knockdown of circ-BANP upregulated let-7f-5p to inhibit proliferation, migration, and EMT formation in residual HCC remaining after insufficient RFA. Effects occur via regulation of the TLR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoming Li
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
- The Second Department of General Surgery, Chaoyang Central Hospital, Chaoyang, Liaoning 122000, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Haigang Niu
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
10
|
Zhao Z, Wu C, He X, Zhao E, Hu S, Han Y, Wang T, Chen Y, Liu T, Huang S. MicroRNA let-7f alleviates vascular endothelial cell dysfunction via targeting HMGA2 under oxygen-glucose deprivation and reoxygenation. Brain Res 2021; 1772:147662. [PMID: 34529965 DOI: 10.1016/j.brainres.2021.147662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
Stroke is a fatal disease with high disability and mortality and there is no credible treatment for stroke at present. Studies on stroke are extensively developed to explore the underlying mechanisms of ischemic and reperfusion injuries. Herein, we investigated the functions of microRNA let-7f (also termed let-7f-5p) in vascular endothelial cell dysfunction. The bEnd.3 cells were stimulated with oxygen-glucose deprivation and reoxygenation (OGD/R) to mimic cell injury in vitro. CCK-8 assays, flow cytometry and western blot analyses were conducted to examine the viability and apoptosis of bEnd.3 cells. Reverse transcription quantitative polymerase chain reaction analyses were employed to measure RNA expression. Endothelial cell permeability in vitro assay was employed to assess endothelial permeability of bEnd.3 cells, and expression levels of proteins associated with cell apoptosis or blood-brain barrier (BBB) were detected by western blot analyses. Luciferase reporter assay was conducted to explore the combination between let-7f and HMGA2. We found that OGD/R induced injuries on endothelial cells (bEnd.3) by decreasing cell viability and promoting cell apoptosis. Let-7f exhibited low expression in bEnd.3 cells under OGD/R. Let-7f overexpression increased the viability of bEnd.3 cells and inhibited cell apoptosis. In addition, the endothelial permeability of bEnd.3 cells was increased by OGD/R and reversed by let-7f overexpression. The levels of tight junction proteins (ZO-1 and occludin) were downregulated by OGD/R and then reversed by let-7f overexpression. Mechanistically, HMGA2 is a target gene of let-7f and its expression was negatively regulated by let-7f. Rescue assays revealed that HMGA2 overexpression reversed the effects of let-7f overexpression on cell viability, cell apoptosis, endothelial permeability, and BBB function. In conclusion, let-7f alleviates vascular endothelial cell dysfunction by downregulating HMGA2 expression under OGD/R.
Collapse
Affiliation(s)
- Zhongyan Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Chanji Wu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Xiangying He
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Eryi Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Yeguang Han
- Department of Central Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Ting Wang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Yanquan Chen
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China.
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China.
| |
Collapse
|
11
|
Yang Y, Liu Y, Xie N, Shao L, Sun H, Wei Y, Sun Y, Wang P, Yan Y, Xie S, Li Y. Anticancer roles of let-7f-1-3p in non-small cell lung cancer via direct targeting of integrin β1. Exp Ther Med 2021; 22:1305. [PMID: 34630660 PMCID: PMC8461611 DOI: 10.3892/etm.2021.10740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is one of the most common types of cancer, with the highest mortality rate worldwide. MicroRNAs play notable roles in the chemotherapeutic effects of anticancer drugs. The present study used reverse transcription-quantitative PCR, western blotting and cell migration and invasion assays to reveal the role of let-7f-1-3p in non-small cell lung cancer (NSCLC) and explore the effect of let-7f-1-3p on doxorubicin (DOX) treatment. It was demonstrated that the levels of let-7f-1-3p in carcinoma tissues were lower compared with those in paracarcinoma tissues. Thus, let-7f-1-3p may act as a suppressor gene. The present study also explored the role of let-7f-1-3p in A549 and NCI-H1975 cells. Results revealed that let-7f-1-3p could inhibit the viability, migration and invasion of NSCLC cells and induce their apoptosis. Integrin β1 acted as a target gene regulated by let-7f-1-3p. This suggested that let-7f-1-3p could enhance DOX-inhibited cell viability, migration and invasion in vitro. Overall, the present study demonstrated that let-7f-1-3p may act as a target for drug design and lung cancer therapy.
Collapse
Affiliation(s)
- Yanan Yang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuanrong Liu
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ning Xie
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Liying Shao
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hang Sun
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yubo Wei
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yunfei Yan
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
12
|
Huang Y, Liu Y, Huang J, Gao L, Wu Z, Wang L, Fan L. Let‑7b‑5p promotes cell apoptosis in Parkinson's disease by targeting HMGA2. Mol Med Rep 2021; 24:820. [PMID: 34558637 PMCID: PMC8485123 DOI: 10.3892/mmr.2021.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD), a common multifactorial neurodegenerative disease, is characterized by irreversible loss of dopaminergic neurons in the substantia nigra. In-depth study of the pathogenesis of PD is of great importance. High-mobility group AT-hook 2 (HMGA2) has been proposed to be implicated with neuronal differentiation and impairment of cognitive function. However, whether HMGA2 plays a role in PD is rarely explored. In the present study, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice models and N-methyl-4- phenylpyridinium (MPP+)-treated SH-SY5Y cell models were established. Reverse transcription-quantitative PCR showed that HMGA2 displayed low levels in brain tissues of MPTP-treated mice and MPP+-treated SH-SY5Y cells. Moreover, HMGA2 overexpression suppressed SH-SY5Y cell apoptosis. Additionally, let-7b-5p bound with HMGA2 3′ untranslated region (UTR), and its expression was negatively correlated with HMGA2 level. Moreover, let-7b-5p presented high levels in brain tissues of PD mice and MPP+-treated SH-SY5Y cells, and knockdown of let-7b-5p inhibited SH-SY5Y cell apoptosis. Rescue assays illustrated that HMGA2 neutralized the promotive effects of let-7b-5p mimics on SH-SY5Y cell apoptosis. In conclusion, the present study demonstrated that let-7b-5p contributes to cell apoptosis in PD by targeting HMGA2, which offers a potential theoretical basis for the study of effective therapy in PD.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Ying Liu
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Huang
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lu Gao
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Zhenggang Wu
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lu Wang
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lin Fan
- Department of Neurology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
13
|
MiR-222-3p induced by hepatitis B virus promotes the proliferation and inhibits apoptosis in hepatocellular carcinoma by upregulating THBS1. Hum Cell 2021; 34:1788-1799. [PMID: 34273068 DOI: 10.1007/s13577-021-00577-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the role of miR-222-3p in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). MiR-222-3p expression in tumor tissues of HBV (+) or HBV (-) HCC patients and corresponding cell lines was detected by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis was evaluated by flow cytometry. The potential targets of miR-222-3p were predicted by Targetscan, and the binding relationship between miR-222-3p and thrombospondin-1 (THBS1) was determined by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-222-3p was significantly upregulated in HCC tissues and cell lines and further elevated by HBV infection. MiR-222-3p downregulation effectively inhibited the proliferation and induced the apoptosis of HBV (-) HepG2 cells, HBV (+) HepG2.2.15 cells, Huh7-V cells, and Huh7-HBV cells. In addition, miR-222-3p overexpression enhanced the proliferation of these cell lines but exhibited no obvious effect on their apoptosis. Mechanistically, miR-222-3p was directly bound to the 3'-UTR of THBS1 and acted as its competing endogenous RNA (ceRNA). Interestingly, THBS1 silencing attenuated the inhibitory effect of miR-222-3p downregulation on the proliferation of these cell lines in vitro. Our results revealed that HBV infection further increased miR-222-3p expression and promoted HCC progression via miR-222-3p-mediated THBS1 downregulation. Our findings suggest that miR-222-3p might be a potential diagnostic and therapeutic target for HCC and HBV-related HCC.
Collapse
|
14
|
Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage 'foam' cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159005. [PMID: 34274506 DOI: 10.1016/j.bbalip.2021.159005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Accumulation of excess cholesterol and cholesteryl ester in macrophage 'foam' cells within the arterial intima characterises early 'fatty streak' atherosclerotic lesions, and is accompanied by epigenetic changes, including altered expression of microRNA sequences which determine of gene and protein expression. This study established that exposure to lipoproteins, including acetylated LDL, induced macrophage expression of microRNA hsa-let-7d-5p, a sequence previously linked with tumour suppression, and repressed expression of one of its target genes, high mobility group AT hook 2 (HMGA2). A let-7d-5p mimic repressed expression of HMGA2 (18%; p < 0.05) while a marked increase (2.9-fold; p < 0.05) in expression of HMGA2 was noted in the presence of let-7d-5p inhibitor. Under these conditions, let-7d-5p mimic significantly (p < 0.05) decreased total (10%), free (8%) and cholesteryl ester (21%) mass, while the inhibitor significantly (p < 0.05) increased total (29%) and free cholesterol (29%) mass, compared with the relevant controls. Let-7d-5p inhibition significantly (p < 0.05) increased endogenous biosynthesis of cholesterol (38%) and cholesteryl ester (39%) pools in macrophage 'foam' cells, without altering the cholesterol efflux pathway, or esterification of exogenous radiolabelled oleate. Let-7d-5p inhibition in sterol-loaded cells increased the level of HMGA2 protein (32%; p < 0.05), while SiRNA knockdown of this protein (29%; p < 0.05) resulted in a (21%, p < 0.05) reduction in free cholesterol mass. Thus, induction of let-7d-5p, and repression of its target HMGA2, in macrophages is a protective response to the challenge of increased cholesterol influx into these cells; dysregulation of this response may contribute to atherosclerosis and other disorders such as cancer.
Collapse
|
15
|
Shee K, Seigne JD, Karagas MR, Marsit CJ, Hinds JW, Schned AR, Pettus JR, Armstrong DA, Miller TW, Andrew AS. Identification of Let-7f-5p as a novel biomarker of recurrence in non-muscle invasive bladder cancer. Cancer Biomark 2021; 29:101-110. [PMID: 32623385 DOI: 10.3233/cbm-191322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Among patients diagnosed with non-muscle invasive bladder cancer (NMIBC), 30% to 70% experience recurrences within 6 to 12 years of diagnosis. The need to screen for these events every 3 to 6 months and ultimately annually by cystoscopy makes bladder cancer one of the most expensive malignancies to manage. OBJECTIVE The purpose of this study was to identify reproducible prognostic microRNAs in resected non-muscle invasive bladder tumor tissue that are predictive of the recurrent tumor phenotype as potential biomarkers and molecular therapeutic targets. METHODS Two independent cohorts of NMIBC patients were analyzed using a biomarker discovery and validation approach, respectively. RESULTS miRNA Let-7f-5p showed the strongest association with recurrence across both cohorts. Let-7f-5p levels in urine and plasma were both found to be significantly correlated with levels in tumor tissue. We assessed the therapeutic potential of targeting Lin28, a negative regulator of Let-7f-5p, with small-molecule inhibitor C1632. Lin28 inhibition significantly increased levels of Let-7f-5p expression and led to significant inhibition of viability and migration of HTB-2 cells. CONCLUSIONS We have identified Let-7f-5p as a miRNA biomarker of recurrence in NMIBC tumors. We further demonstrate that targeting Lin28, a negative regulator of Let-7f-5p, represents a novel potential therapeutic opportunity in NMIBC.
Collapse
Affiliation(s)
- Kevin Shee
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John D Seigne
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Environmental Health and of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John W Hinds
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alan R Schned
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jason R Pettus
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David A Armstrong
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Angeline S Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
16
|
Volante M, Mete O, Pelosi G, Roden AC, Speel EJM, Uccella S. Molecular Pathology of Well-Differentiated Pulmonary and Thymic Neuroendocrine Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:154-168. [PMID: 33641055 PMCID: PMC7960615 DOI: 10.1007/s12022-021-09668-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Thoracic (pulmonary and thymic) neuroendocrine tumors are well-differentiated epithelial neuroendocrine neoplasms that are classified into typical and atypical carcinoid tumors based on mitotic index cut offs and presence or absence of necrosis. This classification scheme is of great prognostic value but designed for surgical specimens, only. Deep molecular characterization of thoracic neuroendocrine tumors highlighted their difference with neuroendocrine carcinomas. Neuroendocrine tumors of the lung are characterized by a low mutational burden, and a high prevalence of mutations in chromatin remodeling and histone modification-related genes, whereas mutations in genes frequently altered in neuroendocrine carcinomas are rare. Molecular profiling divided thymic neuroendocrine tumors into three clusters with distinct clinical outcomes and characterized by a different average of copy number instability. Moreover, integrated histopathological, molecular and clinical evidence supports the existence of a grey zone category between neuroendocrine tumors (carcinoid tumors) and neuroendocrine carcinomas. Indeed, cases with well differentiated morphology but mitotic/Ki-67 indexes close to neuroendocrine carcinomas have been increasingly recognized. These are characterized by specific molecular profiles and have an aggressive clinical behavior. Finally, thoracic neuroendocrine tumors may arise in the background of genetic susceptibility, being MEN1 syndrome the well-defined familial form. However, pathologists should be aware of rarer germline variants that are associated with the concurrence of neuroendocrine tumors of the lung or their precursors (such as DIPNECH) with other neoplasms, including but not limited to breast carcinomas. Therefore, genetic counseling for all young patients with thoracic neuroendocrine neoplasia and/or any patient with pathological evidence of neuroendocrine cell hyperplasia-to-neoplasia progression sequence or multifocal disease should be considered.
Collapse
Affiliation(s)
- Marco Volante
- Department of Oncology, University of Turin, Turin, Italy.
| | - Ozgur Mete
- Departments of Pathology, University Healthy Network and University of Toronto, Toronto, Canada
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Silvia Uccella
- Dept. of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Consales C, Butera A, Merla C, Pasquali E, Lopresto V, Pinto R, Pierdomenico M, Mancuso M, Marino C, Benassi B. Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures. Mol Neurobiol 2020; 58:1634-1649. [PMID: 33230715 PMCID: PMC7932966 DOI: 10.1007/s12035-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
We here characterize the response to the extremely low-frequency (ELF) magnetic field (MF, 50 Hz, 1 mT) of SH-SY5Y human neuroblastoma cells, cultured in a three-dimensional (3D) Alvetex® scaffold compared to conventional two-dimensional (2D) monolayers. We proved that the growing phenotype of proliferating SH-SY5Y cells is not affected by the culturing conditions, as morphology, cell cycle distribution, proliferation/differentiation gene expression of 3D-cultures overlap what reported in 2D plates. In response to 72-h exposure to 50-Hz MF, we demonstrated that no proliferation change and apoptosis activation occur in both 2D and 3D cultures. Consistently, no modulation of Ki67, MYCN, CCDN1, and Nestin, of invasiveness and neo-angiogenesis-controlling genes (HIF-1α, VEGF, and PDGF) and of microRNA epigenetic signature (miR-21-5p, miR-222-3p and miR-133b) is driven by ELF exposure. Conversely, intracellular glutathione content and SOD1 expression are exclusively impaired in 3D-culture cells in response to the MF, whereas no change of such redox modulators is observed in SH-SY5Y cells if grown on 2D monolayers. Moreover, ELF-MF synergizes with the differentiating agents to stimulate neuroblastoma differentiation into a dopaminergic (DA) phenotype in the 3D-scaffold culture only, as growth arrest and induction of p21, TH, DAT, and GAP43 are reported in ELF-exposed SH-SY5Y cells exclusively if grown on 3D scaffolds. As overall, our findings prove that 3D culture is a more reliable experimental model for studying SH-SY5Y response to ELF-MF if compared to 2D conventional monolayer, and put the bases for promoting 3D systems in future studies addressing the interaction between electromagnetic fields and biological systems.
Collapse
Affiliation(s)
- Claudia Consales
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Alessio Butera
- Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Emanuela Pasquali
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Vanni Lopresto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Rosanna Pinto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Maria Pierdomenico
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
18
|
Singh KP, Maremanda KP, Li D, Rahman I. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers. BMC Med Genomics 2020; 13:128. [PMID: 32912198 PMCID: PMC7488025 DOI: 10.1186/s12920-020-00748-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Electronic cigarettes (e-cigs) vaping, cigarette smoke, and waterpipe tobacco smoking are associated with various cardiopulmonary diseases. microRNAs are present in higher concentration in exosomes that play an important role in various physiological and pathological functions. We hypothesized that the non-coding RNAs transcript may serve as susceptibility to disease biomarkers by smoking and vaping. METHODS Plasma exosomes/EVs from cigarette smokers, waterpipe smokers and dual smokers (cigarette and waterpipe) were characterized for their size, morphology and TEM, Nanosight and immunoblot analysis. Exosomal RNA was used for small RNA library preparation and the library was quantified using the High Sensitivity DNA Analysis on the Agilent 2100 Bioanalyzer system and sequenced using the Illumina NextSeq 500 and were converted to fastq format for mapping genes. RESULTS Enrichment of various non-coding RNAs that include microRNAs, tRNAs, piRNAs, snoRNAs, snRNAs, Mt-tRNAs, and other biotypes are shown in exosomes. A comprehensive differential expression analysis of miRNAs, tRNAs and piRNAs showed significant changes across different pairwise comparisons. The seven microRNAs that were common and differentially expressed of when all the smoking and vaping groups were compared with non-smokers (NS) are hsa-let-7a-5p, hsa-miR-21-5p, hsa-miR-29b-3p, hsa-let-7f-5p, hsa-miR-143-3p, hsa-miR-30a-5p and hsa-let-7i-5p. The e-cig vs. NS group has differentially expressed 5 microRNAs (hsa-miR-224-5p, hsa-miR-193b-3p, hsa-miR-30e-5p, hsa-miR-423-3p, hsa-miR-365a-3p, and hsa-miR-365b-3p), which are not expressed in other three groups. Gene set enrichment analysis of microRNAs showed significant changes in the top six enriched functions that consisted of biological pathway, biological process, molecular function, cellular component, site of expression and transcription factor in all the groups. Further, the pairwise comparison of tRNAs and piRNA in all these groups revealed significant changes in their expressions. CONCLUSIONS Plasma exosomes of cigarette smokers, waterpipe smokers, e-cig users and dual smokers have common differential expression of microRNAs which may serve to distinguish smoking and vaping subjects from NS. Among them has-let-7a-5p has high sensitivity and specificity to distinguish NS with the rest of the users, using ROC curve analysis. These findings will pave the way for the utilizing the potential of exosomes/miRNAs as a novel theranostic agents in lung injury and disease caused by tobacco smoking and vaping.
Collapse
Affiliation(s)
- Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Krishna P Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Ge Y, Wang Q, Shao W, Zhao Y, Shi Q, Yuan Q, Cui L. Circulating let-7f-5p improve risk prediction of prostate cancer in patients with benign prostatic hyperplasia. J Cancer 2020; 11:4542-4549. [PMID: 32489471 PMCID: PMC7255360 DOI: 10.7150/jca.45077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Although the prostate-specific antigen (PSA) testing was widely used for early detection of prostate cancer (PCa), it is difficult for PSA to distinguish the PCa from benign prostatic hyperplasia (BPH) patients. Emerging evidence has shown that microRNA (miRNA) was a promising biomarker for PCa screening. Methods: We applied miRNA profiling from microarray or high-throughput sequencing in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to identify the differentially expressed miRNAs in PCa patients (n = 1,017) and controls (n = 413). Then, qRT-PCR analysis was used to validate the expression of candidate miRNAs in our independent cohort, include 66 PCa cases and 63 BPH patients diagnosed by biopsy. The area under the receiver operating characteristic curve (AUC) was conducted to evaluate the diagnostic efficacy of miRNAs and PSA. Results: In the microarray analysis, we identified two consistently differently expressed miRNAs (miR-103a-3p and let-7f-5p) between PCa patients and controls. In the subsequent qRT-PCR analysis, the let-7f-5p was upregulated in PCa compared with BPH patients (P=2.17E-07), but no statistically difference of miR-103a-3p expression was observed (P=0.456). The AUC was 0.904 for combination of lef-7f-5p and PSA, which was significantly higher than that of let-7f-5p (0.782) or PSA (0.795) alone (P=7.55E-04 and P=2.09E-03, respectively). Besides, the results of decision curve analysis and nomogram prediction indicated that combination of let-7f-5p and PSA had superior predictive accuracy of PCa. Conclusions: Our study suggests that plasma let-7f-5p combining PSA could serve as potentially diagnostic biomarkers for PCa.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qiangdong Wang
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, Huaiyin People's Hospital of Huai'an City, Huai'an, China
| | - Wei Shao
- Department of Science and Technology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qinbo Yuan
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, Huaiyin People's Hospital of Huai'an City, Huai'an, China
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
20
|
Liu C, Zhang Y, Liang S, Ying Y. Aldehyde dehydrogenase 1, a target of miR-222, is expressed at elevated levels in cervical cancer. Exp Ther Med 2020; 19:1673-1680. [PMID: 32104219 PMCID: PMC7027150 DOI: 10.3892/etm.2020.8425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the expression of microRNA-222 (miR-222) and aldehyde dehydrogenase 1 (ALDH1) in tissues and peripheral blood of cervical cancer patients, and to elucidate their underlying mechanisms of action. Tumor tissues and tumor-adjacent tissues were obtained from 33 cervical cancer patients and peripheral blood was obtained from these patients and 28 healthy subjects. The expression of miR-222 and ALDH1 mRNA was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To examine the levels of ALDH1 protein in tissues and blood, western blotting and ELISA were used. To confirm a direct interaction between miR-222 and ALDH1 mRNA, a dual luciferase reporter assay was performed. HeLA cells were transfected with agomiR-222 and expression of ALDH1 in the cells was measured by RT-qPCR and western blotting. MTT assay was preform to investigate the proliferation of HeLA cells. Expression of ALDH1 mRNA and protein was elevated in cervical cancer tissues and peripheral blood from patients compared with tumor-adjacent tissues and healthy controls, while the expression of miR-222 was reduced. Upregulation of miR-222 inhibited HeLA cell proliferation possibly due to a reduction in the expression of ALDH1. A dual luciferase reporter assay showed that miR-222 can bind with the 3′-untranslated seed region of ALDH1 mRNA to regulate its expression. miR-222 regulation of ALDH1 expression may play a role in the prevention of cervical cancer.
Collapse
Affiliation(s)
- Changde Liu
- Clinical Laboratory, The Hui People Hospital of Beijing, Beijing 100054, P.R. China
| | - Yan Zhang
- Clinical Laboratory, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| | - Shanghua Liang
- Department of Pathology, Beijing Dian Medical Testing Laboratory Co., Beijing 102609, P.R. China
| | - Yuhua Ying
- Department of Gynaecology, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Belaya Z, Khandaeva P, Nonn L, Nikitin A, Solodovnikov A, Sitkin I, Grigoriev A, Pikunov M, Lapshina A, Rozhinskaya L, Melnichenko G, Dedov I. Circulating Plasma microRNA to Differentiate Cushing's Disease From Ectopic ACTH Syndrome. Front Endocrinol (Lausanne) 2020; 11:331. [PMID: 32582027 PMCID: PMC7291947 DOI: 10.3389/fendo.2020.00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Corticotropinomas and adrenocorticotropic hormone (ACTH)-secreting neuroendocrine tumors exhibit differential levels of some microRNAs (miRs) compared to normal tissue. Because miRs can be released from tissues into circulation, they offer promise as novel disease biomarkers. Objective: To evaluate whether miRs are differentially detected in plasma samples of patients with ACTH-dependent Cushing's syndrome (CS). Design: Case-control study. Methods: Morning fasting plasma samples were collected from 41 consecutive patients with confirmed ACTH-dependent CS and 11 healthy subjects and stored at -80°C. Twenty-one miRs previously reported to be differentially expressed in ACTH-secreting tumors vs. healthy tissue samples were quantified in plasma by qPCR. Results: Among enrolled subjects, 28 were confirmed to have Cushing's disease (CD), 13 had ectopic ACTH secretion (EAS) and 11 were healthy controls. We found statistically significant differences in the circulating levels of miR-16-5p [45.04 (95% CI 28.77-61.31) in CD vs. 5.26 (2.65-7.87) in EAS, P < 0.001; q = 0.001], miR-145-5p [0.097 (0.027-0.167) in CD vs. undetectable levels in EAS, P = 0.008; q = 0.087] and differences in miR-7g-5p [1.842 (1.283-2.400) in CD vs. 0.847 (0.187-1.507) in EAS, P = 0.02; q = 0.14]. The area under the receiver-operator (ROC) curve was 0.879 (95% CI 0.770-0.987), p < 0.001, when using miR-16-5p to distinguish between CD and EAS. Circulating levels of miR-16-5p in the healthy control group differed from that of both the CD and EAS groups. Conclusions: Plasma miR levels differ in patients with CD and EAS. In particular, miR-16-5p, miR-145-5p and miR-7g-5p are promising biomarkers for further research to differentiate ACTH-dependent CS.
Collapse
Affiliation(s)
- Zhanna Belaya
- The National Medical Research Centre for Endocrinology, Moscow, Russia
- *Correspondence: Zhanna Belaya
| | - Patimat Khandaeva
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Larisa Nonn
- Department Pathology College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexey Nikitin
- Federal Research and Clinical Center FMBA of Russia, Moscow, Russia
| | | | - Ivan Sitkin
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Andrey Grigoriev
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Mikhail Pikunov
- National Medical Research Center of Surgery Named After A.V. Vishnevsky, Moscow, Russia
| | | | | | | | - Ivan Dedov
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| |
Collapse
|
22
|
Matar S, Malczewska A, Oberg K, Bodei L, Aslanian H, Lewczuk-Myślicka A, Filosso PL, Suarez AL, Kolasińska-Ćwikła A, Roffinella M, Kos-Kudła B, Ćwikła JB, Drozdov IA, Kidd M, Modlin IM. Blood Chromogranin A Is Not Effective as a Biomarker for Diagnosis or Management of Bronchopulmonary Neuroendocrine Tumors/Neoplasms. Neuroendocrinology 2020; 110:185-197. [PMID: 30995665 PMCID: PMC7472424 DOI: 10.1159/000500202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Identification of circulating tumor markers for clinical management in bronchopulmonary (BP) neuroendocrine tumors/neoplasms (NET/NEN) is of considerable clinical interest. Chromogranin A (CgA), a "universal" NET biomarker, is considered controversial as a circulating biomarker of BPNEN. AIM Assess utility of CgA in the diagnosis and management of BPNEN in a multicentric study. MATERIAL AND METHODS CgA diagnostic metrics were assessed in lung NET/NENs (n = 200) and controls (n = 140), randomly assigned to a Training and Test set (100 BPC and 70 controls in each). Assay specificity was evaluated in neoplastic lung disease (n = 137) and nonneoplastic lung disease (n = 77). CgA efficacy in predicting clinical status was evaluated in the combined set of 200 NET/NENs. CgA levels in bronchopulmonary neuroendocrine tumor (BPNET) subtypes (atypical [AC] vs. typical [TC]) and grade was examined. The clinical utility of an alteration of CgA levels (±25%) was evaluated in a subset of 49 BPNET over 12 months. CgA measurement was by NEOLISATM kit (EuroDiagnostica). RESULTS Sensitivity and specificity in the training set were 41/98%, respectively. Test set data were 42/87%. Training set area under receiver operator characteristic analysis differentiated BPC from control area under the curve (AUC) 0.61 ± 0.05 p = 0.015. Test set the data were AUC 0.58 ± 0.05, p = 0.076. In the combined set (n = 200), 67% BPNET/NEN (n = 134) had normal CgA levels. CgA levels did not distinguish histological subtypes (TC vs. AC, AUC 0.56 ± 0.04, p = 0.21), grade (p = 0.45-0.72), or progressive from stable disease (AUC 0.53 ± 0.05 p = 0.47). There was no correlation of CgA with Ki-67 index (Pearson r = 0.143, p = 0.14). For nonneoplastic diseases (chronic obstructive pulmonary disorder and idiopathic pulmonary fibrosis), CgA was elevated in 26-37%. For neoplastic disease (NSCLC, squamous cell carcinoma), CgA was elevated in 11-16%. The neuroendocrine SCLC also exhibited elevated CgA (50%). Elevated CgA was not useful for differentiating BPNET/NEN from these other pathologies. Monitoring BPNET/NEN over a 12-month period identified neither CgA levels per se nor changes in CgA were reflective of somatostatin analog treatment outcome/efficacy or the natural history of the disease (progression). CONCLUSIONS Blood CgA levels are not clinically useful as a biomarker for lung BPNET/NEN. The low specificity and elevations in both nonneoplastic as well as other common neoplastic lung diseases identified limited clinical utility for this biomarker.
Collapse
Affiliation(s)
- Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Anna Malczewska
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden,
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Harry Aslanian
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Lewczuk-Myślicka
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Alejandro L Suarez
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Jarosław B Ćwikła
- Department of Radiology, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Irvin M Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Chinami M, Iwabuchi K, Muto Y, Uchida Y, Arita R, Shuraim RA, Adra CN. Assessment by miRNA microarray of an autologous cancer antigen-pulsed adoptive immune ensemble cell therapy (AC-ACT) approach; demonstrated induction of anti-oncogenic and anti-PD-L1 miRNAs. Clin Case Rep 2019; 7:2156-2164. [PMID: 31788270 PMCID: PMC6878052 DOI: 10.1002/ccr3.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022] Open
Abstract
A 60-year-old woman with stage IV rectal cancer received adoptive cell therapy with autologous cancer antigen (AC-ACT) causing induction of anti-oncogenic and anti-PD-L1 miRNAs as assessed by miRNA microarray. More than 1 year after AC-ACT, metastases have been arrested, and the patient reports good quality of life.
Collapse
Affiliation(s)
| | | | - Yoshiteru Muto
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Yasuhiko Uchida
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Ryu Arita
- Fukuoka MSC Medical ClinicsFukuokaJapan
| | | | - Chaker N. Adra
- BFSR InstituteFukuokaJapan
- The Adra InstituteBoston, MAUSA
| |
Collapse
|
24
|
Shen GY, Ren H, Shang Q, Zhao WH, Zhang ZD, Yu X, Huang JJ, Tang JJ, Yang ZD, Liang D, Jiang XB. Let-7f-5p regulates TGFBR1 in glucocorticoid-inhibited osteoblast differentiation and ameliorates glucocorticoid-induced bone loss. Int J Biol Sci 2019; 15:2182-2197. [PMID: 31592234 PMCID: PMC6775285 DOI: 10.7150/ijbs.33490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies indicated that let-7 enhances osteogenesis and bone formation of human adipose-derived mesenchymal stem cells (MSCs). We also have confirmed that let-7f-5p expression was upregulated during osteoblast differentiation in rat bone marrow-derived MSCs (BMSCs) and was downregulated in the vertebrae of patients with glucocorticoid (GC)-induced osteoporosis (GIOP). The study was performed to determine the role of let-7f-5p in GC-inhibited osteogenic differentiation of murine BMSCs in vitro and in GIOP in vivo. Here, we report that dexamethasone (Dex) inhibited osteogenic differentiation of BMSCs and let-7f-5p expression, while increasing the expression of transforming growth factor beta receptor 1 (TGFBR1), a direct target of let-7f-5p during osteoblast differentiation under Dex conditions. In addition, let-7f-5p promoted osteogenic differentiation of BMSCs, as indicated by the promotion of alkaline phosphatase (ALP) staining and activity, Von Kossa staining, and osteogenic marker expression (Runx2,Osx, Alp, and Ocn), but decreased TGFBR1 expression in the presence of Dex. However, overexpression of TGFBR1 reversed the upregulation of let-7f-5p during Dex-treated osteoblast differentiation. Knockdown of TGFBR1 reversed the effect of let-7f-5p downregulation during Dex-treated osteogenic differentiation of BMSCs. We also found that glucocorticoid receptor (GR) mediated transcriptional silencing of let-7f-5p and its knockdown enhanced Dex-inhibited osteogenic differentiation. Further, when injected in vivo, agomiR-let-7f-5p significantly reversed bone loss induced by Dex, as well as increased osteogenic marker expression (Runx2, Osx, Alp, and Ocn) and decreased TGFBR1 expression in bone extracts. These findings indicated that the regulatory axis of GR/let-7f-5p/TGFBR1 may be important for Dex-inhibited osteoblast differentiation and that let-7f-5p may be a useful therapeutic target for GIOP.
Collapse
Affiliation(s)
- Geng-Yang Shen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wen-Hua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Da Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jin-Jing Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing-Jing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Dong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
25
|
Zheng S, Liu Q, Ma R, Tan D, Shen T, Zhang X, Lu X. Let-7b-5p inhibits proliferation and motility in squamous cell carcinoma cells through negative modulation of KIAA1377. Cell Biol Int 2019; 43:634-641. [PMID: 30958603 DOI: 10.1002/cbin.11136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KIAA1377 has been found to be linked with lymph node metastasis in esophageal squamous cell carcinoma (SCC) in our previous study; however, the regulation of KIAA1377 remains far from understood. Herein, to understand the regulation of KIAA1377 from the angle of microRNA (miRNA)-messenger RNA (mRNA) modulation in the setting of SCC cells, the basal level of KIAA1377 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis in KYSE-150 and HeLa cells; biological roles of KIAA1377 contributing in the proliferation, migration, and invasion were evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), wound-healing and Transwell assays, respectively, after KIAA1377 was knocked out mediated by the CRISPR-Cas9 system. Bioinformatic prediction revealed that let-7b-5p was a putative miRNA regulating KIAA1377, which was ensuingly validated by the luciferase reporter assay; after which, variation of KIAA1377 expression was further verified by qRT-PCR and western blot analysis. Moreover, the biological roles of let-7b-5p in proliferation, migration, and invasion of KYSE-150 and HeLa cells were also evaluated. It was exhibited that KIAA1377 was able to promote the proliferation and motility of both KYSE-150 and HeLa cells, which can be reverted by re-expression of let-7b-5p. The luciferase reporter assay verified that let-7b-5p can diametrically target KIAA1377. Collectively, our data demonstrated that let-7b-5p can directly but negatively regulate KIAA1377 in SCC cell lines, Ecal109, and HeLa cells.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
| | - Rong Ma
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People's Republic of China
| | - Doudou Tan
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People's Republic of China
| | - Tongxue Shen
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People's Republic of China
| | - Xiao Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People's Republic of China
| |
Collapse
|
26
|
Liu J, Yu J, Jiang W, He M, Zhao J. Targeting of CDKN1B by miR-222-3p may contribute to the development of intervertebral disc degeneration. FEBS Open Bio 2019; 9:728-735. [PMID: 30984546 PMCID: PMC6443998 DOI: 10.1002/2211-5463.12609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non‐coding RNAs that can negatively regulate the expression of their complementary mRNA targets, and have been implicated in various pathophysiological processes. In this study, we examined the effect of miR‐222‐3p on intervertebral disc degeneration (IDD). We found that expression of miR‐222‐3p was significantly higher in IDD tissues than in normal intervertebral disc tissue, and report that overexpression of miR‐222‐3p remarkably increased apoptosis and reduced proliferation of nucleus pulposus (NP) cells. In addition, miR‐222‐3p promoted secretion of matrix metalloproteinase‐3, and decreased collagen type II and aggrecan production. Cyclin‐dependent kinase inhibitor 1B (CDKN1B) was identified as a direct target of negative regulation by miR‐222‐3p in NP cells, and expression of miR‐222‐3p was found to be negatively correlated with that of CDKN1B in IDD tissue. Finally, we observed that transfection with miR‐222‐3p dramatically reduced CDKN1B expression in NP cells. In conclusion, miR‐222‐3p may be involved in IDD development, possibly through targeting CDKN1B.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Osteology The Third Affiliated Hospital of Guangxi Medical University Nanning China.,Department of Spine Osteopathia The First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jia Yu
- Department of Osteology The Third Affiliated Hospital of Guangxi Medical University Nanning China
| | - Weiping Jiang
- Department of Osteology The Third Affiliated Hospital of Guangxi Medical University Nanning China
| | - Maolin He
- Department of Spine Osteopathia The First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jinmin Zhao
- Department of Spine Osteopathia The First Affiliated Hospital of Guangxi Medical University Nanning China.,Guangxi Key Laboratory of Regenerative Medicine International Joint Laboratory on Regeneration of Bone and Soft Tissue The First Affiliated Hospital of Guangxi Medical University Guangxi Medical University Nanning China
| |
Collapse
|
27
|
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, Liu J. Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol 2019; 15:763-776. [PMID: 30501399 DOI: 10.2217/fon-2018-0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study was aimed to investigate the expression profiles and biological function of plasma miRNAs at different phases of chronic myeloid leukemia (CML). Materials & methods: Differentially expressed miRNAs were identified by microarray. The candidate miRNAs were validated by quantitative real-time PCR at chronic phase, accelerated phase and blast crisis. The functional analysis of miRNAs was carried out by using DAVID. Results: The putative targets of dysregulated miRNAs were involved in important signaling pathways. Plasma let-7b-5p and miR-451a expression was lower in CML patients, and plasma miR-451a gradually decreased from chronic phase to accelerated phase and blast crisis. Conclusion: Dysregulated plasma miRNAs maybe play regulatory roles in pathogenesis of CML. Let-7b-5p and miR-451a can be used as potential biomarkers for the diagnosis and prognosis of CML.
Collapse
Affiliation(s)
- Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, PR China
| | - Yawen Jiang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Xu Han
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| |
Collapse
|
28
|
Yu JJ, Pi WS, Cao Y, Peng AF, Cao ZY, Liu JM, Huang SH, Liu ZL, Zhang W. Let-7a inhibits osteosarcoma cell growth and lung metastasis by targeting Aurora-B. Cancer Manag Res 2018; 10:6305-6315. [PMID: 30568492 PMCID: PMC6267740 DOI: 10.2147/cmar.s185090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Accumulating studies showed that the expression of microRNAs (miRNAs) was dysregulated in osteosarcoma (OS). In this study, we sought to investigate the effect of let-7a on OS progression and its potential molecular mechanism. Patients and methods Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression level of let-7a and Aurora-B (AURKB) in OS tissues and cells. The OS cells were treated with let-7a mimic, let7a inhibitor, negative mimic and Lv-AURKB combined with let-7a. The ability of cell proliferation, migration and invasion was measured using Cell Counting Kit-8 (CCK-8) and wound-healing and transwell invasion assays. The protein of AURKB, NF-κβp65, MMP2 and MMP9 was measured by Western blot analysis. Xenograft model was performed to investigate the effects of let-7a on tumor growth and metastasis. The lung metastasis was measured by counting the metastatic node using H&E staining. Results Let-7a expression was significantly underexpressed in OS cell lines and tissues compared with human osteoblast cell lines, hFOB1.19, and adjacent normal bone tissues. Exogenous let-7a inhibited the viability, migratory and invasive ability of OS cells in vitro. In addition, the overexpression of AURKB in OS cells could partly rescue let-7a-mediated tumor inhibition. Also, the overexpression of let-7a inhibited OS cell growth and lung metastasis in vivo. Furthermore, the results showed that let-7a could decrease the expression of NF-κβp65, MMP2 and MMP9 proteins by targeting AURKB in OS cells. Conclusion Let-7a inhibits the malignant phenotype of OS cells by targeting AURKB at least partially. Targeting let-7a and AURKB/NF-κβ may be a novel therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wen-Sen Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Yuan Cao
- Department of Medical Imaging, The First Clinical Medical School of Nanchang University, Nanchang 330006, People's Republic of China
| | - Ai-Fen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang 330001, People's Republic of China
| | - Zhi-Yuan Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Jia-Ming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Shan-Hu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Zhi-Li Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| |
Collapse
|
29
|
Han L, Zhou Y, Zhang R, Wu K, Lu Y, Li Y, Duan R, Yao Y, Zhu D, Jia Y. MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model. Front Neurosci 2018; 12:333. [PMID: 29872375 PMCID: PMC5972183 DOI: 10.3389/fnins.2018.00333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Widespread death of transplanted mesenchymal stem cells (MSCs) hampers the development of stem cell therapy for Alzheimer disease (AD). Cell pre-conditioning might help cope with this challenge. We tested whether let-7f-5p-modified MSCs could prolong the survival of MSCs after transplantation. When exposed to Aβ25−35in vitro, MSCs showed significant early apoptosis with decrease in the let-7f-5p levels and increased caspase-3 expression. Upregulating microRNA let-7f-5p in MSCs alleviated Aβ25−35-induced apoptosis by decreasing the caspase-3 levels. After computerized analysis and the luciferase reporter assay, we identified that caspases-3 was the target gene of let-7f-5p. In vivo, hematoxylin and eosin staining confirmed the success of MSCs transplantation into the lateral ventricles, and the let-7f-5p upregulation group showed the lowest apoptotic rate of MSCs detected by TUNEL immunohistochemistry analysis and immunofluorescence. Similarly, bioluminescent imaging showed that let-7f-5p upregulation moderately prolonged the retention of MSCs in brain. In summary, we identified the anti-apoptotic role of let-7f-5p in Aβ25−35-induced cytotoxicity, as well as the protective effect of let-7f-5p on survival of grafted MSCs by targeting caspase-3 in AD models. These findings show a promising approach of microRNA-modified MSCs transplantation as a therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|