1
|
Song Y, Ma B, Li J, Shuai J, Zhang M. Multiplex reverse transcription recombinase polymerase amplification combined with lateral flow biosensor for simultaneous detection of three viral pathogens in cattle. Talanta 2025; 281:126775. [PMID: 39226697 DOI: 10.1016/j.talanta.2024.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Bovine viral diarrhea virus (BVDV), bovine epidemic fever virus (BEFV), and bovine respiratory syncytial virus (BRSV) cause respiratory symptoms in cattle. The absence of rapid, precise, and easily accessible diagnostic methods poses difficulties for herders and veterinary epidemiologists during outbreaks of major infectious animal diseases. Considering the mixed infection of viruses, a multiple-detection method, reverse transcription recombinase polymerase amplification (mRT-RPA) combined with a lateral flow biosensor (LFB), was established to simultaneously detect the three pathogens. This technique is based on the specific binding of three differently labeled RT-RPA products (DNA sequences) to antibodies on the three test lines of the LFB, achieving multiplex detection through the presence or absence of coloration on the LFB test lines. The fluorescence values of the LFB test lines are recorded by a test strip reader. The mRT-RPA-LFB assay completes detection at a constant temperature of 41 °C within 33 min. The limits of detection (LODs) for BVDV, BEFV and BRSV were 2.62 × 101, 2.42 × 101 and 2.56 × 101 copies/μL, respectively. No cross-reactivity was observed with the other six bovine viruses. The developed method showed satisfactory intra- and inter-assay precision, and the average coefficients of variation were ranged from 2.92 % to 3.99 %. The diagnostic sensitivity and specificity were 98.11 % and 100 %, respectively, which were highly consistent with the RT-qPCR assay, and the kappa value was 0.988 (95 % confidence interval, CI). In general, the mRT-RPA-LFB assay has the potential to become a powerful tool for rapid screening of cattle diseases because of its advantages such as fast detection speed, convenient operation, strong specificity, and high sensitivity.
Collapse
Affiliation(s)
- Yating Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou, 310018, China.
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Perkins-Oines S, Senevirathne ND, Krafsur GM, Abdelsalam K, Renter D, Meyer B, Chase CCL. The Detection of Vaccine Virus and Protection of a Modified Live, Intranasal, Trivalent Vaccine in Neonatal, Colostrum-Fed Calves with an Experimental Bovine Respiratory Syncytial Virus Challenge. Pathogens 2024; 13:517. [PMID: 38921814 PMCID: PMC11206440 DOI: 10.3390/pathogens13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The efficacy of an intranasal (IN) bovine respiratory syncytial virus (BRSV) vaccine administered in the presence of passive immunity was assessed. Pooled colostrum was administered by intubation to 50 beef-dairy crossbred calves the day they were born. The calves were transported to a research facility and were blocked by age and sex, and randomly assigned into two groups: sham-vaccinated intranasally with a placebo (sterile water) or vaccinated with a trivalent (BRSV, bovine herpesvirus 1 and bovine parainfluenza 3) modified live viral (MLV) vaccine. The calves were 9 ± 2 days old when vaccinated (day 0). The calves were challenged by aerosolized BRSV on days 80 and 81 as a respiratory challenge. The study was terminated on day 88. Lung lesion scores (LLS) were significantly lower for calves vaccinated with trivalent MLV vaccine than those for calves that were sham-vaccinated. Serum neutralization (SN) antibody against BRSV in calves vaccinated with the trivalent MLV vaccine demonstrated an anamnestic response on day 88. After challenge, the calves sham-vaccinated with the placebo lost weight, while those vaccinated with the trivalent MLV vaccine gained weight. In this study, colostrum-derived antibodies did not interfere with the immune response or protection provided by one dose of the trivalent MLV vaccine.
Collapse
Affiliation(s)
| | | | - Greta M. Krafsur
- Clinvet-South Dakota, 801 32nd Ave, Brookings, SD 57006, USA (G.M.K.); (K.A.)
| | - Karim Abdelsalam
- Clinvet-South Dakota, 801 32nd Ave, Brookings, SD 57006, USA (G.M.K.); (K.A.)
| | - David Renter
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Brent Meyer
- Beef Technical Services, Merck Animal Health, DeSoto, KS 66018, USA;
| | - Christopher C. L. Chase
- Clinvet-South Dakota, 801 32nd Ave, Brookings, SD 57006, USA (G.M.K.); (K.A.)
- Department of Veterinary and Biomedical Sciences, College of Agriculture, Food and Environmental Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Aydin O, Yilmaz A, Turan N, Richt JA, Yilmaz H. Molecular Characterisation and Antibody Response to Bovine Respiratory Syncytial Virus in Vaccinated and Infected Cattle in Turkey. Pathogens 2024; 13:304. [PMID: 38668259 PMCID: PMC11053851 DOI: 10.3390/pathogens13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the most important respiratory pathogens of cattle. In this study, frequency of infection, analysis of variants, and the immune status of vaccinated and non-vaccinated cattle were studied. Blood (n = 162) and nasal/oropharyngeal (n = 277) swabs were collected from 62 cattle herds in Turkey. Lung samples (n = 37) were also taken from dead animals and abattoirs. Antibodies to BRSV were detected in 76 (46%) out of 162 sera. The antibody levels in the vaccinated and non-vaccinated groups were statistically significant. Among 277 nasal/oropharyngeal swabs and 37 lungs, ten nasal/oropharyngeal and four lung samples were positive for BRSV-RNA. BRSV-G gene sequences of 5 out of 14 RT-PCR positive samples showed that all viruses clustered as Group-III in phylogenetic analysis with 88-100% homology. Similarity with previous Turkish BRSVs was 89-98%, and that with BRSVs detected in the USA and Czechia was 89.47-93.12%. BRSV continues to circulate in Turkish cattle, and vaccination seems beneficial in preventing BRSV. The diversity of the BRSVs found in this study needs be considered in vaccination strategies.
Collapse
Affiliation(s)
- Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, NY 66506, USA;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| |
Collapse
|
4
|
Barnewall RJ, Marsh IB, Quinn JC. Meta-Analysis of qPCR for Bovine Respiratory Disease Based on MIQE Guidelines. Front Mol Biosci 2022; 9:902401. [PMID: 35923462 PMCID: PMC9340069 DOI: 10.3389/fmolb.2022.902401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Qualitative and quantitative PCR-based tests are widely used in both diagnostics and research to assess the prevalence of disease-causing pathogens in veterinary medicine. The efficacy of these tests, usually measured in terms of sensitivity and specificity, is critical in confirming or excluding a clinical diagnosis. We undertook a meta-analysis to assess the inherent value of published PCR diagnostic approaches used to confirm and quantify bacteria and viruses associated with bovine respiratory disease (BRD) in cattle. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A thorough search of nine electronic databases (Web of Science, EBSCOhost, Cambridge journals online, ProQuest, PubMed, Sage journals online, ScienceDirect, Wiley online library and MEDLINE) was undertaken to find studies that had reported on the use of PCR and/or qPCR for the detection and/or quantification of BRD associated organisms. All studies meeting the inclusion criteria for reporting quantitative PCR for identification of BRD associated microorganisms were included in the analysis. Studies were then assessed on the applications of the Minimum Information for Publication of Quantitative Real-Time PCR Experiment (MIQE) and PCR primer/probe sequences were extracted and tested for in silico specificity using a high level of stringency. Fourteen full-text articles were included in this study. Of these, 79% of the analysed articles did not report the application of the MIQE guidelines in their study. High stringency in silico testing of 144 previously published PCR primer/probe sequences found many to have questionable specificity. This review identified a high occurrence of primer/probe sequences with a variable in silico specificity such that this may have implications for the accuracy of reporting. Although this analysis was only applied to one specific disease state, identification of animals suspected to be suffering from bovine respiratory disease, there appears to be more broadly a need for veterinary diagnostic studies to adopt international best practice for reporting of quantitative PCR diagnostic data to be both accurate and comparable between studies and methodologies.
Collapse
Affiliation(s)
- Rebecca J. Barnewall
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Wagga Wagga, NSW, Australia
| | - Ian B. Marsh
- NSW DPI, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jane C. Quinn
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Wagga Wagga, NSW, Australia
- *Correspondence: Jane C. Quinn,
| |
Collapse
|
5
|
Makoschey B, Berge AC. Review on bovine respiratory syncytial virus and bovine parainfluenza - usual suspects in bovine respiratory disease - a narrative review. BMC Vet Res 2021; 17:261. [PMID: 34332574 PMCID: PMC8325295 DOI: 10.1186/s12917-021-02935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.The interaction between the viruses and the different branches of the host's immune system is rather complex. Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response considerably contributes to the tissue damage in the upper respiratory tract.BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3 vaccines are commercially available.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/MSD-Animal Health, Wim de Körverstraat, 5831AN, Boxmeer, The Netherlands.
| | - Anna Catharina Berge
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
6
|
Nefedchenko AV, Glotov AG, Koteneva SV, Glotova TI. Developing and Testing a Real-Time Polymerase Chain Reaction to Identify and Quantify Bovine Respiratory Syncytial Viruses. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2021; 35:168-173. [PMID: 33500598 PMCID: PMC7818697 DOI: 10.3103/s0891416820030052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022]
Abstract
The bovine respiratory syncytial virus (BRSV) known as Bovine orthopneumovirus according to the international classification is one of the most important etiological agents of respiratory diseases in calves. At present, rapid and reliable methods to detect and measure the concentrations of this pathogen are needed. The objectives of the survey are developing the real-time polymerase chain reaction (PCR) to identify and quantify the BRSV RNA and, based on it, determining the number of the virus genomes in the respiratory tract of sick animals during the disease outbreaks. The nucleocapsid (N) protein gene of the virus served as the target for amplification. Messenger RNA (mRNA) of bovine GAPDH was used as a reference gene. A panel of positive control samples at known concentrations was used to estimate the virus and GAPDH numbers. The concentration of viral RNA extracted from the biomaterial samples was quantified relative to the bovine GAPDH mRNA level. The analytical sensitivity of PCR demonstrating high specificity and reproducibility was 1 × 103 genome equivalents per 1 cm3. All 273 samples of biological material taken from the animals with the respiratory diseases were analyzed. The virus genome was detected in 19.4% of samples. The viral RNA was more frequently detected in the lungs, which comprised 10.61% of positive samples. It was less frequently found in the mucous membranes of trachea and bronchi and the lymph nodes of the lungs, which comprised 0.73% of positive samples each. Concentrations of the virus in samples varied. The highest concentration was recorded in the lungs (1.3 ± 0.5—4.8 ± 0.47 log10 copies of BRSV/GAPDH RNA). The developed test kit may be used to quantify the concentration of the bovine respiratory syncytial virus in disease pathogenesis and to estimate the efficiency of vaccine or antivirus preparations for animals.
Collapse
Affiliation(s)
- A V Nefedchenko
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - A G Glotov
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - S V Koteneva
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - T I Glotova
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| |
Collapse
|
7
|
Pansri P, Katholm J, Krogh KM, Aagaard AK, Schmidt LMB, Kudirkiene E, Larsen LE, Olsen JE. Evaluation of novel multiplex qPCR assays for diagnosis of pathogens associated with the bovine respiratory disease complex. Vet J 2020; 256:105425. [PMID: 32113583 PMCID: PMC7110767 DOI: 10.1016/j.tvjl.2020.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Bovine respiratory disease complex is the most common disease requiring the use of antimicrobials in industrial calf production worldwide. Pathogenic bacteria (Mannheimia haemolytica (Mh), Pasteurella multocida (Pm), Histophilus somni (Hs), and Mycoplasma bovis) and a range of viruses (bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine viral diarrhea virus and bovine herpesvirus type 1) are associated with this complex. As most of these pathogens can be present in healthy and diseased calves, simple detection of their presence in diseased calves carries low predictive value. In other multi-agent diseases of livestock, quantification of pathogens has added substantially to the predictive value of microbiological diagnosis. The aim of this study was to evaluate the ability of two recently developed quantitative PCR (qPCR) kits (Pneumo4B and Pneumo4V) to detect and quantify these bacterial and viral pathogens, respectively. Test efficiencies of the qPCR assays, based on nucleic acid dilution series of target bacteria and viruses, were 93-106% and 91-104%, respectively, with assay detection limits of 10-50 copies of nucleic acids. All 44 strains of target bacteria were correctly identified, with no false positive reactions in 135strains of non-target bacterial species. Based on standard curves of log10 CFU versus cycle threshold (Ct) values, quantification was possible over a 5-log range of bacteria. In 92 tracheal aspirate samples, the kappa values for agreement between Pneumo4B and bacterial culture were 0.64-0.84 for Mh, Pm and Hs. In an additional 84 tracheal aspirates, agreement between Pneumo4B or Pneumo 4V and certified diagnostic qPCR assays was moderate (0.57) for M. bovis and high (0.71-0.90) for viral pathogens. Thus Pneumo4 kits specifically detected and quantified the relevant pathogens.
Collapse
Affiliation(s)
- P Pansri
- DNA Diagnostic, Risskov, Denmark
| | | | - K M Krogh
- LVK Veterinary Cattle Practice, Hobro, Denmark
| | - A K Aagaard
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen Denmark
| | - L M B Schmidt
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen Denmark
| | - E Kudirkiene
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen Denmark
| | - L E Larsen
- National Veterinary Laboratory, Technical University of Denmark, Lyngby, Denmark
| | - J E Olsen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen Denmark.
| |
Collapse
|
8
|
Kolb EA, Buterbaugh RE, Rinehart CL, Ensley D, Perry GA, Abdelsalam KW, Chase CCL. Protection against bovine respiratory syncytial virus in calves vaccinated with adjuvanted modified live vaccine administered in the face of maternal antibody. Vaccine 2019; 38:298-308. [PMID: 31668818 DOI: 10.1016/j.vaccine.2019.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
Bovine respiratory syncytial virus (BRSV) is major viral contributor to bovine respiratory disease (BRD). BRD is a major cause of morbidity and mortality in all classes of cattle but particularly young beef and dairy calves. Passive antibodies not only help protect the calf against infection, but may interfere with the immune responses following vaccination. The purpose of this study was to evaluate the efficacy of an adjuvanted modified live virus (MLV) vaccine in the presence of well-defined maternal passive immunity. Calves were vaccinated at approximately 1 month of age and challenged ~90 days later when BRSV systemic antibodies were ≤1:4. Body temperature was lower at 6 and 7 days post challenge and other clinical signs were also lower in the vaccinates. Nasal viral shed was 3-4 times lower in the vaccinated animals as measured by virus isolation and polymerase chain reaction (PCR) and peaked 5 days post challenge compared to the controls (who peaked at days 6 and 7). On day 8 following challenge, animals were necropsied, and lung lobes were scored and tested for virus by PCR and indirect fluorescent assay (IFA). There was a 25-fold reduction in PCR virus detection in vaccinates and two of the vaccinated calves' lungs were PCR negative. Only 29.4% of vaccinated calves were BRSV positive on IFA testing at necropsy, while 87.5% of control calves were BRSV positive. Vaccinated calves developed a mucosal BRSV IgA response with over 50% of the vaccinated calves having IgA prior to challenge and all vaccinated calves were positive following challenge. Additionally, vaccination stimulated the production of Interferon gamma (IFN-γ) in mononuclear cells to prime the immune system. This study established that an adjuvanted MLV vaccine could provide protection against BRSV as measured by clinical, virological, and pathological parameters while also activating both mucosal and systemic immunity.
Collapse
Affiliation(s)
| | | | | | - Douglas Ensley
- Boehringer Ingelheim Animal Health USA Inc, 2621 North Belt Hwy, St Joseph, MO 64506, United States
| | - George A Perry
- Department of Animal Science, College of Agriculture, Food and Environmental Sciences, South Dakota State University, Brookings, SD 57007, United States
| | | | - Christopher C L Chase
- RTI, LLC, 801 32nd Ave, Brookings, SD 57006, United States; Department of Veterinary and Biomedical Sciences, College of Agriculture, Food and Environmental Sciences, South Dakota State University, Brookings, SD 57007, United States.
| |
Collapse
|
9
|
Caswell JL, Bassel LL, Rothenburger JL, Gröne A, Sargeant JM, Beck AP, Ekman S, Gibson-Corley KN, Kuiken T, LaDouceur EEB, Meyerholz DK, Origgi FC, Posthaus H, Priestnall SL, Ressel L, Sharkey L, Teixeira LBC, Uchida K, Ward JM, Webster JD, Yamate J. Observational Study Design in Veterinary Pathology, Part 2: Methodology. Vet Pathol 2018; 55:774-785. [DOI: 10.1177/0300985818798121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Observational studies are a basis for much of our knowledge of veterinary pathology, yet considerations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offered advice on planning and carrying out an observational study. Part 2 of the series focuses on methodology. Our general recommendations are to consider using already-validated methods, published guidelines, data from primary sources, and quantitative analyses. We discuss 3 common methods in pathology research—histopathologic scoring, immunohistochemistry, and polymerase chain reaction—to illustrate principles of method validation. Some aspects of quality control include use of clear objective grading criteria, validation of key reagents, assessing sample quality, determining specificity and sensitivity, use of technical and biologic negative and positive controls, blinding of investigators, approaches to minimizing operator-dependent variation, measuring technical variation, and consistency in analysis of the different study groups. We close by discussing approaches to increasing the rigor of observational studies by corroborating results with complementary methods, using sufficiently large numbers of study subjects, consideration of the data in light of similar published studies, replicating the results in a second study population, and critical analysis of the study findings.
Collapse
Affiliation(s)
- Jeff L. Caswell
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Laura L. Bassel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Jamie L. Rothenburger
- Department of Ecosystem and Public Health; Canadian Wildlife Health Cooperative (Alberta), Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Gröne
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan M. Sargeant
- Department of Population Medicine and Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada
| | | | - Stina Ekman
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katherine N. Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | - David K. Meyerholz
- University of Iowa Carver College of Medicine, 1165 Medical Laboratories, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Francesco C. Origgi
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Simon L. Priestnall
- Department of Pathobiology & Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Leslie Sharkey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, University of Tokyo, Tokyo, Japan
| | | | | | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano City, Osaka, Japan
| |
Collapse
|
10
|
Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet Pathol 2013; 51:427-36. [PMID: 24009269 DOI: 10.1177/0300985813501341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
Collapse
Affiliation(s)
- R E Sacco
- National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease and a major contributor to the bovine respiratory disease (BRD) complex. BRSV infects the upper and lower respiratory tract and is shed in nasal secretions. The close relatedness of BRSV to human respiratory syncytial virus (HRSV) has allowed researchers to use BRSV and HRSV to elucidate the mechanisms by which these viruses induce disease. Attempted vaccine production using formalin-inactivated vaccine resulted in exacerbated disease when infants became exposed to HRSV. Cattle vaccinated with formalin-inactivated virus had enhanced disease when inoculated with BRSV. This article discusses various aspects of BRSV, its epidemiology, pathogenesis, diagnostic tests, immunity, and vaccination.
Collapse
|