1
|
Tamminen LM, Dicksved J, Eriksson E, Keeling LJ, Emanuelson U. Untangling the role of environmental and host-related determinants for on-farm transmission of verotoxin-producing Escherichia coli O157. Infect Ecol Epidemiol 2024; 14:2406852. [PMID: 39386259 PMCID: PMC11463013 DOI: 10.1080/20008686.2024.2406852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background: Cattle colonised by the zoonotic pathogen verotoxin-producing Escherichia coli of serotype O157 (VTEC O157) can shed high levels of the pathogen in their faeces. A suggested key for controlling VTEC O157 is preventing colonisation of individuals. Aim: In this study the role of individual super-shedders and factors related to susceptibility and environmental exposure in the transmission of VTEC O157 among dairy calves are explored. Methods: The association between sex, age, pen hygiene, pen type and stocking density and colonisation of individual calves, established by recto-anal mucosal swabs, on farms where pathogenic VTEC O157 had been confirmed was investigated. In a follow-up sampling, the consistency of previously identified risk factors and the role of shedding pen mates was assessed by studying the risk of new/re-colonisation. Results: The results suggest an important role of stocking density that decreases with age, possibly due to increased resistance to colonisation following exposure. However, previous colonisation did not influence the risk of being colonised in the second sampling. Super-shedders (shedding >103 colony forming units/g faeces) significantly increased the risk of colonisation in peers (OR = 10, CI 4.2-52). In addition, environmental factors associated with survival of the bacteria, affected risk. Conclusion: The results confirm the suggested importance of super-shedders but also emphasises the importance of considering the combined exposure from peers and the environment.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Linda J. Keeling
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Bibbal D, Ruiz P, Sapountzis P, Mazuy-Cruchaudet C, Loukiadis E, Auvray F, Forano E, Brugère H. Persistent Circulation of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Cattle Farms: Characterization of Enterohemorrhagic Escherichia coli O157:H7 Strains and Fecal Microbial Communities of Bovine Shedders and Non-shedders. Front Vet Sci 2022; 9:852475. [PMID: 35411306 PMCID: PMC8994043 DOI: 10.3389/fvets.2022.852475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Cattle are carriers, without clinical manifestations, of enterohemorrhagic Escherichia coli (EHEC) O157:H7 responsible for life-threatening infections in humans. A better identification of factors playing a role in maintaining persistence of such strains in cattle is required to develop more effective control measures. Hence, we conducted a study to identify farms with a persistent circulation of EHEC O157:H7. The EHEC O157:H7 herd status of 13 farms, which had previously provided bovine EHEC O157:H7 carriers at slaughter was investigated. Two farms were still housing positive young bulls, and this was true over a 1-year period. Only one fecal sample could be considered from a supershedder, and 60% of the carriers shed concentrations below 10 MPN/g. Moreover, EHEC O157:H7 represented minor subpopulations of E. coli. PFGE analysis of the EHEC O157:H7 strains showed that persistent circulation was due either to the persistence of a few predominant strains or to the repeated exposure of cattle to various strains. Finally, we compared fecal microbial communities of shedders (S) (n = 24) and non-shedders (NS) (n = 28), including 43 young bulls and nine cows, from one farm. Regarding alpha diversity, no significant difference between S vs. NS young bulls (n = 43) was observed. At the genus level, we identified 10 amplicon sequence variant (ASV) indicators of the S or NS groups. The bacterial indicators of S belonged to the family XIII UCG-001, Slackia, and Campylobacter genera, and Ruminococcaceae NK4A21A, Lachnospiraceae-UGC-010, and Lachnospiraceae-GCA-900066575 groups. The NS group indicator ASVs were affiliated to Pirellulaceae-1088-a5 gut group, Anaerovibrio, Victivallis, and Sellimonas genera. In conclusion, the characteristics enhancing the persistence of some predominant strains observed here should be explored further, and studies focused on mechanisms of competition among E. coli strains are also needed.
Collapse
Affiliation(s)
- Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | | | - Christine Mazuy-Cruchaudet
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
3
|
Transmission Dynamics of Shiga Toxin-Producing Escherichia coli in New Zealand Cattle from Farm to Slaughter. Appl Environ Microbiol 2021; 87:AEM.02907-20. [PMID: 33771782 PMCID: PMC8208155 DOI: 10.1128/aem.02907-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Cattle are asymptomatic carriers of Shiga toxin-producing Escherichia coli (STEC) strains that can cause serious illness or death in humans. In New Zealand, contact with cattle feces and living near cattle populations are known risk factors for human STEC infection. Contamination of fresh meat with STEC strains also leads to the potential for rejection of consignments by importing countries. We used a combination of PCR/matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and whole-genome sequencing (WGS) to evaluate the presence and transmission of STEC on farms and in processing plants to better understand the potential pathways for human exposure and thus mitigate risk. Animal and environmental samples (n = 2,580) were collected from six farms and three meat processing plants in New Zealand during multiple sampling sessions in spring of 2015 and 2016. PCR/MALDI-TOF analysis revealed that 6.2% were positive for "Top 7" STEC. Top 7 STEC strains were identified in all sample sources (n = 17) tested. A marked increase in Top 7 STEC prevalence was observed between calf hides on farm (6.3% prevalence) and calf hides at processing plants (25.1% prevalence). Whole-genome sequencing was performed on Top 7 STEC bacterial isolates (n = 40). Analysis of STEC O26 (n = 25 isolates) revealed relatively low genetic diversity on individual farms, consistent with the presence of a resident strain disseminated within the farm environment. Public health efforts should focus on minimizing human contact with fecal material on farms and during handling, transport, and slaughter of calves. Meat processing plants should focus on minimizing cross-contamination between the hides of calves in a cohort during transport, lairage, and slaughter.IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) strains, which can cause serious illness or death in humans. Contact with cattle feces and living near cattle are known risk factors for human STEC infection. This study evaluated STEC carriage in young calves and the farm environment with an in-depth evaluation of six farms and three meat processing plants over 2 years. An advanced molecular detection method and whole-genome sequencing were used to provide a detailed evaluation of the transmission of STEC both within and between farms. The study revealed widespread STEC contamination within the farm environment, but no evidence of recent spread between farms. Contamination of young dairy calf hides increased following transport and holding at meat processing plants. The elimination of STEC in farm environments may be very difficult given the multiple transmission routes; interventions should be targeted at decreasing fecal contamination of calf hides during transport, lairage, and processing.
Collapse
|
4
|
Hansson I, Olsson Engvall E, Ferrari S, Harbom B, Lahti E. Detection of Campylobacter species in different types of samples from dairy farms. Vet Rec 2019; 186:605. [PMID: 31727852 DOI: 10.1136/vr.105610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Livestock, domestic pets and wildlife can be intestinal carriers of thermotolerant Campylobacter species. These reservoirs can in turn contaminate the environment and food products, thus creating pathways to campylobacteriosis in human beings. The purposes of this study were to investigate sampling strategies applied for surveillance of Campylobacter on dairy cattle farms and to identify the presence and species of Campylobacter in different age groups. METHODS Boot sock and faecal samples were collected from five dairy herds from three age groups-cows, heifers and calves younger than 12 months-and from milk filters. RESULTS Campylobacter species were isolated in 152 of 250 samples, of which 93 isolates were identified as C jejuni, 51 as C hyointestinalis, two as C lari and one as C coli, whereas five isolates could not be identified to species level. Campylobacter species were isolated from 86 of 110 faecal samples, 60 of 97 sock samples and six of 43 milk filter samples. CONCLUSION Faecal samples were the optimal sample type for detection of Campylobacter on dairy farms. However, taking multiple types of samples could be recommended in order to optimise the recovery rate and variety of Campylobacter species detected when investigating the presence of Campylobacter on dairy farms.
Collapse
Affiliation(s)
- Ingrid Hansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden .,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Olsson Engvall
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sevinc Ferrari
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Boel Harbom
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Elina Lahti
- Department of Epidemiology and Disease Control, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
5
|
Tamminen LM, Söderlund R, Wilkinson DA, Torsein M, Eriksson E, Churakov M, Dicksved J, Keeling LJ, Emanuelson U. Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses. Prev Vet Med 2019; 170:104726. [PMID: 31421496 DOI: 10.1016/j.prevetmed.2019.104726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 01/29/2023]
Abstract
The increasing number of human cases infected with a highly virulent type of verotoxigenic Escherichia coli (VTEC) O157:H7 in Sweden is the result of domestic transmission originating in regional clusters of infected cattle farms. To control the spread of the bacteria a comprehensive picture of infection dynamics, routes of transmission between farms and risk factors for persistence is urgently needed. The aim of the study was to investigate different aspects of the epidemiology of VTEC O157:H7 on the Swedish island of Öland by combining information from environmental sampling of VTEC O157:H7 from 80 farms with information from farmer questionnaires, spatial and molecular analyses. The farms were sampled in the spring and fall of 2014 and on four of them additional samples were collected during summer and winter. The results show a high prevalence of VTEC O157:H7 and a high proportion of strains belonging to the virulent clade 8. Farms that became infected between samplings were all located in an area with high cattle density. The most important risk factors identified are generally associated with biosecurity and indicate that visitors travelling between farms may be important for transmission. In addition, whole genome sequencing of a subset of isolates from the four farms where additional sampling was performed revealed ongoing local transmission that cannot be observed with a lower resolution typing method. Our observations also show that VTEC O157:H7 may persist in the farm environment for extended periods of time, suggesting that specific on-farm measures to reduce environmental prevalence and spread between groups of animals may be required in these cases.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden.
| | | | - David A Wilkinson
- Molecular Epidemiology and Public Health Laboratory (mEpilab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Maria Torsein
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 234, SE-53223, Skara, Sweden
| | - Erik Eriksson
- National Veterinary Institute (SVA), SE-75189, Uppsala, Sweden
| | - Mikhail Churakov
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-75007, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-75007, Uppsala, Sweden
| | - Linda J Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 7068, SE-75007, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| |
Collapse
|
6
|
Ågren ECC, Lewerin SS, Frössling J. Evaluation of herd-level sampling strategies for control of Salmonella in Swedish cattle. J Dairy Sci 2018; 101:10177-10190. [PMID: 30146286 DOI: 10.3168/jds.2018-14786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022]
Abstract
Based on Swedish legislation, all herds where Salmonella of any serotype is detected are put under restrictions, and measures aiming at eradication are required. Costs for sampling and control have increased in recent years and the aim of this study was to investigate the efficiency of different sampling strategies. We also compiled test results from recent surveillance activities and used these to complement and compare with calculated results. Sensitivities and specificities at group and herd level were calculated for different test strategies. A scenario-tree modeling approach was used to account for the hierarchy of animals within herds, and different relative risk of salmonella in different age groups. Negative and positive predictive values (NPV and PPV), and probability of freedom from Salmonella were calculated to compare the added value of different sampling strategies. Results showed that more fecal samples than serological samples per group are needed to reach a group sensitivity >0.50. This also means that serological testing leads to a higher NPV. For example, with 10 negative test-results from a group of 25 animals in a herd with a suspicion of Salmonella, the NPV based on serology was 0.75 and based on culture was 0.56. For the PPV, testing based on culture from fecal sampling was superior, as specificity of such testing was close to perfect. By changing the threshold for considering a group positive, from 1 test-positive animal to 2, the PPV of serological results could be increased without substantial loss in NPV. The herd sensitivity based on (1) bulk milk sampling, (2) fecal sampling of all animals, and (3) bulk milk sampling and individual sera from 20 animals within each age group was 0.53, 0.88, and 0.95, respectively. In low-prevalence regions, this sensitivity was enough to verify a high probability of freedom (>0.99), as the probability of infection in such Swedish regions has been shown to be 0.01. For herds with a higher prior probability of infection, repeated sampling (2-9 sampling occasions) was needed to reach the same level of confidence. Analysis of surveillance data indicated that boot swabs can be used to replace the standard fecal sampling presently used in Sweden. It was also confirmed that the individual specificity of the tests used for serological testing of Swedish calves is high (0.99). The results can form a basis for fit-for-purpose testing strategies (e.g., surveillance or prepurchase testing).
Collapse
Affiliation(s)
- E C C Ågren
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden.
| | - S Sternberg Lewerin
- Department of Biomedical Sciences and Veterinary Public Health, SLU, Swedish University of Agricultural Sciences, Box 7036, SE-750 07 Uppsala, Sweden
| | - J Frössling
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| |
Collapse
|
7
|
Widgren S, Engblom S, Emanuelson U, Lindberg A. Spatio-temporal modelling of verotoxigenic Escherichia coli O157 in cattle in Sweden: exploring options for control. Vet Res 2018; 49:78. [PMID: 30068384 PMCID: PMC6071428 DOI: 10.1186/s13567-018-0574-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023] Open
Abstract
A spatial data-driven stochastic model was developed to explore the spread of verotoxigenic Escherichia coli O157 (VTEC O157) by livestock movements and local transmission among neighbouring holdings in the complete Swedish cattle population. Livestock data were incorporated to model the time-varying contact network between holdings and population demographics. Furthermore, meteorological data with the average temperature at the geographical location of each holding was used to incorporate season. The model was fitted against observed data and extensive numerical experiments were conducted to investigate the model’s response to control strategies aimed at reducing shedding and susceptibility, as well as interventions informed by network measures. The results showed that including local spread and season improved agreement with prevalence studies. Also, control strategies aimed at reducing the average shedding rate were more efficient in reducing the VTEC O157 prevalence than strategies based on network measures. The methodology presented in this study could provide a basis for developing disease surveillance on regional and national scales, where observed data are combined with readily available high-resolution data in simulations to get an overview of potential disease spread in unobserved regions.
Collapse
Affiliation(s)
- Stefan Widgren
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89, Uppsala, Sweden. .,Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden.
| | - Stefan Engblom
- Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Ann Lindberg
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89, Uppsala, Sweden
| |
Collapse
|
8
|
Tamminen LM, Fransson H, Tråvén M, Aspán A, Alenius S, Emanuelson U, Dreimanis I, Törnquist M, Eriksson E. Effect of on-farm interventions in the aftermath of an outbreak of hypervirulent verocytotoxin-producing Escherichia coli
O157:H7 in Sweden. Vet Rec 2018; 182:516. [DOI: 10.1136/vr.104223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 11/13/2017] [Accepted: 01/21/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Lena-Mari Tamminen
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Helena Fransson
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Madeleine Tråvén
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Anna Aspán
- Department of Microbiology; National Veterinary Institute; Uppsala Sweden
| | - Stefan Alenius
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Ulf Emanuelson
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | | | | | - Erik Eriksson
- Department of Microbiology; National Veterinary Institute; Uppsala Sweden
| |
Collapse
|
9
|
Lahti E, Rehn M, Ockborn G, Hansson I, Ågren J, Engvall EO, Jernberg C. Outbreak of Campylobacteriosis Following a Dairy Farm Visit: Confirmation by Genotyping. Foodborne Pathog Dis 2017; 14:326-332. [PMID: 28350214 DOI: 10.1089/fpd.2016.2257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In April-May 2014, an outbreak of campylobacteriosis occurred after a preschool visit to a dairy farm in the South Western part of Sweden. During the visit, a meal, including unpasteurized milk, was served. A retrospective cohort study using a web-based questionnaire was performed among the participants (n = 30) of the farm visit. A total of 24 of the 30 (80%) cohort members completed the questionnaire. Eleven cases were identified, and Campylobacter jejuni was isolated from eight of them. Seven of the cases were 2- to 7-year-old children. We found the highest attack rates among those who usually drink milk (45%) and those who consumed unpasteurized milk during the farm visit (42%). No cases were unexposed (risk ratio incalculable). As result of the farm investigation, Campylobacter was isolated from cattle on the farm. Genotyping with pulsed-field gel electrophoresis and whole genome sequencing confirmed that human and cattle isolates of C. jejuni belonged to one cluster. Thus, cattle on the farm are considered the source of infection, and the most likely vehicle of transmission was contaminated unpasteurized milk. We recommend consumption of heat-treated milk only and increased awareness of the risk of consuming unpasteurized milk.
Collapse
Affiliation(s)
- Elina Lahti
- 1 National Veterinary Institute , Uppsala, Sweden
| | - Moa Rehn
- 2 The Public Health Agency of Sweden , Solna, Sweden .,3 European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC) , Stockholm, Sweden
| | - Gunilla Ockborn
- 4 Smittskydd Västra Götaland , Södra Älvsborgs Sjukhus, Borås, Sweden
| | | | - Joakim Ågren
- 1 National Veterinary Institute , Uppsala, Sweden
| | | | | |
Collapse
|
10
|
Widgren S, Engblom S, Bauer P, Frössling J, Emanuelson U, Lindberg A. Data-driven network modelling of disease transmission using complete population movement data: spread of VTEC O157 in Swedish cattle. Vet Res 2016; 47:81. [PMID: 27515697 PMCID: PMC4982012 DOI: 10.1186/s13567-016-0366-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
European Union legislation requires member states to keep national databases of all bovine animals. This allows for disease spread models that includes the time-varying contact network and population demographic. However, performing data-driven simulations with a high degree of detail are computationally challenging. We have developed an efficient and flexible discrete-event simulator SimInf for stochastic disease spread modelling that divides work among multiple processors to accelerate the computations. The model integrates disease dynamics as continuous-time Markov chains and livestock data as events. In this study, all Swedish livestock data (births, movements and slaughter) from July 1st 2005 to December 31st 2013 were included in the simulations. Verotoxigenic Escherichia coli O157:H7 (VTEC O157) are capable of causing serious illness in humans. Cattle are considered to be the main reservoir of the bacteria. A better understanding of the epidemiology in the cattle population is necessary to be able to design and deploy targeted measures to reduce the VTEC O157 prevalence and, subsequently, human exposure. To explore the spread of VTEC O157 in the entire Swedish cattle population during the period under study, a within- and between-herd disease spread model was used. Real livestock data was incorporated to model demographics of the population. Cattle were moved between herds according to real movement data. The results showed that the spatial pattern in prevalence may be due to regional differences in livestock movements. However, the movements, births and slaughter of cattle could not explain the temporal pattern of VTEC O157 prevalence in cattle, despite their inherently distinct seasonality.
Collapse
Affiliation(s)
- Stefan Widgren
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Stefan Engblom
- Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Pavol Bauer
- Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Jenny Frössling
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 234, 532 23 Skara, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ann Lindberg
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
11
|
Widgren S, Söderlund R, Eriksson E, Fasth C, Aspan A, Emanuelson U, Alenius S, Lindberg A. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Prev Vet Med 2015; 121:343-52. [PMID: 26321656 DOI: 10.1016/j.prevetmed.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Verotoxigenic Escherichia coli O157:H7 (VTEC O157:H7) is an important zoonotic pathogen capable of causing infections in humans, sometimes with severe symptoms such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). It has been reported that a subgroup of VTEC O157:H7, referred to as clade 8, is overrepresented among HUS cases. Cattle are considered to be the main reservoir of VTEC O157:H7 and infected animals shed the bacteria in feces without showing clinical signs of disease. The aims of the present study were: (1) to better understand how the presence of VTEC O157:H7 in the farm environment changes over an extended period of time, (2) to investigate potential risk factors for the presence of the bacteria, and (3) describe the distribution of MLVA types and specifically the occurrence of the hypervirulent strains (clade 8 strains) of VTEC O157:H7. The farm environment of 126 cattle herds in Sweden were sampled from October 2009 to December 2012 (38 months) using pooled pat and overshoe sampling. Each herd was sampled, on average, on 17 occasions (range=1-20; median=19), at intervals of 64 days (range=7-205; median=58). Verotoxigenic E. coli O157:H7 were detected on one or more occasions in 53% of the herds (n=67). In these herds, the percentage of positive sampling occasions ranged from 6% to 72% (mean=19%; median=17%). Multi-locus variable number tandem repeat analysis (MLVA) typing was performed on isolates from infected herds to identify hypervirulent strains (clade 8). Clustering of MLVA profiles yielded 35 clusters and hypervirulent strains were found in 18 herds; the same cluster was often identified on consecutive samplings and in nearby farms. Using generalized estimating equations, an association was found between the probability of detecting VTEC O157:H7 and status at the preceding sampling, season, herd size, infected neighboring farms and recent introduction of animals. This study showed that the bacteria VTEC O157:H7 were spontaneously cleared from the farm environment in most infected herds over time, and key factors were identified to prevent the spread of VTEC O157:H7 between cattle herds.
Collapse
Affiliation(s)
| | | | - Erik Eriksson
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Anna Aspan
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | - Ann Lindberg
- National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
12
|
Eriksson H, Bagge E, Båverud V, Fellström C, Jansson DS. Erysipelothrix rhusiopathiaecontamination in the poultry house environment during erysipelas outbreaks in organic laying hen flocks. Avian Pathol 2014; 43:231-7. [DOI: 10.1080/03079457.2014.907485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|