1
|
Carvalho CS, de Aquino VMS, Meyer R, Seyffert N, Castro TLP. Diagnosis of bacteria from the CMNR group in farm animals. Comp Immunol Microbiol Infect Dis 2024; 113:102230. [PMID: 39236397 DOI: 10.1016/j.cimid.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
The CMNR group comprises bacteria of the genera Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus and share cell wall and DNA content characteristics. Many pathogenic CMNR bacteria cause diseases such as mastitis, lymphadenitis, and pneumonia in farmed animals, which cause economic losses for breeders and represent a threat to public health. Traditional diagnosis in CMNR involves isolating target bacteria on general or selective media and conducting metabolic analyses with the assistance of laboratory biochemical identification systems. Advanced mass spectrometry may also support diagnosing these bacteria in the clinic's daily routine despite some challenges, such as the need for isolated bacteria. In difficult identification among some CMNR members, molecular methods using polymerase chain reaction (PCR) emerge as reliable options for correct specification that is sometimes achieved directly from clinical samples such as tracheobronchial aspirates and feces. On the other hand, immunological diagnostics such as the skin test or Enzyme-Linked Immunosorbent Assay (ELISA) for Mycobacterium tuberculosis yield promising results in subclinical infections with no bacterial growth involved. In this review, we present the methods most commonly used to diagnose pathogenic CMNR bacteria and discuss their advantages and limitations, as well as challenges and perspectives on adopting new technologies in diagnostics.
Collapse
Affiliation(s)
- Cintia Sena Carvalho
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vitória M S de Aquino
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Núbia Seyffert
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Thiago L P Castro
- Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
2
|
Diana L, Mastroianni L, Diana V, Puentes R. Streptococcus spp. isolated from bovine mastitis: Antimicrobial sensitivity studies and disagreement evaluation between routine phenotypic diagnosis and molecular identification. Rev Argent Microbiol 2024:S0325-7541(24)00088-9. [PMID: 39304366 DOI: 10.1016/j.ram.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
Bovine mastitis poses a significant threat to global dairy production, resulting in substantial losses in milk production. Streptococcus bacteria, particularly Streptococcus uberis, Streptococcus agalactiae, and Streptococcus dysgalactiae, are commonly implicated in this condition. An accurate diagnosis is crucial for implementing effective treatment and minimizing its impact on production. This study examined 115 Streptococcus strains isolated from bovine mastitis cases in Uruguay using PCR for species identification. Additionally, the resistance to tetracycline, erythromycin, and penicillin was assessed in 81 of the bacterial strains under study. Significant disparities between phenotypic and genotypic detection were evident across all three species, with only 31% of strains identified phenotypically aligning with PCR results. Phenotypic prevalence indicated S. dysgalactiae as the most prevalent (44.35%), followed by S. uberis (24.34%) and S. agalactiae (6.09%). However, the genotypic identification revealed S. uberis as the most prevalent, followed by S. dysgalactiae, while S. agalactiae remained the least prevalent. The high sensitivity and speed of PCR suggest its potential routine implementation for diagnosing bovine mastitis caused by Streptococcus in any laboratory. Although, penicillin resistance was practically nonexistent, tetracycline and erythromycin exhibit higher resistance levels across all three species studied. In conclusion, the study underlines the importance of early diagnosis, highlights variations in bacterial prevalence, and proposes PCR as a valuable diagnostic tool for Streptococcus species responsible for bovine mastitis.
Collapse
Affiliation(s)
- Leticia Diana
- Laboratorio de Microbiología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
| | - Lucas Mastroianni
- Laboratorio de Microbiología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | | | - Rodrigo Puentes
- Laboratorio de Microbiología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Korelidou V, Simitzis P, Massouras T, Gelasakis AI. Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants. Animals (Basel) 2024; 14:2691. [PMID: 39335280 PMCID: PMC11429297 DOI: 10.3390/ani14182691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Among the health issues of major concern in dairy ruminants, mastitis stands out as being associated with considerable losses in productivity and compromised animal health and welfare. Currently, the available methods for the early detection of mastitis are either inaccurate, requiring further validation, or expensive and labor intensive. Moreover, most of them cannot be applied at the point of care. Infrared thermography (IRT) is a rapid, non-invasive technology that can be used in situ to measure udder temperature and identify variations and inconsistencies thereof, serving as a benchmarking tool for the assessment of udders' physiological and/or health status. Despite the numerous applications in livestock farming, IRT is still underexploited due to the lack of standardized operation procedures and significant gaps regarding the optimum settings of the thermal cameras, which are currently exploited on a case-specific basis. Therefore, the objective of this review paper was twofold: first, to provide the state of knowledge on the applications of IRT for the assessment of udder health status in dairy ruminants, and second, to summarize and discuss the major strengths and weaknesses of IRT application at the point of care, as well as future challenges and opportunities of its extensive adoption for the diagnosis of udder health status and control of mastitis at the animal and herd levels.
Collapse
Affiliation(s)
- Vera Korelidou
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| | - Panagiotis Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| | - Theofilos Massouras
- Laboratory of Dairy Science and Technology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75 Str., 11855 Athens, Greece
| | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| |
Collapse
|
4
|
Zhang X, Li Y, Zhang Y, Yao Z, Zou W, Nie P, Yang L. A New Method to Detect Buffalo Mastitis Using Udder Ultrasonography Based on Deep Learning Network. Animals (Basel) 2024; 14:707. [PMID: 38473092 DOI: 10.3390/ani14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Mastitis is one of the most predominant diseases with a negative impact on ranch products worldwide. It reduces milk production, damages milk quality, increases treatment costs, and even leads to the premature elimination of animals. In addition, failure to take effective measures in time will lead to widespread disease. The key to reducing the losses caused by mastitis lies in the early detection of the disease. The application of deep learning with powerful feature extraction capability in the medical field is receiving increasing attention. The main purpose of this study was to establish a deep learning network for buffalo quarter-level mastitis detection based on 3054 ultrasound images of udders from 271 buffaloes. Two data sets were generated with thresholds of somatic cell count (SCC) set as 2 × 105 cells/mL and 4 × 105 cells/mL, respectively. The udders with SCCs less than the threshold value were defined as healthy udders, and otherwise as mastitis-stricken udders. A total of 3054 udder ultrasound images were randomly divided into a training set (70%), a validation set (15%), and a test set (15%). We used the EfficientNet_b3 model with powerful learning capabilities in combination with the convolutional block attention module (CBAM) to train the mastitis detection model. To solve the problem of sample category imbalance, the PolyLoss module was used as the loss function. The training set and validation set were used to develop the mastitis detection model, and the test set was used to evaluate the network's performance. The results showed that, when the SCC threshold was 2 × 105 cells/mL, our established network exhibited an accuracy of 70.02%, a specificity of 77.93%, a sensitivity of 63.11%, and an area under the receiver operating characteristics curve (AUC) of 0.77 on the test set. The classification effect of the model was better when the SCC threshold was 4 × 105 cells/mL than when the SCC threshold was 2 × 105 cells/mL. Therefore, when SCC ≥ 4 × 105 cells/mL was defined as mastitis, our established deep neural network was determined as the most suitable model for farm on-site mastitis detection, and this network model exhibited an accuracy of 75.93%, a specificity of 80.23%, a sensitivity of 70.35%, and AUC 0.83 on the test set. This study established a 1/4 level mastitis detection model which provides a theoretical basis for mastitis detection in buffaloes mostly raised by small farmers lacking mastitis diagnostic conditions in developing countries.
Collapse
Affiliation(s)
- Xinxin Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiping Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiu Yao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenna Zou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Nie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Saenz-de-Juano MD, Silvestrelli G, Ulbrich SE. One-week storage of refrigerated bovine milk does not affect the size, concentration, or molecular properties of extracellular vesicles. J Dairy Sci 2024; 107:1164-1174. [PMID: 37709026 DOI: 10.3168/jds.2023-23726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Milk extracellular vesicles (EV) have gained extensive attention as promising diagnostic and therapeutic tools. Pre-analytical raw milk storage at low temperatures is an ordinary and usually necessary step after sample collection. It is known that direct freezing of unprocessed whole milk contaminates the native pool of milk EV with other cell structures. However, less evidence is available regarding prolonged cooling at 4°C. The current study assessed whether pre-analytical storage of bovine raw milk for several days affected EV isolation and further analysis. To confirm the independence from the health status of the mammary gland, we analyzed milk samples stored at 4°C for 1, 2, 3, and 7 d past collection, respectively, from 2 quarters of the same cow with different somatic cell counts (SCC). Seven days of refrigeration did not change the milk EV size, concentration, or morphology. We did not detect any changes in the EV cargo regarding the amount of protein and RNA, nor in the specific EV markers TSG101, CD9, and CD81 in milk from quarters with high and low SCC. Overall, we observed fewer CD81 and CD9 markers in quarters with high SCC. Moreover, we found no reduction in the mastitis-related miRNA bta-miR-223-3p, suggesting that refrigeration for several days up to 1 wk is a possible storage option compatible with further EV analyses. The findings of this study enhance the confidence that milk EV are highly stable in the raw milk matrix.
Collapse
Affiliation(s)
- Mara D Saenz-de-Juano
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Giulia Silvestrelli
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Rust JD, Christian MJ, Vance CJ, Bolajoko MB, Wong JT, Suarez-Martinez J, Allan FK, Peters AR. A study of the effectiveness of a detergent-based California mastitis test (CMT), using Ethiopian and Nigerian domestic detergents, for the detection of high somatic cell counts in milk and their reliability compared to the commercial UK CMT. Gates Open Res 2023; 5:146. [PMID: 37362381 PMCID: PMC10285044 DOI: 10.12688/gatesopenres.13369.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background: The California mastitis test (CMT) is a simple cow-side indicator of the somatic cell count (SCC) in milk, providing a useful tool in identifying cases of subclinical mastitis in cattle. Mastitis, and in particular subclinical mastitis, is a major concern in Ethiopia and Nigeria, yet detection is challenging due to cost and access to commercial CMT reagents. Methods: Commercially available domestic detergents from Ethiopia and Nigeria were compared (n = 3 for each country) with the UK commercial CMT reagent in their ability to detect high SCC (>400,000 cells/ml milk). Sensitivity and specificity of the CMT test were calculated for the different detergents and positive and negative predictive values were established. Results: The average sensitivities of the tests ranged from 28-75% for the Ethiopian detergents and 68-80% for the Nigerian detergents, compared to 76% for the UK domestic detergent. Test specificities were 84-98%, 93-97% and 96%, respectively. Conclusions: Overall, the detergents demonstrated higher specificity than sensitivity. Nigerian detergents performed better than the Ethiopian products, however, the study identified suitable domestic detergents from both Ethiopia and Nigeria, comparable to the UK commercial CMT reagent, and we recommend their use as alternative CMT reagents for livestock-keepers to aid in cost-effective diagnosis of mastitis.
Collapse
Affiliation(s)
- Jack D. Rust
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Michael J. Christian
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ciara J. Vance
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Johanna T. Wong
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jeimmy Suarez-Martinez
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fiona K. Allan
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Andrew R. Peters
- Centre for Supporting Evidence Based Interventions-Livestock, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
8
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. Plant Essential Oils as a Tool in the Control of Bovine Mastitis: An Update. Molecules 2023; 28:molecules28083425. [PMID: 37110657 PMCID: PMC10141161 DOI: 10.3390/molecules28083425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine mastitis is a major concern for the dairy cattle community worldwide. Mastitis, subclinical or clinical, can be caused by contagious or environmental pathogens. Costs related to mastitis include direct and indirect losses, leading to global annual losses of USD 35 billion. The primary treatment of mastitis is represented by antibiotics, even if that results in the presence of residues in milk. The overuse and misuse of antibiotics in livestock is contributing to the development of antimicrobial resistance (AMR), resulting in a limited resolution of mastitis treatments, as well as a serious threat for public health. Novel alternatives, like the use of plant essential oils (EOs), are needed to replace antibiotic therapy when facing multidrug-resistant bacteria. This review aims to provide an updated overview of the in vitro and in vivo studies available on EOs and their main components as an antibacterial treatment against a variety of mastitis causing pathogens. There are many in vitro studies, but only several in vivo. Given the promising results of treatments with EOs, further clinical trials are needed.
Collapse
Affiliation(s)
- Alice Caneschi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| |
Collapse
|
9
|
Neculai-Valeanu AS, Ariton AM. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering (Basel) 2022; 9:608. [PMID: 36354519 PMCID: PMC9687184 DOI: 10.3390/bioengineering9110608] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/05/2023] Open
Abstract
To maximize milk production, efficiency, and profits, modern dairy cows are genetically selected and bred to produce more and more milk and are fed copious quantities of high-energy feed to support ever-increasing milk volumes. As demands for increased milk yield and milking efficiency continue to rise to provide for the growing world population, more significant stress is placed on the dairy cow's productive capacity. In this climate, which is becoming increasingly hotter, millions of people depend on the capacity of cattle to respond to new environments and to cope with temperature shocks as well as additional stress factors such as solar radiation, animal crowding, insect pests, and poor ventilation, which are often associated with an increased risk of mastitis, resulting in lower milk quality and reduced production. This article reviews the impact of heat stress on milk production and quality and emphasizes the importance of udder health monitoring, with a focus on the use of emergent methods for monitoring udder health, such as infrared thermography, biosensors, and lab-on-chip devices, which may promote animal health and welfare, as well as the quality and safety of dairy products, without hindering the technological flow, while providing significant benefits to farmers, manufacturers, and consumers.
Collapse
|
10
|
Dendani Chadi Z, Dib L, Zeroual F, Benakhla A. Usefulness of molecular typing methods for epidemiological and evolutionary studies of Staphylococcus aureus isolated from bovine intramammary infections. Saudi J Biol Sci 2022; 29:103338. [PMID: 35813112 PMCID: PMC9257419 DOI: 10.1016/j.sjbs.2022.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
In cattle, Staphylococcus aureus is a major pathogen of increasing importance due to its association with intramammary infections (IMIs), which are a primary cause of antibiotic use on farms and thus of the rise in antibiotic resistance. Methicillin-resistant S. aureus (MRSA), which are frequently isolated from cases of bovine mastitis, represent a public health problem worldwide. Understanding the epidemiology and the evolution of these strains relies on typing methods. Such methods were phenotypic at first, but more recently, molecular methods have been increasingly utilized. Multiple-locus variable number tandem repeat analysis (MLVA), a high-throughput molecular method for determining genetic diversity and the emergence of host- or udder-adapted clones, appears to be the most useful PCR-based method. Despite the difficulties present in reproducibility, interlaboratory reliability, and hard work, it is agreed that pulsed-field gel electrophoresis (PFGE) remains the gold standard, particularly for short-term surveillance. Multilocus sequence typing (MLST) is a good typing method for long-term and global epidemiological investigations, but it is not suitable for outbreak investigations. Staphylococcal protein A (spa) typing is the most widely used method today for first-line typing in the study of molecular evolution, and outbreaks investigations. Staphylococcal cassette chromosome mec (SCCmec) typing has gained popularity for the evolutionary analysis of MRSA strains. Whole-genome sequencing (WGS) and DNA microarrays that represent relatively new DNA-based technologies, provide more information for tracking antibioresistant and virulent outbreak strains. They offer a higher discriminatory power, but are not suitable for routine use in clinical veterinary medicine at this time. Descriptions of the evolution of these methods, their advantages, and limitations are given in this review.
Collapse
Affiliation(s)
- Zoubida Dendani Chadi
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Loubna Dib
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Fayçal Zeroual
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Ahmed Benakhla
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| |
Collapse
|
11
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
12
|
Kusumawati A, Mustopa AZ, Wibawan IWT, Setiyono A, Sudarwanto MB. A sequential toggle cell-SELEX DNA aptamer for targeting Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli bacteria. J Genet Eng Biotechnol 2022; 20:95. [PMID: 35776386 PMCID: PMC9249959 DOI: 10.1186/s43141-022-00374-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mastitis is an inflammation of the mammary glands caused by a microbial infection. The common bacteria causing this infection in dairy farms are Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. The aptamer is a new biosensor platform for detecting pathogens; however, its use for simultaneous detection of S. aureus, S. agalactiae, and E. coli bacteria has not been reported. This study's objective is to isolate and characterize polyclonal DNA aptamer with broad reactivity to the mastitis bacteria S. aureus, S. agalactiae, and E. coli using a sequential toggle cell-SELEX. METHODS AND RESULTS The DNA aptamer pool from SELEX 15 was inserted into the pGEM-T easy plasmid. Furthermore, the transformant clones were selected by PCR colony, plasmid isolation, and sequencing. Six DNA aptamers, consisting of S15K3, S15K4, S15K6, S15K13, S15K15, and S15K20 with a constant region and the right size of 81 bp were derived from the sequencing analysis. The secondary structure of the DNA was predicted using Mfold software. The DNA was analyzed with binding characteristics, including binding capacity and affinity (Kd), using qPCR. The results indicated aptamer S15K15 has the highest binding ability into S. agalactiae, while S15K13 performed binding capacity most to E. coli EPEC 4, and S15K3 has the highest capacity of binding to S. aureus BPA-12. CONCLUSION Aptamer S15K3 has the best binding characteristics on all three bacterial targets.
Collapse
Affiliation(s)
- Arizah Kusumawati
- Study Program of Veterinary Public Health, IPB Graduate School, IPB University, Bogor, Indonesia
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911 Indonesia
| | - Apon Zaenal Mustopa
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911 Indonesia
| | - I. Wayan Teguh Wibawan
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Agatis Street, Dramaga, Bogor, West Java 16680 Indonesia
| | - Agus Setiyono
- Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Mirnawati Bachrum Sudarwanto
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
13
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
14
|
Saenz-de-Juano MD, Silvestrelli G, Bauersachs S, Ulbrich SE. Determining extracellular vesicles properties and miRNA cargo variability in bovine milk from healthy cows and cows undergoing subclinical mastitis. BMC Genomics 2022; 23:189. [PMID: 35255807 PMCID: PMC8903571 DOI: 10.1186/s12864-022-08377-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subclinical mastitis, the inflammation of the mammary gland lacking clinical symptoms, is one of the most prevalent and costly diseases in dairy farming worldwide. Milk microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) have been proposed as potential biomarkers of different mammary gland conditions, including subclinical mastitis. However, little is known about the robustness of EVs analysis regarding sampling time-point and natural infections. To estimate the reliability of EVs measurements in raw bovine milk, we first evaluated changes in EVs size and concentration using Tunable Resistive Pulse Sensing (TRPS) during three consecutive days of sampling. Then, we analysed daily differences in miRNA cargo using small RNA-seq. Finally, we compared milk EVs differences from naturally infected udder quarters with their healthy adjacent quarters and quarters from uninfected udders, respectively. Results We found that the milk EV miRNA cargo was very stable over the course of three days regardless of the health status of the quarter, and that infected quarters did not induce relevant changes in milk EVs of adjacent healthy quarters. Chronic subclinical mastitis induced changes in milk EV miRNA cargo, but neither in EVs size nor concentration. We observed that the changes in immunoregulatory miRNAs in quarters with chronic subclinical mastitis were cow-individual, however, the most upregulated miRNA was bta-miR-223-3p across all individuals. Conclusions Our results showed that the miRNA profile and particle size characteristics remained constant throughout consecutive days, suggesting that miRNAs packed in EVs are physiological state-specific. In addition, infected quarters were solely affected while adjacent healthy quarters remained unaffected. Finally, the cow-individual miRNA changes pointed towards infection-specific alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08377-z.
Collapse
Affiliation(s)
- Mara D Saenz-de-Juano
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland
| | - Giulia Silvestrelli
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Functional Genomics, University of Zurich, Eschikon 27, AgroVet-Strickhof, 8315, Lindau, ZH, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland.
| |
Collapse
|
15
|
Yuan Z, Wang J, Che R, God’spower BO, Zhou Y, Dong C, Li L, Chen M, Eliphaz N, Liu X, Li Y. Relationship between L-lactate dehydrogenase and multidrug resistance in Staphylococcus xylosus. Arch Microbiol 2021; 204:91. [DOI: 10.1007/s00203-021-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
16
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Rust JD, Christian MJ, Vance CJ, Bolajoko MB, Wong JT, Suarez-Martinez J, Allan FK, Peters AR. A study of the effectiveness of a detergent-based California mastitis test (CMT), using Ethiopian and Nigerian domestic detergents, for the detection of high somatic cell counts in milk and their reliability compared to the commercial UK CMT. Gates Open Res 2021. [DOI: 10.12688/gatesopenres.13369.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The California mastitis test (CMT) is a simple cow-side indicator of the somatic cell count (SCC) in milk, providing a useful tool in identifying cases of subclinical mastitis in cattle. Mastitis, and in particular subclinical mastitis, is a major concern in Ethiopia and Nigeria, yet detection is challenging due to cost and access to commercial CMT reagents. Methods: Commercially available domestic detergents from Ethiopia and Nigeria were compared (n = 3 for each country) with the UK commercial CMT reagent in their ability to detect high SCC (>400,000 cells/ml milk). Sensitivity and specificity of the CMT test were calculated for the different detergents and positive and negative predictive values were established. Results: The average sensitivities of the tests ranged from 28-75% for the Ethiopian detergents and 68-80% for the Nigerian detergents, compared to 76% for the UK domestic detergent. Test specificities were 84-98%, 93-97% and 96%, respectively. Conclusions: Overall, the detergents demonstrated higher specificity than sensitivity. Nigerian detergents performed better than the Ethiopian products, however, the study identified suitable domestic detergents from both Ethiopia and Nigeria, comparable to the UK commercial CMT reagent, and we recommend their use as alternative CMT reagents for livestock-keepers to aid in cost-effective diagnosis of mastitis.
Collapse
|
18
|
Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, Singh AK, Macesic N, Lee SJ, Gupta MK. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J Biol Sci 2021; 28:5081-5093. [PMID: 34466086 PMCID: PMC8381015 DOI: 10.1016/j.sjbs.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Fast and precise diagnosis of infectious and non-infectious animal diseases and their targeted treatments are of utmost importance for their clinical management. The existing biochemical, serological and molecular methods of disease diagnosis need improvement in their specificity, sensitivity and cost and, are generally not amenable for being used as points-of-care (POC) device. Further, with dramatic changes in environment and farm management practices, one should also arm ourselves and prepare for emerging and re-emerging animal diseases such as cancer, prion diseases, COVID-19, influenza etc. Aptamer – oligonucleotide or short peptides that can specifically bind to target molecules – have increasingly become popular in developing biosensors for sensitive detection of analytes, pathogens (bacteria, virus, fungus, prions), drug residues, toxins and, cancerous cells. They have also been proven successful in the cellular delivery of drugs and targeted therapy of infectious diseases and physiological disorders. However, the in vivo application of aptamer-mediated biosensing and therapy in animals has been limited. This paper reviews the existing reports on the application of aptamer-based biosensors and targeted therapy in animals. It also dissects the various modifications to aptamers that were found to be successful in in vivo application of the aptamers in diagnostics and therapeutics. Finally, it also highlights major challenges and future directions in the application of aptamers in the field of veterinary medicine.
Collapse
Affiliation(s)
- Sapna Devi
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
- Corresponding author at: Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu and Kashmir 181102, India.
| | - Touqeer Ahmed
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Zul I. Huma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Amit Kumar Singh
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, U.P., India
| | - Nino Macesic
- Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sung Jin Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
19
|
Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. The Role of Streptococcus spp. in Bovine Mastitis. Microorganisms 2021; 9:1497. [PMID: 34361932 PMCID: PMC8305581 DOI: 10.3390/microorganisms9071497] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
The Streptococcus genus belongs to one of the major pathogen groups inducing bovine mastitis. In the dairy industry, mastitis is the most common and costly disease. It not only negatively impacts economic profit due to milk losses and therapy costs, but it is an important animal health and welfare issue as well. This review describes a classification, reservoirs, and frequencies of the most relevant Streptococcus species inducing bovine mastitis (S. agalactiae, S. dysgalactiae and S. uberis). Host and environmental factors influencing mastitis susceptibility and infection rates will be discussed, because it has been indicated that Streptococcus herd prevalence is much higher than mastitis rates. After infection, we report the sequence of cow immune reactions and differences in virulence factors of the main Streptococcus species. Different mastitis detection techniques together with possible conventional and alternative therapies are described. The standard approach treating streptococcal mastitis is the application of ß-lactam antibiotics. In streptococci, increased antimicrobial resistance rates were identified against enrofloxacin, tetracycline, and erythromycin. At the end, control and prevention measures will be considered, including vaccination, hygiene plan, and further interventions. It is the aim of this review to estimate the contribution and to provide detailed knowledge about the role of the Streptococcus genus in bovine mastitis.
Collapse
Affiliation(s)
- Tina Kabelitz
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Etienne Aubry
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (E.A.); (K.v.V.); (M.F.)
| | - Kira van Vorst
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (E.A.); (K.v.V.); (M.F.)
| | - Thomas Amon
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Marcus Fulde
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (E.A.); (K.v.V.); (M.F.)
| |
Collapse
|
20
|
Fasina YO, Obanla T, Dosu G, Muzquiz S. Significance of Endogenous Antimicrobial Peptides on the Health of Food Animals. Front Vet Sci 2021; 8:585266. [PMID: 34262957 PMCID: PMC8273337 DOI: 10.3389/fvets.2021.585266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Acquired resistance to in-feed antibiotic growth promoters continues to be an imperative problem in the livestock industries, thereby necessitating continuous pursuit for alternatives. Antimicrobial peptides (AMPs) represent a critical part of the host's innate immune system and have been documented to have immunomodulatory activity. Increasing research evidence suggests that in contrast to antibiotics, AMPs exert broad-spectrum antibacterial activity in a manner that reduces bacterial acquisition of resistance genes. This review summarizes current knowledge on the protective effects of endogenous (natural) AMPs in the gastrointestinal tract of food animals. Factors limiting the efficacy of these AMPs were also discussed and mitigating strategies were proposed.
Collapse
Affiliation(s)
- Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Temitayo Obanla
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - George Dosu
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Sierra Muzquiz
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
21
|
Susmitha A, Bajaj H, Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. ACTA ACUST UNITED AC 2021; 7:100055. [PMID: 34195501 PMCID: PMC8225981 DOI: 10.1016/j.tcsw.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The bacterial cell wall contains numerous surface-exposed proteins, which are covalently anchored and assembled by a sortase family of transpeptidase enzymes. The sortase are cysteine transpeptidases that catalyzes the covalent attachment of surface protein to the cell wall peptidoglycan. Among the reported six classes of sortases, each distinct class of sortase plays a unique biological role in anchoring a variety of surface proteins to the peptidoglycan of both pathogenic and non-pathogenic Gram-positive bacteria. Sortases not only exhibit virulence and pathogenesis properties to host cells, but also possess a significant role in gut retention and immunomodulation in probiotic microbes. The two main distinct functions are to attach proteins directly to the cell wall or assemble pili on the microbial surface. This review provides a compendium of the distribution of different classes of sortases present in both pathogenic and non-pathogenic Gram-positive bacteria and also the noteworthy role played by them in bacterial cell wall assembly which enables each microbe to effectively interact with its environment.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Efficacy of Natural Formulations in Bovine Mastitis Pathology: Alternative Solution to Antibiotic Treatment. J Vet Res 2020; 64:523-529. [PMID: 33367141 PMCID: PMC7734678 DOI: 10.2478/jvetres-2020-0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Bovine mastitis is an inflammatory disease of the udder that causes important economic losses in the animal breeding and dairy product industries. Nowadays, the conventional livestock antibiotic treatments are slowly being replaced by alternative treatments. In this context, the main aim of this study was to evaluate the efficacy of natural products in alternative treatment of bovine mastitis. Material and Methods Two natural formulations with previously suggested in vitro antimicrobial effect were tested in vivo on mastitic cows. Animals with a positive diagnosis for mastitis (n = 20) were divided into three treatment groups: two groups (n = 8) were administered formulations of propolis, alcoholic extracts of Brewers Gold and Perle hops, plum lichen, common mallow, marigold, absinthe wormwood, black poplar buds, lemon balm, and essential oils of oregano, lavender, and rosemary designated R4 and R7 (differing only in the latter being more concentrated) and one group (n = 4) a conventional antibiotic mixture. In vivo efficacy of treatments was evaluated by somatic cell and standard plate counts, the treatment being considered efficacious when both parameters were under the maximum limit. Results R7 was effective in the most cases, being therapeutically bactericidal in six out of eight cows, while R4 gave good results in three out of eight cows, and conventional antibiotics cured one out of four. Conclusion These results suggest the possible therapeutic potential of these natural products in bovine mastitis.
Collapse
|
23
|
Griffioen K, Cornelissen J, Heuvelink A, Adusei D, Mevius D, Jan van der Wal F. Development and evaluation of 4 loop-mediated isothermal amplification assays to detect mastitis-causing bacteria in bovine milk samples. J Dairy Sci 2020; 103:8407-8420. [PMID: 32564949 DOI: 10.3168/jds.2019-18035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Farmers prefer fast, sensitive, and on-site tests for treatment decisions on mastitis. Due to the time to results of the currently available diagnostic tools, these are rarely used for that purpose. Genotypic tests that do not require a growth step may be suitable for on-site testing, for example loop-mediated isothermal amplification (LAMP), which has been described as a sensitive test that can be used on-site. Therefore, this study aimed to develop and evaluate LAMP assays for the detection of a subset of mastitis-causing pathogens, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus spp., in milk from cows with clinical mastitis. Furthermore, a generic nucleic acid lateral flow immunoassay (NALFIA) was evaluated as a potential on-site readout of the LAMP assays. For each assay of LAMP and NALFIA, the limit of detection and analytical specificity were determined using isolates, and the diagnostic specificity was determined using selected samples with known etiology. In addition, the diagnostic specificity of LAMP was determined using field samples with unknown etiology at testing. Bacteriological culture with identification by mass spectrometry was used as a reference method. The 4 assays had a kappa ≥0.73 with the reference method when testing the selected samples, but ≥0.47 when testing field samples. After correcting for prevalence, kappa was ≥0.80 for the E. coli, K. pneumoniae, and Staph. aureus assays. The Streptococcus spp. assay had a kappa of 0.47 (0.48 after correction) with the reference method, probably caused by the assay broadly targeting a genus instead of a particular species. The NALFIA readout was found to have kappa ≥0.81 for the E. coli, Staph. aureus, and Streptococcus spp. assays at a generic runtime, but for the K. pneumoniae assay a shorter runtime could be used. In conclusion, LAMP is a promising method for fast on-site tests for mastitis-causing pathogens if the current elaborate method for sample preparation is replaced by a simplified protocol. The NALFIA is an easy and reliable readout for on-site use, with the observation that for the current assay designs a generic runtime is not yet possible for the chosen set of pathogens. If associated with a simple and fast sample preparation protocol, the combination of LAMP and NALFIA has the potential to enable fast and reliable on-site testing of clinical mastitis milk samples.
Collapse
Affiliation(s)
- Karien Griffioen
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, PO Box 80151, 3508 TD Utrecht, the Netherlands.
| | - Jan Cornelissen
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | | - Daniela Adusei
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | - Dik Mevius
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80165, 3508 TD Utrecht, the Netherlands
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | |
Collapse
|
24
|
KEYVAN E, YURDAKUL O, DEMIRTAS A, YALCIN H, BILGEN N. Identification of Methicillin-Resistant Staphylococcus aureus in Bulk Tank Milk. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.35818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Chakraborty S, Dhama K, Tiwari R, Iqbal Yatoo M, Khurana SK, Khandia R, Munjal A, Munuswamy P, Kumar MA, Singh M, Singh R, Gupta VK, Chaicumpa W. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet Q 2020; 39:76-94. [PMID: 31288621 PMCID: PMC6830988 DOI: 10.1080/01652176.2019.1642546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mastitis, an inflammation of the udder, is a challenging problem in dairy animals accounting for high economic losses. Disease complexity, degree of economic losses and increasing importance of the dairy industries along with public health concerns envisages devising appropriate diagnostics of mastitis, which can offer rapid, accurate and confirmatory diagnosis. The various diagnostic tests of mastitis have been divided into general or phenotypic and specific or genotypic tests. General or phenotypic tests are those that identify general alterations, which are not specific to any pathogen. Genotypic tests are specific, hence confirmatory for diagnosis of mastitis and include specific culture, polymerase chain reaction (PCR) and its various versions (e.g. qRT-PCR), loop-mediated isothermal amplification, lateral flow assays, nucleotide sequencing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and other molecular diagnostic methods. However, for highly specific and confirmatory diagnosis, pure cultures still provide raw materials for more sophisticated diagnostic technological interventions like PCR and nucleotide sequencing. Diagnostic ability of like infra-red thermography (IRT) has been shown to be similar to California mastitis test and also differentiates clinical mastitis from subclinical mastitis cases. As such, IRT can become a convenient and portable diagnostic tool. Of note, magnetic nanoparticles-based colorimetric biosensor assay was developed by using for instance proteolytic activity of plasmin or anti-S. aureus antibody. Last but not least, microRNAs have been suggested to be potential biomarkers for diagnosing bovine mastitis. This review summarizes the various diagnostic tests available for detection of mastitis including diagnosis through general and specific technological interventions and advances.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar , India
| | | | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - M Asok Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
26
|
Wang J, Qu Q, Liu X, Cui W, Yu F, Chen X, Xing X, Zhou Y, Yang Y, Bello-Onaghise G, Chen X, Li X, Li Y. 1-Hydroxyanthraquinone exhibited antibacterial activity by regulating glutamine synthetase of Staphylococcus xylosus as a virulence factor. Biomed Pharmacother 2020; 123:109779. [PMID: 31918211 DOI: 10.1016/j.biopha.2019.109779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus xylosus (S. xylosus) is one of the emerging pathogens causing bovine mastitis with high rate of isolation in most of the reported clinical and field cases. To verify the role of glutamine synthetase (GS) in the pathogenesis of S. xylosus, we evaluated the virulence level of the wild-type strain and its glnA mutant strain in biofilm assays in vitro and murine infection model in vivo. From the results, it was observed that the glnA mutant strain was attenuated and could reduce tissue damage. 1-Hydroxyanthraquinone (1-HAQ) is a kind of anthraquinones, it exhibited a significant inhibitory effect on the growth of S. xylosus and biofilm formation in vitro and provided anti-inflammatory effects in vivo. In addition, the rate at which it inhibits the biofilm, inflammatory factors, and CFU of wild-type strains were significantly higher than that of the mutant strains, indicating that 1-hAQ might have pharmacological effects against S. xylosus through the regulation of GS protein. The effect of 1-hAQ on GS was further confirmed by the down-regulation of glnA expression, reduced GS activity, Gln content and the results of molecular docking. Taken together, these findings suggest that 1-hAQ facilitated a significant attenuation of S. xylosus pathogenicity by regulating the GS protein: a vital virulence factor. Therefore, it can be inferred that 1-hAQ may serve as a potential source of organic compound for the development of novel alternative drugs in mitigating the menace of bovine mastitis.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China; Basic Medical School, Gui Zhou University of Traditional Chinese Medicine, Gui Zhou 550000, China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Fei Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xingru Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xiaoxu Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Yanbei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - God'spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xiubo Li
- Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
27
|
Qu Q, Wang J, Cui W, Zhou Y, Xing X, Che R, Liu X, Chen X, Bello-Onaghise G, Dong C, Li Z, Li X, Li Y. In vitro activity and In vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target. PLoS One 2019; 14:e0226260. [PMID: 31860659 PMCID: PMC6924684 DOI: 10.1371/journal.pone.0226260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 μg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 μg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 μM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.
Collapse
Affiliation(s)
- Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xiaoxu Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Ruixiang Che
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Zhengze Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Xiubo Li
- Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang, P. R. China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Li L, Chen X, Chen Z. Identification of Key Candidate Genes in Dairy Cow in Response to Escherichia coli Mastitis by Bioinformatical Analysis. Front Genet 2019; 10:1251. [PMID: 31921295 PMCID: PMC6915111 DOI: 10.3389/fgene.2019.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
At present, bovine mastitis is one of the most costly diseases affecting animal health and welfare. Escherichia coli (E. coli) is considered to be one of the main pathogens causing mastitis with clinical signs in dairy cattle. However, the cure rate of E. coli mastitis is low, and the pathogenesis of E. coli mastitis is not completely known. In order to develop new strategies for the rapid detection of E. coli mastitis, a comprehensive molecular investigation of E. coli mastitis is necessary. Hence, this study integrated three microarray data sets to identify the potential key candidate genes in dairy cow in response to E. coli mastitis. Differentially expressed genes (DEGs) were screened in mammary gland tissues with live E. coli infection. Furthermore, the pathways enrichment of DEGs were analyzed, and the protein–protein interaction (PPI) network was performed. In total, 105 shared DEGs were identified from the three data sets. The DEGs were significantly enriched in biological processes mainly involved in immunity. The PPI network of DEGs was constructed with 102 nodes and 546 edges. The module with the highest score through MCODE analysis was filtered from PPI; 18 central node genes were identified. However, in addition to immune-related pathways, some of the 18 DEGs were involved in signaling pathways triggered by other diseases. Considering the specificity of biomarkers for rapid detection, IL8RB, CXCL6, and MMP9 were identified as the most potential biomarker for E. coli mastitis. In conclusion, the novel DEGs and pathways identified in this study can help to improve the diagnosis and treatment strategies for E. coli mastitis in cattle.
Collapse
Affiliation(s)
- Liabin Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xiuli Chen
- Animal Disease Prevention and Control Center of Hanzhong, Hanzhong, China
| | - Zeshi Chen
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
29
|
Restucci B, Dipineto L, Martano M, Balestrieri A, Ciccarelli D, Russo TP, Varriale L, Maiolino P. Histopathological and microbiological findings in buffalo chronic mastitis: evidence of tertiary lymphoid structures. J Vet Sci 2019; 20:e28. [PMID: 31161746 PMCID: PMC6538520 DOI: 10.4142/jvs.2019.20.e28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/26/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Buffalo mastitis is an important economic problem in southern Italy, causing qualitative/quantitative alterations in milk and resulting in economic losses due to the sub-clinical course and chronic evolution. We investigated 50 udders of slaughtered buffaloes and subjected them to effectual microbiological screening to evaluate macro and microscopic mammary gland changes, immune-characterize the cell infiltrates, and compare the degree of tissue inflammation with somatic cell counts. Numerous Gram-positive and Gram-negative bacteria were isolated from all samples, majority of which were environmental mastitis pathogens. Histological features referable to chronic mastitis were observed in 92% udders. Lymphocytes, plasma cells and macrophages were found to evolve into aggregates in 48% udders, which often organized to form tertiary lymphoid structures (TLSs). A predominance of interstitial CD8+ over CD4+ lymphocytes and, in TLSs, scattered CD8+ lymphocytes in the mantle cells and CD79+ lymphocytes in germinal centers, were evidenced. Environmental pathogens are known to persist and cause chronic inflammatory changes in buffaloes, where CD8+ lymphocytes play an important role by controlling the local immune response. Moreover, the TLSs evidenced here for the first time in buffalo mastitis, could play a role in maintaining immune responses against persistent antigens, thereby contributing in determining the chronic course of mastitis.
Collapse
Affiliation(s)
- Brunella Restucci
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy.
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy
| | - Davide Ciccarelli
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| | - Tamara Pasqualina Russo
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| | - Lorena Varriale
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, Naples University Federico II, 80137 Naples, Italy
| |
Collapse
|
30
|
Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, Bexiga R, Cardoso S, Freitas PP. Biosensors for On-Farm Diagnosis of Mastitis. Front Bioeng Biotechnol 2019; 7:186. [PMID: 31417901 PMCID: PMC6684749 DOI: 10.3389/fbioe.2019.00186] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance. Conventional diagnostic methods based on somatic cell counts (SCC) and plate-culture techniques are accurate in identifying the disease, the respective infectious agents and antibiotic resistant phenotypes. However, pressure exists to develop less lengthy approaches, capable of providing on-site information concerning the infection, and in this way, guide, and hasten the most adequate treatment. Biosensors are analytical tools that convert the presence of biological compounds into an electric signal. Benefitting from high signal-to-noise ratios and fast response times, when properly tuned, they can detect the presence of specific cells and cell markers with high sensitivity. In combination with microfluidics, they provide the means for development of automated and portable diagnostic devices. Still, while biosensors are growing at a fast pace in human diagnostics, applications for the veterinary market, and specifically, for the diagnosis of mastitis remain limited. This review highlights current approaches for mastitis diagnosis and describes the latest outcomes in biosensors and lab-on-chip devices with the potential to become real alternatives to standard practices. Focus is given to those technologies that, in a near future, will enable for an on-farm diagnosis of mastitis.
Collapse
Affiliation(s)
- Sofia A. M. Martins
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Verónica C. Martins
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Filipe A. Cardoso
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | - José Germano
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | - Mónica Rodrigues
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- Faculdade de Ciências, CE3C - Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Duarte
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
- Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisbon, Portugal
| | - Ricardo Bexiga
- Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisbon, Portugal
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Paulo P. Freitas
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
- INL- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
31
|
Hayashi A, Fujii S, Nakamura T, Kobayashi K, Sakatani M, Endo M, Takahashi T, Murata T. Production of lipid mediators in mastitic milk of cow. Anim Sci J 2019; 90:999-1007. [DOI: 10.1111/asj.13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Akane Hayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Shota Fujii
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Miki Sakatani
- National Institute of Livestock and Grassland Research, NARO Tochigi Japan
| | - Maiko Endo
- Animal Resource Science Center, Graduate School of Agricultural and Life Science/Faculty of Agriculture The University of Tokyo Ibaraki Japan
| | - Tomotsugu Takahashi
- Animal Resource Science Center, Graduate School of Agricultural and Life Science/Faculty of Agriculture The University of Tokyo Ibaraki Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
32
|
Wald R, Hess C, Urbantke V, Wittek T, Baumgartner M. Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals (Basel) 2019; 9:E200. [PMID: 31035607 PMCID: PMC6563082 DOI: 10.3390/ani9050200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus (S.) aureus is considered as a major mastitis pathogen, with considerable epidemiological information on such infections while the epidemiology of coagulase-negative staphylococci (CNS) is more controversial. The aim of this study was to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology for identification of staphylococci isolated from bovine milk at species level and to characterize them in reference to presentation, somatic cell count (SCC), bacterial shedding (cfu) and antimicrobial resistance patterns. A total of 200 staphylococcal isolates (S. aureus n = 100; CNS n = 100) originating from aseptically collected quarter milk samples from different quarters of dairy cows were included in the study. They originated from cases of clinical (CM) and subclinical mastitis (SCM) or were isolated from milk with SCC ≤ 100,000 cells/mL in pure culture. We found staphylococci predominantly in cases of SCM (n = 120). In low-SCC cows, 12 S. aureus and 32 CNS isolates were detected. Eighteen percent of each were associated with CM. Eleven CNS species were identified, S. chromogenes (n = 26) and S. xylosus (n = 40) predominated. CNS, particularly those in low-SCC cows, showed higher MIC90 (minimal inhibitory concentration) values for penicillin, ampicillin, cefoperazone, pirlimycin and marbofloxacin. Based on the present results, a careful interpretation of laboratory results is recommended to avoid antimicrobial therapy of staphylococci without clinical relevance and to ensure prudent use of antimicrobials.
Collapse
Affiliation(s)
- Regina Wald
- Department of Farm Animal and Public Health in Veterinary Medicine, University Clinic for Ruminants, University of Veterinary Medicine, 1210 Wien, Austria.
| | - Claudia Hess
- Department of Farm Animal and Public Health in Veterinary Medicine, University Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, 1210 Wien, Austria.
| | - Verena Urbantke
- Department of Farm Animal and Public Health in Veterinary Medicine, University Clinic for Ruminants, University of Veterinary Medicine, 1210 Wien, Austria.
| | - Thomas Wittek
- Department of Farm Animal and Public Health in Veterinary Medicine, University Clinic for Ruminants, University of Veterinary Medicine, 1210 Wien, Austria.
| | - Martina Baumgartner
- Department of Farm Animal and Public Health in Veterinary Medicine, University Clinic for Ruminants, University of Veterinary Medicine, 1210 Wien, Austria.
| |
Collapse
|
33
|
Shinozuka Y, Kawai K, Sato R, Higashitani A, Ueno D, Okita M, Isobe N. Effect of intramammary lipopolysaccharide infusion on milk pH of uninfused udder in goat. J Vet Med Sci 2018; 80:1287-1290. [PMID: 29910225 PMCID: PMC6115263 DOI: 10.1292/jvms.18-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The change in milk composition in response to intramammary infusion of
Escherichia coli lipopolysaccharide (LPS) was investigated. Four
clinically healthy goats were infused with LPS (100 µg) by intramammary
administration to the left udder. Clinical manifestations (rectal temperature and physical
activity), selected blood parameters (pH and white blood cell count) and milk compositions
(somatic cell count and pH) were evaluated at 0 hr (just before challenge) and at multiple
time points over the first 24 hr post-challenge. After intramammary LPS challenge, the pH
of milk from both udders increased. Thus, this study revealed that LPS-induced mastitis in
goat can result in increased pH in milk from the unchallenged (contralateral) udder.
Collapse
Affiliation(s)
- Yasunori Shinozuka
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuhiro Kawai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Reiichiro Sato
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Akito Higashitani
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Daisaku Ueno
- Chubu Veterinary Clinic, NOSAI Minami, Niikappu, Hokkaido 059-2403, Japan
| | - Miki Okita
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
34
|
Leimbach S, Krömker V. Laboratory evaluation of a novel rapid tube test system for differentiation of mastitis-causing pathogen groups. J Dairy Sci 2018; 101:6357-6365. [DOI: 10.3168/jds.2017-14198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 01/06/2023]
|
35
|
Johnzon CF, Dahlberg J, Gustafson AM, Waern I, Moazzami AA, Östensson K, Pejler G. The Effect of Lipopolysaccharide-Induced Experimental Bovine Mastitis on Clinical Parameters, Inflammatory Markers, and the Metabolome: A Kinetic Approach. Front Immunol 2018; 9:1487. [PMID: 29988549 PMCID: PMC6026673 DOI: 10.3389/fimmu.2018.01487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mastitis is an inflammatory condition of the mammary tissue and represents a major problem for the dairy industry worldwide. The present study was undertaken to study how experimentally induced acute bovine mastitis affects inflammatory parameters and changes in the metabolome. To this end, we induced experimental mastitis in nine cows by intramammary infusion of 100 µg purified Escherichia coli lipopolysaccharide (LPS) followed by kinetic assessments of cytokine responses (by enzyme-linked immunosorbent assay), changes in the metabolome (assessed by nuclear magnetic resonance), clinical parameters (heat, local pain perception, redness, swelling, rectal temperature, clot formation, and color changes in the milk), and milk somatic cell counts, at several time points post LPS infusion. Intramammary LPS infusion induced clinical signs of mastitis, which started from 2 h post infusion and had returned to normal levels within 24–72 h. Milk changes were seen with a delay compared with the clinical signs and persisted for a longer time. In parallel, induction of IL-6 and TNF-α were seen in milk, and there was also a transient elevation of plasma IL-6 whereas plasma TNF-α was not significantly elevated. In addition, a robust increase in CCL2 was seen in the milk of LPS-infused cows, whereas G-CSF, CXCL1, and histamine in milk were unaffected. By using a metabolomics approach, a transient increase of plasma lactose was seen in LPS-induced cows. In plasma, significant reductions in ketone bodies (3-hydroxybutyrate and acetoacetate) and decreased levels of short-chain fatty acids, known to be major products released from the gut microbiota, were observed after LPS infusion; a profound reduction of plasma citrate was also seen. Intramammary LPS infusion also caused major changes in the milk metabolome, although with a delay in comparison with plasma, including a reduction of lactose. We conclude that the LPS-induced acute mastitis rapidly affects the plasma metabolome and cytokine induction with similar kinetics as the development of the clinical signs, whereas the corresponding effects in milk occurred with a delay.
Collapse
Affiliation(s)
- Carl-Fredrik Johnzon
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Josef Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Krömker V, Leimbach S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod Domest Anim 2018; 52 Suppl 3:21-29. [PMID: 28815847 DOI: 10.1111/rda.13032] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Animal-friendly, economical, resource-saving milk production provides the basis for sustained consumer acceptance. Bovine mastitis plays a decisive role in the dairy industry-disturbing animal health and welfare and causing considerable economic losses on the other hand. Currently, antimicrobial treatment is indispensable to keep bovine udder health, animal welfare and economic aspects in balance. On the contrary, emergence and spread of antimicrobial resistance (AMR) is an urgent matter of particular public interest, and as a consequence, antimicrobial usage (AMU) in production livestock is a critically discussed subject. In urgent need of future reduction in AMU in the dairy industry, this review article describes and discusses possible approaches promising prompt implementation, including therapeutical alternatives as well as pro- and metaphylactic concepts such as the implementation of evidence-based mastitis therapy concepts and selective dry cow treatment (sDCT), in search of the most effective and contemporary methods for decreasing AMU and AMR in dairy production.
Collapse
Affiliation(s)
- V Krömker
- Microbiology, Department of Bioprocess Engineering, Faculty II, University of Applied Sciences and Arts, Hannover, Germany
| | - S Leimbach
- Microbiology, Department of Bioprocess Engineering, Faculty II, University of Applied Sciences and Arts, Hannover, Germany
| |
Collapse
|
37
|
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One 2018; 13:e0191227. [PMID: 29470489 PMCID: PMC5823400 DOI: 10.1371/journal.pone.0191227] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO, CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research properly indicated that by combination of two novel data mining tools, meta-analysis and machine learning, increased power to detect most informative genes that can help to improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER. Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 2018; 51:813-821. [PMID: 29476808 DOI: 10.1016/j.ijantimicag.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a primitive class of host defense peptides and are known for their broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. These small, cationic, proteolytically-activated peptides are diverse in structure, encompassing a wide range of activities on host immune and inflammatory cell responses. The dual capacity of cathelicidins to directly control infection and regulate host defenses highlights the potential use of these peptides as alternatives to antibiotics and immunomodulators. Cathelicidins are found in many mammalian species; this review focuses on bovine cathelicidins. Eight naturally and two synthetically occurring bovine cathelicidins are described in detail, with a focus on recent advances in their expression, location and biological roles. This review also presents an overview of the bioactive functions of cathelicidins in bovine mastitis, a disease causing economic losses in cattle dairy production. Comparison of the structural, antimicrobial, cytotoxic and mechanistic properties of bovine cathelicidins advances the knowledge needed for the development of these peptides as potential identifiers of infectious diseases (e.g., bovine mastitis) and as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Morgan Young-Speirs
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Drouin
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paloma Araujo Cavalcante
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Wang J, Li H, Pan J, Dong J, Zhou X, Niu X, Deng X. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus. Front Microbiol 2018; 9:245. [PMID: 29491861 PMCID: PMC5817083 DOI: 10.3389/fmicb.2018.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 01/13/2023] Open
Abstract
Sortase A (SrtA)-catalyzed anchorage of surface proteins in most Gram-positive bacteria is indispensable for their virulence, suggesting that this transpeptidase is a promising target for antivirulence therapy. Here, an oligopeptide, LPRDA, was identified as an effective inhibitor of SrtA via virtual screening based on the LPXTG substrate sequence, and it was found to inhibit SrtA activity in vitro and in vivo (IC50 = 10.61 μM) by competitively occupying the active site of SrtA. Further, the oligopeptide treatment had no anti-Staphylococcus aureus activity, but it provided protection against S. aureus-induced mastitis in a mouse model. These findings indicate that the oligopeptide could be used as an effective anti-infective agent for the treatment of infection caused by S. aureus or other Gram-positive bacteria via the targeting of SrtA.
Collapse
Affiliation(s)
- Jianfeng Wang
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongen Li
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juan Pan
- Tianjin International Travel Healthcare Center, Tianjin, China
| | - Jing Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
40
|
Juronen D, Kuusk A, Kivirand K, Rinken A, Rinken T. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta 2018; 178:949-954. [DOI: 10.1016/j.talanta.2017.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022]
|
41
|
Mazurenko VR. BIOMARKERS OF SUBCLINICAL MASTITIS IN THE MAMMARY GLAND OF COWS. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Abstract
Bovine mastitis is an important animal production disease that affects the dairy industry globally. Studies have estimated the prevalence of this disease in approximately 30% of African countries, with the highest prevalence found in Ethiopia. This is despite the wide cattle distribution in Africa, and the largest number of dairy farms and herds in countries such as South Africa, Kenya and Uganda. Furthermore, the estimated financial losses due to direct and indirect impacts of bovine mastitis are lacking in this continent. Therefore, intensive research efforts will help determine the continent-wide economic impacts and advance careful monitoring of disease prevalence and epidemiology. Here, published cases supporting the occurrence and importance of bovine mastitis in certain regions of Africa are outlined.
Collapse
|
43
|
Chinnappan R, Al Attas S, Kaman WE, Bikker FJ, Zourob M. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Anal Biochem 2017; 523:58-64. [PMID: 28219684 DOI: 10.1016/j.ab.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/10/2023]
Abstract
Mastitis in dairy cattle is an inflammatory reaction of the udder tissue. Mastitis increases plasmin levels, leading to an increased proteolysis of milk proteins such as casein, resulting in a significant decrease in milk quality and related dairy products. Due to its key-role in mastitis, we used plasmin proteolytic activity as a biomarker for the detection of mastitis in bovine mastitic milk. Inspired by earlier studies on protease activity using mastitic milk samples, we developed a simple colorimetric assay to distinguish mastitic milk from milk derived from healthy animals. The plasmin substrate coupled to magnetic nanoparticles form a black self-assembled monolayer on a gold sensor surface. In the presence of increased levels of plasmin, the substrate is cleaved and the peptide fragment attached to the magnetic beads, will be attracted by the magnet which is present under the sensor strips revealing the golden surface. We found the area of the golden color surface proportional to plasmin activity. The sensitivity of this method was determined to be 1 ng/ml of plasmin in vitro. Next, we tested the biosensor using mastitis positive milk of which infection is confirmed by bacterial cultures. This newly developed colorimetric biosensor has high potential in applications for the diagnosis of mastitis with potential spin offs to health, food and environmental sectors.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Sana Al Attas
- Department of Biological Sciences, College of Science, King abdulAziz University, Jeddah, Saudi Arabia
| | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Floris J Bikker
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
44
|
Wald R, Baumgartner M, Urbantke V, Stessl B, Wittek T. Diagnostic accuracy of a standardized scheme for identification of Streptococcus uberis in quarter milk samples: A comparison between conventional bacteriological examination, modified Rambach agar medium culturing, and 16S rRNA gene sequencing. J Dairy Sci 2017; 100:1459-1466. [DOI: 10.3168/jds.2016-11786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022]
|
45
|
Abstract
Bovine mastitis is the most costly disease for dairy farmers, hence, control measures to prevent it are crucial for dairy farm sustainability. Staphylococcus aureus is considered a major mastitis pathogen because of its impact on milk quality and low cure rates. Prevention of S. aureus mastitis includes segregation of infected animals, whilst treatment of such animals should be performed for a longer time to improve cure rates. This makes identification of S. aureus infected quarters and animals of significant importance. The experiments reported in this research paper aimed to develop and validate a sensitive method for magnetic detection of S. aureus and of the Staphylococcus genus in raw milk samples. Mastitic milk samples were collected aseptically from 47 cows with subclinical mastitis, from 12 Portuguese dairy farms. Forty nine quarter milk samples were selected based on bacteriological results. All samples were submitted to PCR analysis. In parallel, these milk samples were mixed with a solution combining specific antibodies and magnetic nanoparticles, to be analysed using a lab-on-a-chip magnetoresistive cytometer, with microfluidic sample handling. The antibodies used in this work were a rabbit polyclonal IgG anti-S. aureus ScpA protein and a mouse monoclonal IgM anti-S. aureus ATCC 29740. This paper describes the methodology used for magnetic detection of bacteria, including analysis of false positive/negative results. This immunological recognition was able to detect bacterial presence above 100 cfu/ml, independently of antibody and targeted bacteria used in this work. Comparison with PCR results showed sensitivities of 57·1 and 79·3%, specificity values of 75 and 50%, and PPV values of 40 and 95·8% for magnetic identification of Staphylococci species with an anti-S. aureus antibody and an anti-Staphylococcus spp. antibody, respectively. Some constraints are described as well as the method's limitations in bacterial quantification. Sensitivities and specificities require to be improved, nevertheless, the methodology described may form the basis for a means of identifying S. aureus infected cows at the point of care.
Collapse
|