1
|
Tamiozzo P, García V, González-Ittig RE, Pieters M. Genetic structure and diversity of Mycoplasma hyopneumoniae based on a MLVA typing scheme. Front Vet Sci 2025; 11:1510825. [PMID: 39881713 PMCID: PMC11776303 DOI: 10.3389/fvets.2024.1510825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
Background Several epidemiological studies have been carried out using Multiple-Locus Variable-number tandem repeat Analysis (MLVA) for M. hyopneumoniae typing. However, a global perspective on the implications of the genetic diversity of this pathogen is lacking. Objective This study aimed to determine and to analyze the genetic structure of M. hyopneumoniae based on the p97R1-p146R3 MLVA typing scheme and to characterize, analyze and compare MLVA types among countries where the information was publicly available. Methods A set of 797 publicly available data of M. hyopneumoniae p97R1-p146R3 MLVA genetic types from six different countries were analyzed using Genalex 6.41 software to characterize loci polymorphism and using Structure 2.3.4 software in order to identify the genetic structure. Results A total of 185 MLVA types were identified among the analyzed data. For the p97R1 and p146R3 loci, most of the molecular variation in M. hyopneumoniae populations was identified within countries. Three genetic clusters and their recombinations were identified globally. Conclusion M. hyopneumoniae is a genetically diverse pathogen with limited clonality and three well-defined clusters and their combinations were identified in this investigation. The greatest genetic variation of M. hyopneumoniae was observed within countries.
Collapse
Affiliation(s)
- Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Virginia García
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Raúl E. González-Ittig
- Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA; CONICET-UNC), Córdoba, Argentina
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
2
|
Boeters M, Garcia-Morante B, van Schaik G, Segalés J, Rushton J, Steeneveld W. The economic impact of endemic respiratory disease in pigs and related interventions - a systematic review. Porcine Health Manag 2023; 9:45. [PMID: 37848972 PMCID: PMC10583309 DOI: 10.1186/s40813-023-00342-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Understanding the financial consequences of endemically prevalent pathogens within the porcine respiratory disease complex (PRDC) and the effects of interventions assists decision-making regarding disease prevention and control. The aim of this systematic review was to identify what economic studies have been carried out on infectious endemic respiratory disease in pigs, what methods are being used, and, when feasible, to identify the economic impacts of PRDC pathogens and the costs and benefits of interventions. RESULTS By following the PRISMA method, a total of 58 studies were deemed eligible for the purpose of this systematic review. Twenty-six studies used data derived from European countries, 18 from the US, 6 from Asia, 4 from Oceania, and 4 from other countries, i.e., Canada, Mexico, and Brazil. Main findings from selected publications were: (1) The studies mainly considered endemic scenarios on commercial fattening farms; (2) The porcine reproductive and respiratory syndrome virus was by far the most studied pathogen, followed by Mycoplasma hyopneumoniae, but the absence or presence of other endemic respiratory pathogens was often not verified or accounted for; (3) Most studies calculated the economic impact using primary production data, whereas twelve studies modelled the impact using secondary data only; (4) Seven different economic methods were applied across studies; (5) A large variation exists in the cost and revenue components considered in calculations, with feed costs and reduced carcass value included the most often; (6) The reported median economic impact of one or several co-existing respiratory pathogen(s) ranged from €1.70 to €8.90 per nursery pig, €2.30 to €15.35 per fattening pig, and €100 to €323 per sow per year; and (7) Vaccination was the most studied intervention, and the outcomes of all but three intervention-focused studies were neutral or positive. CONCLUSION The outcomes and discussion from this systematic review provide insight into the studies, their methods, the advantages and limitations of the existing research, and the reported impacts from the endemic respiratory disease complex for pig production systems worldwide. Future research should improve the consistency and comparability of economic assessments by ensuring the inclusion of high impact cost and revenue components and expressing results similarly.
Collapse
Affiliation(s)
- Marloes Boeters
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Beatriz Garcia-Morante
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193 Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
| | - Gerdien van Schaik
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Royal GD, Deventer, the Netherlands
| | - Joaquim Segalés
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Jonathan Rushton
- Institute of Infection, Veterinary and Ecological Sciences, School of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, UK
| | - Wilma Steeneveld
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Takeuti KL, Betlach AM, Fano E, Schwartz M, Yaros J, Wayne S, Schmaling E, de Barcellos DESN, Pieters M. The effect of gilt flow management during acclimation on Mycoplasma hyopneumoniae detection. Vet Microbiol 2023; 276:109554. [PMID: 36435011 DOI: 10.1016/j.vetmic.2022.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022]
Abstract
The objective of this study was to characterize the Mycoplasma hyopneumoniae (M. hyopneumoniae) detection and seroconversion patterns in recently acclimated gilts to be introduced to endemically infected farms using different types of replacement management. Three gilt developing units (GDUs) belonging to sow farms were included in this investigation: two farms managed gilts in continuous flow, and one farm managed gilts all-in/all-out. Two replicates of 35 gilts each were selected per GDU and sampled approximately every 60 days for a total of four or five samplings, per replicate and per GDU. Detection of M. hyopneumoniae was evaluated by PCR, while antibodies were measured using a commercial ELISA assay. Also, M. hyopneumoniae genetic variability was evaluated using Multiple-Locus Variable number tandem repeat Analysis. Detection of M. hyopneumoniae was similar across GDUs. Although a significant proportion of gilts was detected positive for M. hyopneumoniae after acclimation, an average of 30.3 % of gilts was negative at any point during the study. Detection of M. hyopneumoniae antibodies was similar among GDUs regardless of flow type or vaccination protocol. The genetic variability analysis revealed a limited number of M. hyopneumoniae types within each GDU. Results of this study showed a similar pattern of M. hyopneumoniae detection by PCR and seroconversion by ELISA among GDUs, regardless of the type of flow management strategies applied to gilts.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Vet Center, St. Peter, MN, United States
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Schwartz Farms Inc, Sleepy Eye, MN, United States
| | - Joseph Yaros
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Spencer Wayne
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Ethan Schmaling
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
4
|
Martin SC, Hauser N, Renaldo AC, Lane M, Jordan JE, Qadri HI, Mouser N, Rahbar E, Williams TK, Neff LP. Unmasking the Confounder: The Inherent Physiologic Variability of Swine During an Automated Experimental Model of Ischemia-Reperfusion Injury. Am Surg 2022; 88:1838-1844. [PMID: 35392677 DOI: 10.1177/00031348221084967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND We sought to determine the magnitude of the inherent inter-animal physiologic variability by automating a porcine Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) protocol to minimize external influences that might alter physiology and confound experimental results. METHODS Swine (n = 42) underwent a controlled 30% blood volume hemorrhage followed by 30 minutes of REBOA (ie, ischemic phase). The animals were weaned from REBOA autonomously over 15 minutes, beginning the reperfusion phase, while continuing to provide partial flow balloon support to maintain a target proximal mean arterial pressure (pMAP) of 65 mmHg. Simultaneously, shed blood was re-transfused as part of the resuscitation efforts. Physiologic data were continuously recorded, and serum samples were serially collected. Baseline characteristics, variance in vital signs, and 8-isoprostane levels were quantified during hemorrhage, REBOA, and reperfusion phases. RESULTS There was no significant difference in baseline physiology across animals (P > .05). Hemodynamic variability was highest for pMAP during the ischemic phase (P = .001) and for distal mean arterial pressure (dMAP) during the weaning/reperfusion phase (P = .001). The latter finding indicated the variable physiologic response to ischemia-reperfusion injury, as the automated balloon support required by each animal to maintain pMAP was highly variable. Circulating 8-isoprostane variance was significantly higher following the start of reperfusion compared to baseline levels (P = .001). DISCUSSION Despite subjecting animals to a highly consistent ischemia-reperfusion injury through automation, we noted significant variability in the hemodynamic and biochemical response. These findings illustrate the inherent physiologic variability and potential limitations of porcine large animal models for the study of shock.
Collapse
Affiliation(s)
| | - Nathaniel Hauser
- Department of Biomedical Engineering, 12279Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Antonio C Renaldo
- Department of Biomedical Engineering, 12279Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Magan Lane
- Department of Vascular and Endovascular Surgery, 12280Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James E Jordan
- Department of Cardiothoracic Surgery, 12280Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Hisham I Qadri
- 12279Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Elaheh Rahbar
- Department of Biomedical Engineering, 12279Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy K Williams
- Department of Vascular and Endovascular Surgery, 12280Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Lucas P Neff
- Department of General Surgery, 12280Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Tonni M, Formenti N, Boniotti MB, Guarneri F, Scali F, Romeo C, Pasquali P, Pieters M, Maes D, Alborali GL. The role of co-infections in M. hyopneumoniae outbreaks among heavy fattening pigs: a field study. Vet Res 2022; 53:41. [PMID: 35692039 PMCID: PMC9190078 DOI: 10.1186/s13567-022-01061-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Little is known about how co-infections and genotype dynamics affect Mycoplasma hyopneumoniae infection in fattening pigs. This study was aimed at assessing the role of co-infections in M. hyopneumoniae outbreaks, their influence on the presence of M. hyopneumoniae genotypes and their impact on consequent lung lesions. Tracheobronchial swabs (TBS) from 300 finishers were collected from 10 farms at the onset of enzootic pneumonia outbreaks and 1 month later, sampling of 3 groups per farm: Group A showed clinical signs first, Group B was housed near Group A, and Group C was located in a different building. Pigs’ lungs were scored at the slaughterhouse. TBS were tested for the main pathogens involved in respiratory diseases, and samples positive for M. hyopneumoniae were genotyped by multiple-locus variable-number tandem repeat analysis (MLVA). Pigs in Group A showed the highest prevalence and load of M. hyopneumoniae. A positive association was detected between M. hyopneumoniae and Mycoplasma hyorhinis, whereas Actinobacillus pleuropneumoniae was more frequent when the M. hyopneumoniae load was higher. Nevertheless, co-infection had no effect on lung lesion scores. The presence of multiple MLVA types (mixed infections) increased in time only in pigs from Group C and was positively associated with porcine reproductive and respiratory syndrome virus infection. Lung lesions were more severe in pigs with at least one TBS positive for M. hyopneumoniae and in pigs with a history of mixed infections. The central role of M. hyopneumoniae and relevance of mixed infections suggest that increased biosecurity might be beneficial for lung lesion sequelae.
Collapse
Affiliation(s)
- Matteo Tonni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy.
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - M Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Paolo Pasquali
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Pieters
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Giovanni L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| |
Collapse
|
6
|
Balestrin E, Wolf JM, Wolf LM, Fonseca ASK, Ikuta N, Siqueira FM, Lunge VR. Molecular detection of respiratory coinfections in pig herds with enzootic pneumonia: a survey in Brazil. J Vet Diagn Invest 2022; 34:310-313. [PMID: 35034523 PMCID: PMC8921818 DOI: 10.1177/10406387211069552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma hyopneumoniae is the primary etiologic agent of swine enzootic pneumonia (EP), in which the immune response is reduced, making pigs susceptible to secondary infections. We surveyed commercial pig herds in Brazil for viral and bacterial respiratory coinfections that could complicate EP. Over a 2-y period (2015-2016), we found that 854 of 2,206 pigs (38.7%) were positive for M. hyopneumoniae in herds from various production systems in 3 Brazilian regions (Central-West, Southeast, South). We collected samples of 321 lungs positive for M. hyopneumoniae from 169 farms to also screen for Pasteurella multocida, Actinobacillus pleuropneumoniae, Glaesserella parasuis, influenza A virus (IAV), and porcine circovirus 2 (PCV2) by real-time PCR. The prevalence of pathogens found in addition to M. hyopneumoniae varied: P. multocida (141; 43.9%), G. parasuis (71; 22.1%), PCV2 (50; 15.6%), IAV (23; 7.2%), and A. pleuropneumoniae (18; 5.6%). G. parasuis was more frequent in farrowing or nursery herds (48.7%) than in breeding and fattening herds (10% and 18.6%, respectively; p < 0.01); A. pleuropneumoniae was found only in herds on farrow-to-finish and fattening farms.
Collapse
Affiliation(s)
- Eder Balestrin
- Laboratory of Molecular Diagnostic, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Jonas M. Wolf
- Laboratory of Molecular Diagnostic, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Lucas M. Wolf
- Laboratory of Molecular Diagnostic, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Franciele M. Siqueira
- Laboratory of Veterinary Bacteriology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vagner R. Lunge
- Vagner R. Lunge, Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, RS, 92425-900, Brazil.
| |
Collapse
|
7
|
Tonni M, Boniotti MB, Gasparrini S, Guarneri F, Formenti N, Pieters M, Pasquali P, Alborali GL. Genomic variability of Mycoplasma hyopneumoniae within pig lung lobes. Porcine Health Manag 2021; 7:14. [PMID: 33509284 PMCID: PMC7842051 DOI: 10.1186/s40813-021-00195-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genotypic variability in M. hyopneumoniae has been reported within and among herds. However, information regarding VNTR types within single lung lobes is lacking. The objective of his study was to analyse M. hyopneumoniae infections and their association with VNTR types and lung lesions at the lobe level. Lungs from 300 pigs from 10 farms experiencing an enzootic pneumonia outbreak were collected and scored. M. hyopneumoniae was detected by real-time PCR and genotyped by MLVA assay in all samples. RESULTS The results showed genotypic variability within single pigs and among lung lobes. At the lobe level, infection with one VNTR type (SN infection) was dominant. Lobes with lesion scores > 0 were associated with positive results for real-time PCR. At the lobe level, no relationship was observed between infections with more than one genotype (MX infections) and the proportion of Mycoplasma-like lesions. Lesion-free lobes presented a higher proportion of MX infections than lobes scored > 0. M. hyopneumoniae was detected more frequently in the right lobe of the lung (p < 0.05), with a similar distribution within lobes for SN and MX infections. The anatomic conformation of swine lungs led to a higher prevalence of infections in the right lobe. However, this study showed that this condition did not affect the distribution of infections with multiple VNTR types. Nevertheless, careful consideration of sample selection should be practised for M. hyopneumoniae genotype analyses, including lung lobes with no visible lesions. CONCLUSION The results did not show a significant association between the number of detected genotypes and the severity of the lesions at the lung lobe level, but revealed the unexpected detection of M. hyopneumoniae genotypes in lesion-free lobes. These results imply that a representative sampling of all lobes may lead to an accurate identification of the VNTR-type distribution. Further studies including factors that can affect pathogenetic evolution of this bacterium could shed light on the complexity of the relationship between genotypes and the lung lesions magnitude.
Collapse
Affiliation(s)
- Matteo Tonni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy.
| | - M Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Sara Gasparrini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| | - Maria Pieters
- Department of Veterinary Population Medicine, and Veterinary Diagnostic Laboratory, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA
| | - Paolo Pasquali
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità viale, Regina Elena 299, 00161, Rome, Italy
| | - Giovanni L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi, 9, 25124, Brescia, Italy
| |
Collapse
|
8
|
Fitzgerald RM, O'Shea H, Manzanilla EG, Moriarty J, McGlynn H, Calderón Díaz JA. Associations between animal and herd management factors, serological response to three respiratory pathogens and pluck lesions in finisher pigs on a farrow-to-finish farm. Porcine Health Manag 2020; 6:34. [PMID: 33292673 PMCID: PMC7722331 DOI: 10.1186/s40813-020-00173-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background Serological screening is a common method to monitor antibody response to pathogen exposure, but results could vary due to several factors. This study aimed to quantify animal and management related factors associated with variation in antibody levels in finisher pigs at slaughter, in an Irish farrow-to-finish farm endemically infected with Actinobacillus pleuropneumonia (App), Mycoplasma hyopneumoniae (Mhyo) and swine influenza virus (SIV). A second objective was to estimate differences in antibody levels in pigs presenting pluck lesions. This was an observational study whereby pigs were managed as per routine farm practice. Data on sow parity, number of born alive (NBA) pigs per litter, cross-fostering status, birth and weaning body weight were recorded from 1016 pigs born from one farrowing batch. At slaughter, blood samples were collected for serological analysis and pigs were inspected for presence of enzootic pneumonia (EP)-like lesions, pleurisy, pericarditis and heart condemnations. Pigs were retrospectively classified into three production flows, depending on time spent in each production stage: flow 1 (F1; pigs followed the normal production flow); flow 2 (F2; pigs which were delayed by 1 week from advancing forward); and flow 3 (F3; pigs delayed by > 1 week from advancing forward). A nested case-control design was applied by matching pigs from each flow by sow parity, birth weight and NBA. Results Pigs born from primiparous sows had higher antibody levels for App than those born to parity ≥5 sows (P < 0.05) and there was no association between any of the pathogens investigated and other early life indicators (P > 0.05). Pigs in F1 had lower antibody levels for App but higher antibody levels for SIV than F2 and F3 pigs (P < 0.05). There was no association between pluck lesions and respiratory pathogens (P > 0.05), except for increased antibody levels for Mhyo when EP-like lesions were present (P = 0.006). Conclusion Results indicate that offspring from primiparous sows develop higher antibody levels for App IV toxin when exposed to this disease and that enforcement of a strict all-in/all-out production system would reduce on-farm disease circulation. A high percentage of pigs were affected with EP-like lesions which were associated with higher antibody levels for Mhyo.
Collapse
Affiliation(s)
- Rose Mary Fitzgerald
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Helen O'Shea
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland. .,School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - John Moriarty
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine Laboratories, Backweston, Celbridge, Co. Kildare, W23 X3PH, Ireland
| | - Hugh McGlynn
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Julia Adriana Calderón Díaz
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
9
|
Assao VS, Scatamburlo TM, Araujo EN, Santos MR, Pereira CER, Guedes RMC, Bressan GC, Fietto JLR, Chang YF, Moreira MAS, Silva-Júnior A. Genetic variation of Mycoplasma hyopneumoniae from Brazilian field samples. BMC Microbiol 2019; 19:234. [PMID: 31660853 PMCID: PMC6819545 DOI: 10.1186/s12866-019-1603-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine enzootic pneumonia is a worldwide problem in swine production. The infected host demonstrates a respiratory disease whose etiologic agent is Mycoplasma hyopneumoniae (Mhp). A total of 266 lung samples with Mycoplasma-like lesions were collected from two slaughterhouses. We analyzed the genetic profile of Mhp field samples using 16 genes that encode proteins involved in the mechanisms of bacterial pathogenesis and/or the immune responses of the host. Bioinformatic analyses were performed to classify the Mhp field samples based on their similarity according to the presence of the studied genes. RESULTS Our results showed variations in the frequency of the 16 studied genes among different Mhp field samples. It was also noted that samples from the same farm were genetically different from each other and samples from different regions could be genetically similar, which is evidence of the presence of different genetic profiles among the Mhp field strains that circulate in Brazilian swine herds. CONCLUSION This work demonstrated the genetic diversity of several Mhp field strains based on 16 selected genes related to virulence and/or immune response in Brazil. Our findings demonstrate the difference between Mhp field strains could influence the virulence, and we hypothesize that the most frequent genes in Mhp field strains could possibly be used as vaccine candidates. Based on our results, we suspect that Mhp genetic variability may be associated with the frequency of genes among the field strains and we have demonstrated that some Mhp field samples could not have many important genes described in the literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yung-Fu Chang
- Cornell University College of Veterinary Medicine, Ithaca, USA
| | | | | |
Collapse
|
10
|
Balestrin E, Kuhnert P, Wolf JM, Wolf LM, Fonseca ASK, Ikuta N, Lunge VR, Siqueira FM. Clonality of Mycoplasma hyopneumoniae in swine farms from Brazil. Vet Microbiol 2019; 238:108434. [PMID: 31648728 DOI: 10.1016/j.vetmic.2019.108434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Mycoplasma hyopneumoniae causes enzootic pneumonia (EP) in swine, a disease related to high economic losses in production systems. Epidemiological spread of M. hyopneumoniae clones was studied by multi-locus sequence typing (MLST) in several swine production regions but so far not in South America. Using MLST, we have therefore investigated M. hyopneumoniae clones circulating in farms from three main swine production regions in Brazil. Porcine lungs samples were collected between 2015 and 2016 in farms with EP outbreaks. Three geographically distant regions were selected, and 67 M. hyopneumoniae positive samples, each one from a different farm, were included in the study. The occurrence of five sequence types (ST) was demonstrated and the majority of the samples were identified as ST-69 (n = 60; 89.5%), followed by ST-70 (n = 3; 4.5%), ST-123 (n = 2; 3%), ST-124 (n = 1; 1.5%) and ST-127 (n = 1; 1.5%). There was no association of any specific ST with region or production system. The five STs were all new ones, probably representing unique Brazilian clones. ST-69 and ST-70 on one side and ST-123 and ST-124 on the other side are phylogenetically close, while ST-127 is singleton. In conclusion, our results showed a low variability and high clonality of M. hyopneumoniae genotypes from Brazilian farms affected by EP.
Collapse
Affiliation(s)
- Eder Balestrin
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jonas Michel Wolf
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Lucas Michel Wolf
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Vagner Ricardo Lunge
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Betlach AM, Maes D, Garza-Moreno L, Tamiozzo P, Sibila M, Haesebrouck F, Segalés J, Pieters M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound Emerg Dis 2019; 66:1840-1854. [PMID: 31099490 DOI: 10.1111/tbed.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the aetiologic agent of enzootic pneumonia in swine, a prevalent chronic respiratory disease worldwide. Mycoplasma hyopneumoniae is a small, self-replicating microorganism that possesses several characteristics allowing for limited biosynthetic abilities, resulting in the fastidious, host-specific growth and unique pathogenic properties of this microorganism. Variation across several isolates of M. hyopneumoniae has been described at antigenic, proteomic, transcriptomic, pathogenic and genomic levels. The microorganism possesses a minimal number of genes that regulate the transcription process. Post-translational modifications (PTM) occur frequently in a wide range of functional proteins. The PTM by which M. hyopneumoniae regulates its surface topography could play key roles in cell adhesion, evasion and/or modulation of the host immune system. The clinical outcome of M. hyopneumoniae infections is determined by different factors, such as housing conditions, management practices, co-infections and also by virulence differences among M. hyopneumoniae isolates. Factors contributing to adherence and colonization as well as the capacity to modulate inflammatory and immune responses might be crucial. Different components of the cell membrane (i.e. proteins, glycoproteins and lipoproteins) may serve as adhesins and/or be toxic for the respiratory tract cells. Mechanisms leading to virulence are complex and more research is needed to identify markers for virulence. The utilization of typing methods and complete or partial-gene sequencing for M. hyopneumoniae characterization has increased in diagnostic laboratories as control and elimination strategies for this microorganism are attempted worldwide. A commonly employed molecular typing method for M. hyopneumoniae is Multiple-Locus Variable number tandem repeat Analysis (MLVA). The agreement of a shared terminology and classification for the various techniques, specifically MLVA, has not been described, which makes inferences across the literature unsuitable. Therefore, molecular trends for M. hyopneumoniae have been outlined and a common terminology and classification based on Variable Number Tandem Repeats (VNTR) types has been proposed.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Swine Vet Center, St. Peter, Minnesota
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Merelbeke, Belgium
| | - Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joaquim Segalés
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Garza-Moreno L, Segalés J, Aragón V, Correa-Fiz F, Pieters M, Carmona M, Krejci R, Sibila M. Characterization of Mycoplasma hyopneumoniae strains in vaccinated and non-vaccinated pigs from Spanish slaughterhouses. Vet Microbiol 2019; 231:18-23. [PMID: 30955807 DOI: 10.1016/j.vetmic.2019.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
This study aimed to describe Mycoplasma hyopneumoniae (M. hyopneumoniae) genetic variability in vaccinated (V) and non-vaccinated (NV) slaughtered pigs showing cranio-ventral pulmonary consolidation (CVPC). Ten V and 10 NV fattening farms with respiratory problems associated to M. hyopneumoniae were selected. Lung lesions of one batch per farm were scored at slaughterhouse and the enzootic pneumonia (EP)-index was calculated. Moreover, three lungs showing the most extensive CVPC per farm were sampled and tested for M. hyopneumoniae detection by real-time (rt)-PCR. Positive samples with cycle threshold ≤30 were selected to be genotyped by sequencing of four loci (P97, P146, H1 and H5). Typing profiles (TP) were assigned considering four or two (P97, P146) loci. Five commercial vaccines for M. hyopneumoniae (VS) and two reference strains (RF) were also genotyped. The EP-index (mean ± SD) in NV farms (3.8 ± 1.9) was not significantly different from V ones (2.2 ± 1.3). From the 60 selected lungs, 46 (76.7%) were M. hyopneumoniae positive by rt-PCR (25/30 and 21/30 from NV and V farms, respectively), and 43 (93.5%) of those were successfully genotyped. A total of 24 different TP(12 in V and 12 in NV farms) or 17 TP(9 in V and 9 in NV farms, being one TP in both farm types) were identified by analyzing four or two loci, respectively. One to three TP per farm were detected, being different from VS and RF. Interestingly, farms with same breeding origin had the same TP using two loci, but such link was not found using four loci. Therefore, high inter-farm and limited intra-farm M. hyopneumoniae genetic variability were detected, but variability depended on the number of studied loci.
Collapse
Affiliation(s)
- Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CEVA Salud Animal S.A., Avenida Diagonal, 609 - 615, 9ª planta, 08028 Barcelona, Spain.
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra Spain.
| | - Virginia Aragón
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Maria Pieters
- Departament of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States.
| | - Marta Carmona
- CEVA Salud Animal S.A., Avenida Diagonal, 609 - 615, 9ª planta, 08028 Barcelona, Spain.
| | - Roman Krejci
- CEVA Santé Animale, La Ballasteriere - BP 126, 33501, Libourne Cedex, France.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
13
|
Garza-Moreno L, Pieters M, López-Soria S, Carmona M, Krejci R, Segalés J, Sibila M. Comparison of vaccination protocols against Mycoplasma hyopneumoniae during the gilt acclimation period. Vet Microbiol 2019; 229:7-13. [DOI: 10.1016/j.vetmic.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
|
14
|
Christodoulides A, Gupta N, Yacoubian V, Maithel N, Parker J, Kelesidis T. The Role of Lipoproteins in Mycoplasma-Mediated Immunomodulation. Front Microbiol 2018; 9:1682. [PMID: 30108558 PMCID: PMC6080569 DOI: 10.3389/fmicb.2018.01682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/05/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma infections, such as walking pneumonia or pelvic inflammatory diseases, are a major threat to public health. Despite their relatively small physical and genomic size, mycoplasmas are known to elicit strong host immune responses, generally inflammatory, while also being able to evade the immune system. The mycoplasma membrane is composed of approximately two-thirds protein and one-third lipid and contains several lipoproteins that are known to regulate host immune responses. Herein, the immunomodulatory effects of mycoplasma lipoproteins are reviewed. A better understanding of the immunomodulatory effects, both activating and evasive, of Mycoplasma surface lipoproteins will contribute to understanding mechanisms potentially relevant to mycoplasma disease vaccine development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Maes D, Sibila M, Kuhnert P, Segalés J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2017; 65 Suppl 1:110-124. [PMID: 28834294 DOI: 10.1111/tbed.12677] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P Kuhnert
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - J Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
16
|
Takeuti KL, de Barcellos DESN, de Andrade CP, de Almeida LL, Pieters M. Infection dynamics and genetic variability of Mycoplasma hyopneumoniae in self-replacement gilts. Vet Microbiol 2017; 208:18-24. [PMID: 28888635 DOI: 10.1016/j.vetmic.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study was to assess the longitudinal pattern of M. hyopneumoniae detection in self-replacement gilts at various farms and to characterize the genetic diversity among samples. A total of 298 gilts from three M. hyopneumoniae positive farms were selected at 150days of age (doa). Gilts were tested for M. hyopneumoniae antibodies by ELISA, once in serum at 150 doa and for M. hyopneumoniae detection in laryngeal swabs by real time PCR two or three times. Also, 425 piglets were tested for M. hyopneumoniae detection in laryngeal swabs. A total of 103 samples were characterized by Multiple Locus Variable-number tandem repeats Analysis. Multiple comparison tests were performed and adjusted using Bonferroni correction to compare prevalences of positive gilts by ELISA and real time PCR. Moderate to high prevalence of M. hyopneumoniae in gilts was detected at 150 doa, which decreased over time, and different detection patterns were observed among farms. Dam-to-piglet transmission of M. hyopneumoniae was not detected. The characterization of M. hyopneumoniae showed 17 different variants in all farms, with two identical variants detected in two of the farms. ELISA testing showed high prevalence of seropositive gilts at 150 doa in all farms. Results of this study showed that circulation of M. hyopneumoniae in self-replacement gilts varied among farms, even under similar production and management conditions. In addition, the molecular variability of M. hyopneumoniae detected within farms suggests that in cases of minimal replacement gilt introduction bacterial diversity maybe farm specific.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline P de Andrade
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura L de Almeida
- Virology Laboratory, Institute of Veterinary Researches Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
17
|
Takeuti KL, de Barcellos DESN, de Lara AC, Kunrath CF, Pieters M. Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time. Vet Microbiol 2017; 203:215-220. [PMID: 28619147 DOI: 10.1016/j.vetmic.2017.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022]
Abstract
Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110days of age (doa) and a significant increase (p<0.05) occurred at 140 doa. The M. hyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|