1
|
St. Leger J, Chen Y, Sakamaki K, Mena A, Raverty SA, Rotstein D, Grigg ME. Fatal hepatic sarcocystosis in three captive and one free-ranging pinniped. Int J Parasitol Parasites Wildl 2023; 22:249-254. [PMID: 38059179 PMCID: PMC10696305 DOI: 10.1016/j.ijppaw.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
Fatal hepatic sarcocystosis was diagnosed as the cause of death in four pinnipeds: two captive Hawaiian monk seals (Monachus schauinslandi), a captive, and a free-ranging California sea lion (Zalophus californianus). Based on necropsy, histopathology, electron microscopy and DNA sequencing, intralesional protozoal schizonts were determined to have caused the necrotizing hepatitis observed. Transmission Electron Microscopy (TEM) revealed schizonts similar to Sarcocystis canis in hepatocytes. PCR-DNA sequencing and phylogenetic analysis at the conserved 18S rRNA and variable ITS1 gene markers within the nuclear rRNA gene array from schizont-laden tissue established that the parasites were indistinguishable from Sarcocystis canis at the 18S rRNA locus. However, six distinct single nucleotide polymorphisms (SNPs) were resolved at ITS1 suggesting that the parasites infecting pinnipeds were distinct from S. canis, which commonly infects bears and dogs. We hypothesize that the parasite represents a novel Sarcocystis variant that we refer to as S. canis-like that infects pinnipeds. The definitive host of S. canis is enigmatic and its life cycle incomplete. These findings document a critical need to identify the life cycle(s), definitive host(s), and all susceptible marine and terrestrial intermediate hosts of S. canis and the S. canis-like variant infecting pinnipeds.
Collapse
Affiliation(s)
| | - Yang Chen
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Stephen A. Raverty
- Animal Health Center, Ministry of Agriculture, Abbotsford, British Columbia, V3G 2M3, Canada
| | | | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
3
|
INVESTIGATION OF SARCOCYSTIS SPP. INFECTION IN FREE-RANGING AMERICAN BLACK BEARS (URSUS AMERICANUS) AND GRIZZLY BEARS (URSUS ARCTOS HORRIBILIS) IN BRITISH COLUMBIA, CANADA. J Wildl Dis 2021; 57:856-864. [PMID: 34516653 DOI: 10.7589/jwd-d-20-00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Sarcocystis spp. are protozoan parasites that cause a spectrum of lesions in various hosts. Hepatic sarcocystosis and encephalitis have been described in captive American black bears (Ursus americanus) and polar bears (Ursus maritimus), and in a free-ranging grizzly bear (Ursus arctos horribilis), but have not previously been reported in free-ranging American black bears. This study aimed to characterize the presence and lesions associated with Sarcocystis spp. in free-ranging bears in British Columbia, Canada from samples submitted to the provincial diagnostic laboratory. From 2007 to 2019, 102 free-ranging American black bear and grizzly bear tissues were examined postmortem for sarcocystosis using histopathology and follow-up molecular diagnostics. Sarcocystosis was confirmed in 41 (40%) free-ranging bears including 39 American black bears and two grizzly bears. Microscopic lesions included multifocal necrotizing hepatitis, nonsuppurative encephalitis, and/or intramuscular sarcocysts with or without associated inflammation. Sarcocystosis was considered the cause of death in eight (20%) of these bears, exclusively in cubs of the year (<1 yr old). Sarcocystis canis was identified in 22/32 (69%) cases where molecular characterization was performed and was the etiologic agent associated with bears that died of sarcocystosis. Confirmed cases were distributed widely across British Columbia. While there was an alternate proximate cause of death in the other confirmed bears, sarcocystosis may have contributed. Age was a significant risk factor, with yearlings presenting more often with fulminant lesions; however, there was a sampling bias toward juvenile bear submissions due to size and ease of transport. Further research is needed to understand the disease epidemiology and significance to population health.
Collapse
|
4
|
Greenfield JB, Anderson MV, Dorey EA, Redman E, Gilleard JS, Nemeth NM, Rothenburger JL. Molecular characterization of Sarcocystis spp. as a cause of protozoal encephalitis in a free-ranging black bear. J Vet Diagn Invest 2021; 34:146-152. [PMID: 34416834 DOI: 10.1177/10406387211038389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A free-ranging juvenile male black bear (Ursus americanus), found dead in Alberta, Canada, had severe nonsuppurative encephalitis. Lesions in the brain were most severe in the gray matter of the cerebral cortex, and included perivascular cuffs of lymphocytes and plasma cells, areas of gliosis that disrupted the neuropil, and intralesional protozoan schizonts. The left hindlimb had suppurative myositis associated with Streptococcus halichoeri. Immunohistochemistry and molecular analyses (PCR and sequencing of 4 discriminatory loci: 18S rDNA, ITS-1 rDNA, cox1, rpoB) identified Sarcocystis canis or a very closely related Sarcocystis sp. in the affected muscle and brain tissues. The main lesion described in previously reported cases of fatal sarcocystosis in bears was necrotizing hepatitis. Fatal encephalitis associated with this parasite represents a novel presentation of sarcocystosis in bears. Sarcocystosis should be considered a differential diagnosis for nonsuppurative encephalitis in bears.
Collapse
Affiliation(s)
- Jordan B Greenfield
- Departments of Ecosystem and Public Health and the Canadian Wildlife Health Cooperative Alberta Region, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madison V Anderson
- Departments of Ecosystem and Public Health and the Canadian Wildlife Health Cooperative Alberta Region, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily A Dorey
- Departments of Ecosystem and Public Health and the Canadian Wildlife Health Cooperative Alberta Region, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Redman
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study and Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jamie L Rothenburger
- Departments of Ecosystem and Public Health and the Canadian Wildlife Health Cooperative Alberta Region, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Su C. EPIDEMIOLOGIC AND PUBLIC HEALTH SIGNIFICANCE OF TOXOPLASMA GONDII INFECTIONS IN BEARS (URSUS SPP.): A 50 YEAR REVIEW INCLUDING RECENT GENETIC EVIDENCE. J Parasitol 2021; 107:519-528. [PMID: 34167147 DOI: 10.1645/21-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. The present review summarizes worldwide information on the prevalence of clinical and subclinical infections, epidemiology, and genetic diversity of T. gondii infections in bears. Seroprevalence estimates of T. gondii in black bears (Ursus americanus) are one of the highest of all animals. In Pennsylvania, seroprevalence is around 80% and has remained stable for the past 4 decades. Approximately 3,500 bears are hunted yearly in Pennsylvania alone. The validity of different serological tests is discussed based on bioassay and serological comparisons. Seroprevalence in grizzly bears (Ursus arctos) is lower than that in black bears. Even polar bears (Ursus maritimus) are infected; infections in these animals are ecologically interesting because of the absence of felids in the Arctic. Clinical toxoplasmosis in bears is rare and not documented in adult animals. The few reports of fatal toxoplasmosis in young bears need confirmation. Viable T. gondii has been isolated from black bears and a grizzly bear. The genetic diversity of isolates based on DNA from viable T. gondii isolates is discussed. Genetic typing of a total of 26 T. gondii samples from bears using 10 PCR-RFLP markers revealed 8 PCR-RFLP ToxoDB genotypes: #1 (clonal type II) in 3 samples, #2 (clonal type III) in 8 samples, #4 (haplogroup 12) in 3 samples, #5 (haplogroup 12) in 3 samples, #74 in 5 samples, #90 in 1 sample, #147 in 1 sample, and #216 in 2 samples. These results suggest relatively high genetic diversity of T. gondii in bears. Overall, T. gondii isolates in bears range from those circulating in a domestic cycle (genotypes #1 and #2) to those mainly associated with wildlife (such as genotypes #4 and #5, together known as haplogroup 12). A patient who acquired clinical Trichinella spiralis infection after eating undercooked bear meat also acquired T. gondii infection. Freezing of infected meat kills T. gondii, including the strains isolated from bears.
Collapse
Affiliation(s)
- J P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - F H A Murata
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C K Cerqueira-Cézar
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - O C H Kwok
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845
| |
Collapse
|
6
|
O'Byrne AM, Lambourn DM, Rejmanek D, Haman K, O'Byrne M, VanWormer E, Shapiro K. Sarcocystis neurona Transmission from Opossums to Marine Mammals in the Pacific Northwest. ECOHEALTH 2021; 18:84-94. [PMID: 34213686 PMCID: PMC8367900 DOI: 10.1007/s10393-021-01536-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Increasing reports of marine mammal deaths have been attributed to the parasite Sarcocystis neurona. Infected opossums, the only known definitive hosts, shed S. neurona sporocysts in their feces. Sporocysts can contaminate the marine environment via overland runoff, and subsequent ingestion by marine mammals can lead to fatal encephalitis. Our aim was to determine the prevalence of S. neurona in opossums from coastal areas of Washington State (USA) and to compare genetic markers between S. neurona in opossums and marine mammals. Thirty-two road-kill opossums and tissue samples from 30 stranded marine mammals meeting inclusion criteria were included in analyses. Three opossums (9.4%) and twelve marine mammals (40%) were confirmed positive for S. neurona via DNA amplification at the ITS1 locus. Genetic identity at microsatellites (sn3, sn7, sn9) and the snSAG3 gene of S. neurona was demonstrated among one harbor porpoise and two opossums. Watershed mapping further demonstrated plausible sporocyst transport pathways from one of these opossums to the location where an infected harbor porpoise carcass was recovered. Our results provide the first reported link between S. neurona genotypes on land and sea in the Pacific Northwest, and further demonstrate how terrestrial pathogen pollution can impact the health of marine wildlife.
Collapse
Affiliation(s)
- Alice M O'Byrne
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6, Ireland
| | - Dyanna M Lambourn
- Wildlife Program, WA Department of Fish and Wildlife, 1111 Washington Street SE, Olympia, WA, 98501, USA
| | - Daniel Rejmanek
- California Animal Health and Food Safety Laboratory, Davis, CA, USA
| | - Katherine Haman
- Wildlife Program, WA Department of Fish and Wildlife, 1111 Washington Street SE, Olympia, WA, 98501, USA
| | - Michael O'Byrne
- University of Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Karen Shapiro
- Pathology, Microbiology and Immunology, University of California Davis, One Shields Avenue, 4206 VM3A, Davis, CA, 95616-5270, USA.
| |
Collapse
|